1
|
Bi Y, Wu L, Li B, Hao Y, Li Z, Zhang J, Cheng A, Yuan G, Fan J. Effects of beauvericin on the blood cells of Bombyx mori. J Invertebr Pathol 2023; 201:108003. [PMID: 37838064 DOI: 10.1016/j.jip.2023.108003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 10/16/2023]
Abstract
In this study, silkworms were treated by injection of the bioactive depsipeptide beauvericin (BEA) to explore its effect on the cellular immunity of larvae of the silkworm Bombyx mori. The results showed that: The LC50 of BEA for silkworms on the 3rd day of the 4th instar was 362.36 µM. The total count of circulating hemocytes in the silkworms decreased at 12 h after injection with 350 µM BEA, and reached the minimum value at 72 h post-treatment; at 48 h post-treatment, a large number of nodules formed by the aggregation of blood cells of the silkworms were observed under the light microscope. The survival rate of hemocytes in the larvae treated with BEA was significantly reduced in a dose-dependent manner in vivo and in vitro. The encapsulation of Q-Sepharose Fast Flow (QFF) gel particles by hemocytes in the treatment group was significantly higher than that in the control group at 1.5 h and 3 h post-treatment (P < 0.05). Moreover, the melanization ratio of QFF gel particles kept increasing with treatment time. The melanization rate at 24 h after treatment was significantly higher than that at other times (P < 0.05), reaching 55.33 %. Under the scanning electron microscope, BEA-treated larvae showed protrusions on the surface of their blood cells in vivo. Under the transmission electron microscope, it was observed that silkworm hemocytes were vacuolated. This study demonstrated that BEA had an effect on the blood cells of silkworms, and has thrown some light on the inhibitory effect and mechanism of BEA on insect cellular immunity.
Collapse
Affiliation(s)
- Yong Bi
- College of Forestry, Shanxi Agricultural University, Jinzhong 030800, China
| | - Lingzhi Wu
- College of Forestry, Shanxi Agricultural University, Jinzhong 030800, China
| | - Baozhen Li
- College of Basic Medical Sciences, Shanxi University of Chinese Medicine, Jinzhong 030619, China.
| | - Yanping Hao
- College of Forestry, Shanxi Agricultural University, Jinzhong 030800, China
| | - Zixiao Li
- College of Forestry, Shanxi Agricultural University, Jinzhong 030800, China
| | - Jiwei Zhang
- College of Forestry, Shanxi Agricultural University, Jinzhong 030800, China
| | - Aiying Cheng
- College of Forestry, Shanxi Agricultural University, Jinzhong 030800, China
| | - Guizhen Yuan
- College of Forestry, Shanxi Agricultural University, Jinzhong 030800, China
| | - Jinhua Fan
- College of Forestry, Shanxi Agricultural University, Jinzhong 030800, China.
| |
Collapse
|
2
|
Zhang L, Fasoyin OE, Molnár I, Xu Y. Secondary metabolites from hypocrealean entomopathogenic fungi: novel bioactive compounds. Nat Prod Rep 2020; 37:1181-1206. [PMID: 32211639 PMCID: PMC7529686 DOI: 10.1039/c9np00065h] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Covering: 2014 up to the third quarter of 2019 Entomopathogens constitute a unique, specialized trophic subgroup of fungi, most of whose members belong to the order Hypocreales (class Sordariomycetes, phylum Ascomycota). These Hypocrealean Entomopathogenic Fungi (HEF) produce a large variety of secondary metabolites (SMs) and their genomes rank highly for the number of predicted, unique SM biosynthetic gene clusters. SMs from HEF have diverse roles in insect pathogenicity as virulence factors by modulating various interactions between the producer fungus and its insect host. In addition, these SMs also defend the carcass of the prey against opportunistic microbial invaders, mediate intra- and interspecies communication, and mitigate abiotic and biotic stresses. Thus, these SMs contribute to the role of HEF as commercial biopesticides in the context of integrated pest management systems, and provide lead compounds for the development of chemical pesticides for crop protection. These bioactive SMs also underpin the widespread use of certain HEF as nutraceuticals and traditional remedies, and allowed the modern pharmaceutical industry to repurpose some of these molecules as life-saving human medications. Herein, we survey the structures and biological activities of SMs described from HEF, and summarize new information on the roles of these metabolites in fungal virulence.
Collapse
Affiliation(s)
- Liwen Zhang
- Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, P.R. China.
| | - Opemipo Esther Fasoyin
- Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, P.R. China.
| | - István Molnár
- Southwest Center for Natural Products Research, University of Arizona, 250 E. Valencia Rd., Tucson, AZ 85706, USA.
| | - Yuquan Xu
- Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, P.R. China.
| |
Collapse
|
3
|
Kryukov VY, Kryukova NA, Tomilova OG, Vorontsova Y, Chertkova E, Pervushin AL, Slepneva I, Glupov VV, Yaroslavtseva ON. Comparative analysis of the immune response of the wax moth Galleria mellonella after infection with the fungi Cordyceps militaris and Metarhizium robertsii. Microb Pathog 2020; 141:103995. [DOI: 10.1016/j.micpath.2020.103995] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/18/2020] [Accepted: 01/21/2020] [Indexed: 11/16/2022]
|
4
|
Mannino MC, Huarte-Bonnet C, Davyt-Colo B, Pedrini N. Is the Insect Cuticle the only Entry Gate for Fungal Infection? Insights into Alternative Modes of Action of Entomopathogenic Fungi. J Fungi (Basel) 2019; 5:E33. [PMID: 31014042 PMCID: PMC6616882 DOI: 10.3390/jof5020033] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/11/2019] [Accepted: 04/12/2019] [Indexed: 12/13/2022] Open
Abstract
Entomopathogenic fungi are the only insect pathogens able to infect their host by adhesion to the surface and penetration through the cuticle. Although the possibility of fungal infection per os was described almost a century ago, there is an information gap of several decades regarding this topic, which was poorly explored due to the continuous elucidation of cuticular infection processes that lead to insect death by mycosis. Recently, with the advent of next-generation sequencing technologies, the genomes of the main entomopathogenic fungi became available, and many fungal genes potentially useful for oral infection were described. Among the entomopathogenic Hypocreales that have been sequenced, Beauveria bassiana (Balsamo-Crivelli) Vuillemin (Cordycipitaceae) is the main candidate to explore this pathway since it has a major number of shared genes with other non-fungal pathogens that infect orally, such as Bacillus thuringiensis Berliner (Bacillales: Bacillaceae). This finding gives B. bassiana a potential advantage over other entomopathogenic fungi: the possibility to infect through both routes, oral and cuticular. In this review, we explore all known entry gates for entomopathogenic fungi, with emphasis on the infection per os. We also set out the fungal infection process in a more integral approach, as a need to exploit its full potential for insect control, considering all of its virulence factors and the conditions needed to improve its virulence against insect that might offer some resistance to the common infection through the cuticle.
Collapse
Affiliation(s)
- M Constanza Mannino
- Instituto de Investigaciones Bioquímicas de La Plata (CONICET CCT La Plata-UNLP), Universidad Nacional de La Plata, calles 60 y 120, 1900 La Plata, Argentina.
| | - Carla Huarte-Bonnet
- Instituto de Investigaciones Bioquímicas de La Plata (CONICET CCT La Plata-UNLP), Universidad Nacional de La Plata, calles 60 y 120, 1900 La Plata, Argentina.
| | - Belén Davyt-Colo
- Instituto de Investigaciones Bioquímicas de La Plata (CONICET CCT La Plata-UNLP), Universidad Nacional de La Plata, calles 60 y 120, 1900 La Plata, Argentina.
| | - Nicolás Pedrini
- Instituto de Investigaciones Bioquímicas de La Plata (CONICET CCT La Plata-UNLP), Universidad Nacional de La Plata, calles 60 y 120, 1900 La Plata, Argentina.
| |
Collapse
|
5
|
Fan A, Mi W, Liu Z, Zeng G, Zhang P, Hu Y, Fang W, Yin WB. Deletion of a Histone Acetyltransferase Leads to the Pleiotropic Activation of Natural Products in Metarhizium robertsii. Org Lett 2017; 19:1686-1689. [DOI: 10.1021/acs.orglett.7b00476] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Aili Fan
- State
Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid
Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wubin Mi
- Institute
of Microbiology, College of Life Science, Zhejiang University, Hangzhou 310058, China
| | - Zhiguo Liu
- State
Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Guohong Zeng
- Institute
of Microbiology, College of Life Science, Zhejiang University, Hangzhou 310058, China
| | - Peng Zhang
- State
Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Youcai Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Weiguo Fang
- Institute
of Microbiology, College of Life Science, Zhejiang University, Hangzhou 310058, China
| | - Wen-Bing Yin
- State
Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
6
|
Singh D, Son SY, Lee CH. Perplexing Metabolomes in Fungal-Insect Trophic Interactions: A Terra Incognita of Mycobiocontrol Mechanisms. Front Microbiol 2016; 7:1678. [PMID: 27807434 PMCID: PMC5069422 DOI: 10.3389/fmicb.2016.01678] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 10/07/2016] [Indexed: 12/11/2022] Open
Abstract
The trophic interactions of entomopathogenic fungi in different ecological niches viz., soil, plants, or insect themselves are effectively regulated by their maneuvered metabolomes and the plethora of metabotypes. In this article, we discuss a holistic framework of co-evolutionary metabolomes and metabotypes to model the interactions of biocontrol fungi especially with mycosed insects. Conventionally, the studies involving fungal biocontrol mechanisms are reported in the context of much aggrandized fungal entomotoxins while the adaptive response mechanisms of host insects are relatively overlooked. The present review asserts that the selective pressure exerted among the competing or interacting species drives alterations in their overall metabolomes which ultimately implicates in corresponding metabotypes. Quintessentially, metabolomics offers a most generic and tractable model to assess the fungal-insect antagonism in terms of interaction biomarkers, biosynthetic pathway plasticity, and their co-evolutionary defense. The fungi chiefly rely on a battery of entomotoxins viz., secondary metabolites falling in the categories of NRP's (non-ribosomal peptides), PK's (polyketides), lysine derive alkaloids, and terpenoids. On the contrary, insects overcome mycosis through employing different layers of immunity manifested as altered metabotypes (phenoloxidase activity) and overall metabolomes viz., carbohydrates, lipids, fatty acids, amino acids, and eicosanoids. Here, we discuss the recent findings within conventional premise of fungal entomotoxicity and the evolution of truculent immune response among host insect. The metabolomic frameworks for fungal-insect interaction can potentially transmogrify our current comprehensions of biocontrol mechanisms to develop the hypervirulent biocontrol strains with least environmental concerns. Moreover, the interaction metabolomics (interactome) in complementation with other -omics cascades could further be applied to address the fundamental bottlenecks of adaptive co-evolution among biological species.
Collapse
Affiliation(s)
- Digar Singh
- Department of Bioscience and Biotechnology, Konkuk University Seoul, South Korea
| | - Su Y Son
- Department of Bioscience and Biotechnology, Konkuk University Seoul, South Korea
| | - Choong H Lee
- Department of Bioscience and Biotechnology, Konkuk University Seoul, South Korea
| |
Collapse
|
7
|
Gardner DR, Cook D. Analysis of Swainsonine and Swainsonine N-Oxide as Trimethylsilyl Derivatives by Liquid Chromatography-Mass Spectrometry and Their Relative Occurrence in Plants Toxic to Livestock. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:6156-6162. [PMID: 27436221 DOI: 10.1021/acs.jafc.6b02390] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
There are limited data concerning the occurrence of swainsonine N-oxide in plants known to contain swainsonine and its relative impact on toxicity of the plant material. A liquid chromatography-mass spectrometry method based on a solvent partitioning extraction procedure followed by trimethylsilylation and analysis using reversed phase high-pressure liquid chromatography-mass spectrometry was developed for the analysis of swainsonine and its N-oxide. The concentrations of each were measured in several swainsonine-containing taxa as well as two endophytic isolates that produce swainsonine. In vegetative samples the relative percent of N-oxide to free base ranged from 0.9 to 18%. In seed samples the N-oxide to free base ratio ranged from 0 to 10%. The measured concentrations of swainsonine N-oxide relative to swainsonine only slightly increases the actual toxicity of the various plant samples in a combined assay of both compounds.
Collapse
Affiliation(s)
- Dale R Gardner
- Poisonous Plant Research Laboratory, Agricultural Research Service, U.S. Department of Agriculture , 1150 E 1400 N, Logan, Utah 84341, United States
| | - Daniel Cook
- Poisonous Plant Research Laboratory, Agricultural Research Service, U.S. Department of Agriculture , 1150 E 1400 N, Logan, Utah 84341, United States
| |
Collapse
|
8
|
Butt TM, Coates CJ, Dubovskiy IM, Ratcliffe NA. Entomopathogenic Fungi: New Insights into Host-Pathogen Interactions. ADVANCES IN GENETICS 2016; 94:307-64. [PMID: 27131329 DOI: 10.1016/bs.adgen.2016.01.006] [Citation(s) in RCA: 196] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Although many insects successfully live in dangerous environments exposed to diverse communities of microbes, they are often exploited and killed by specialist pathogens. Studies of host-pathogen interactions (HPI) provide valuable insights into the dynamics of the highly aggressive coevolutionary arms race between entomopathogenic fungi (EPF) and their arthropod hosts. The host defenses are designed to exclude the pathogen or mitigate the damage inflicted while the pathogen responds with immune evasion and utilization of host resources. EPF neutralize their immediate surroundings on the insect integument and benefit from the physiochemical properties of the cuticle and its compounds that exclude competing microbes. EPF also exhibit adaptations aimed at minimizing trauma that can be deleterious to both host and pathogen (eg, melanization of hemolymph), form narrow penetration pegs that alleviate host dehydration and produce blastospores that lack immunogenic sugars/enzymes but facilitate rapid assimilation of hemolymph nutrients. In response, insects deploy an extensive armory of hemocytes and macromolecules, such as lectins and phenoloxidase, that repel, immobilize, and kill EPF. New evidence suggests that immune bioactives work synergistically (eg, lysozyme with antimicrobial peptides) to combat infections. Some proteins, including transferrin and apolipophorin III, also demonstrate multifunctional properties, participating in metabolism, homeostasis, and pathogen recognition. This review discusses the molecular intricacies of these HPI, highlighting the interplay between immunity, stress management, and metabolism. Increased knowledge in this area could enhance the efficacy of EPF, ensuring their future in integrated pest management programs.
Collapse
Affiliation(s)
- T M Butt
- Swansea University, Swansea, Wales, United Kingdom
| | - C J Coates
- Swansea University, Swansea, Wales, United Kingdom
| | | | - N A Ratcliffe
- Swansea University, Swansea, Wales, United Kingdom; Universidade Federal Fluminense, Niteroi, Rio de Janeiro, Brazil
| |
Collapse
|