1
|
Medrano-Padial C, Pérez-Novas I, Domínguez-Perles R, García-Viguera C, Medina S. Bioaccessible Phenolic Alkyl Esters of Wine Lees Decrease COX-2-Catalyzed Lipid Mediators of Oxidative Stress and Inflammation in a Time-Dependent Manner. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19016-19027. [PMID: 39145698 PMCID: PMC11363137 DOI: 10.1021/acs.jafc.4c05086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/06/2024] [Accepted: 08/09/2024] [Indexed: 08/16/2024]
Abstract
Lipophenols, phenolic compounds esterified with fatty alcohols or fatty acids, provide greater health benefits upon dietary ingestion of plant-based foods than unesterified (poly)phenols. Based on this premise, the present study aimed to demonstrate the role of gastrointestinal enzymes (pepsin, pancreatin, and pancreatic lipase) in releasing alkyl gallates and trans-caffeates from wine lees, providing bioactive compounds with enhanced capacities against oxidative stress (OS) and para-inflammation. The UHPLC-ESI-QqQ-MS/MS-based analysis revealed ethyl gallate and ethyl trans-caffeate as the most prominent compounds (1.675 and 0.872 μg/g dw, respectively), while the bioaccessibility of the derivatives of gallic and caffeic acids was dependent on the alkyl chain properties. The de novo formation of alkyl gallates during gastric and intestinal digestion resulted from intestinal enzyme activity. Moreover, the in vitro capacity of bioaccessible alkyl esters of gallic and trans-caffeic acids to reduce cyclooxygenase-2 concentration and modulate oxilipins related to OS (8-iso-PGF2α) and inflammation (PGF2α and PGE2) was demonstrated in a time-dependent manner. In conclusion, the presence of alkyl esters of gallic and trans-caffeic acids in wine lees and their subsequent formation during digestion of this byproduct emphasize their value as a source of antioxidant and anti-inflammatory compounds, encouraging the consideration of wine lees as a valuable ingredient for health-promoting coproducts.
Collapse
Affiliation(s)
- Concepción Medrano-Padial
- Laboratorio de Fitoquímica
y Alimentos Saludables (LabFAS), CSIC, CEBAS, Campus Universitario de Espinardo
25, 30100 Espinardo, Murcia, Spain
| | - Irene Pérez-Novas
- Laboratorio de Fitoquímica
y Alimentos Saludables (LabFAS), CSIC, CEBAS, Campus Universitario de Espinardo
25, 30100 Espinardo, Murcia, Spain
| | - Raúl Domínguez-Perles
- Laboratorio de Fitoquímica
y Alimentos Saludables (LabFAS), CSIC, CEBAS, Campus Universitario de Espinardo
25, 30100 Espinardo, Murcia, Spain
| | - Cristina García-Viguera
- Laboratorio de Fitoquímica
y Alimentos Saludables (LabFAS), CSIC, CEBAS, Campus Universitario de Espinardo
25, 30100 Espinardo, Murcia, Spain
| | - Sonia Medina
- Laboratorio de Fitoquímica
y Alimentos Saludables (LabFAS), CSIC, CEBAS, Campus Universitario de Espinardo
25, 30100 Espinardo, Murcia, Spain
| |
Collapse
|
2
|
Domínguez-Perles R, García-Viguera C, Medina S. New anti-α-Glucosidase and Antioxidant Ingredients from Winery Byproducts: Contribution of Alkyl Gallates. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14615-14625. [PMID: 37766493 PMCID: PMC10571075 DOI: 10.1021/acs.jafc.3c03759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023]
Abstract
Wine-making activity entails the production of solid and semisolid byproducts (grape stems and pomace and wine lees) that negatively impact the environment and industrial sustainability. Their features as sources of bioactive compounds support valorization procedures for functional and healthy ingredients. This work uncovers the quantitative alkyl gallates (gallic acid esters, C1-C12) profile of fresh (freeze-dried) materials and the effect of oven-drying on their stability by UHPLC-ESI-QqQ-MS/MS. The functionality was established concerning DPPH• scavenging and antihyperglycemic power. Wine lees exerted the highest high-free concentration of galloyl derivatives, ethyl gallate being the most abundant ester (3472.62 ng/g dw, on average). About the impact of the stabilization process, although as a general trend, the thermal treatment reduced the concentration, the reduction dimensions depended on the compound/matrix, remaining in valuable concentrations. Concerning radical scavenging, ze-dried stems and pomace displayed the highest capacity (24.11 and 18.46 mg TE/g dw, respectively), being correlated with propyl gallate (r2 = 0.690), butyl gallate (r2 = 0.686), and octyl gallate (r2 = 0.514). These two matrices exerted α-glucosidase inhibitory activity (1.58 and 1.46 units/L) equivalent to that of acarbose (a recognized α-glucosidase inhibitor). The newly described bioactive phytochemicals in winery residues (galloyl esters) and their correlation with functional traits allow for envisioning valorization alternatives.
Collapse
Affiliation(s)
- Raúl Domínguez-Perles
- Laboratorio de Fitoquímica y
Alimentos Saludables (LabFAS), CEBAS-CSIC, Campus of the University of Murcia-25, Espinardo, Murcia 30100, Spain
| | - Cristina García-Viguera
- Laboratorio de Fitoquímica y
Alimentos Saludables (LabFAS), CEBAS-CSIC, Campus of the University of Murcia-25, Espinardo, Murcia 30100, Spain
| | - Sonia Medina
- Laboratorio de Fitoquímica y
Alimentos Saludables (LabFAS), CEBAS-CSIC, Campus of the University of Murcia-25, Espinardo, Murcia 30100, Spain
| |
Collapse
|
3
|
Wijaya T, Kitao A. Energetic and Kinetic Origins of CALB Interfacial Activation Revealed by PaCS-MD/MSM. J Phys Chem B 2023; 127:7431-7441. [PMID: 37562019 PMCID: PMC10476181 DOI: 10.1021/acs.jpcb.3c02041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/21/2023] [Indexed: 08/12/2023]
Abstract
The conformational dynamics of Candida antarctica lipase B (CALB) was investigated by molecular dynamics (MD) simulation, parallel cascade selection MD (PaCS-MD), and the Markov state model (MSM) and mainly focused on the lid-opening motion closely related to substrate binding. All-atom MD simulation of CALB was conducted in water and on the interface of water and tricaprylin. CALB initially situated in water and separated by layers of water from the interface is spontaneously adsorbed onto the tricaprylin surface during MD simulation. The opening and closing motions of the lid are simulated by PaCS-MD, and subsequent MSM analysis provided the free-energy landscape and time scale of the conformational transitions among the closed, semiopen, and open states. The closed state is the most stable in the water system, but the stable conformation in the interface system shifts to the semiopen state. These effects could explain the energetics and kinetics origin of the previously reported interfacial activation of CALB. These findings could help expand the application of CALB toward a wide variety of substrates.
Collapse
Affiliation(s)
- Tegar
N. Wijaya
- School
of Life Science and Technology, Tokyo Institute
of Technology. 2-12-1
Ookayama, Meguro-ku, Tokyo 152-8550, Japan
- Department
of Chemistry, Universitas Pertamina, Jl. Teuku Nyak Arief, Simprug, Jakarta 12220, Indonesia
| | - Akio Kitao
- School
of Life Science and Technology, Tokyo Institute
of Technology. 2-12-1
Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| |
Collapse
|
4
|
Qi Z, Xue X, Zhou H, Yuan H, Li W, Yang G, Xie P, Wang C. The aqueous assembly preparation of OPs-AgNPs with phenols from olive mill wastewater and its mechanism on antimicrobial function study. Food Chem 2021; 376:131924. [PMID: 34968917 DOI: 10.1016/j.foodchem.2021.131924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 12/16/2021] [Accepted: 12/19/2021] [Indexed: 11/16/2022]
Abstract
To valorise olive mill wastewater phenols (OPs) potentially applied in food preservation, a novel stable and regularly spherical OPs-AgNPs (Davg = 78 nm) were successfully assembled in aqueous solution under the optimized conditions (pH 8.0, 5 mM AgNO3, 35C and 30 min). The results of antimicrobial zone diameters indicated that 50 μg/mL of promising OPs-AgNPs presented excellent antimicrobial effects. Especially, the cell wall damages of E. coli ATCC 23,815 were caused when OPs-AgNPs concentration was exceeded its MIC (8.58 μg/mL). Also, a significant down-regulating of the Ca2+-ATPase activity in E. coli was revealed, and the intracellular Ca2+ concentrations were thus decreased from 12.5 to 1.35 µg/mL after a treatment for 3 h. The apoptosis level of E. coli was significantly increased more than the control (55.13% of OPs-AgNPs vs 9.90% of control). In sum, OPs exerts enhanced antimicrobial function via penetrating cell membrane and targeting Ca2+-ATPase after chelated with AgNPs.
Collapse
Affiliation(s)
- Zhiwen Qi
- National Engineering Lab. for Biomass Chemical Utilization, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, Jiangsu, People's Republic of China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing 210042, Jiangsu, People's Republic of China
| | - Xingying Xue
- National Engineering Lab. for Biomass Chemical Utilization, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, Jiangsu, People's Republic of China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing 210042, Jiangsu, People's Republic of China
| | - Hao Zhou
- National Engineering Lab. for Biomass Chemical Utilization, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, Jiangsu, People's Republic of China
| | - Hua Yuan
- National Engineering Lab. for Biomass Chemical Utilization, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, Jiangsu, People's Republic of China
| | - Wenjun Li
- National Engineering Lab. for Biomass Chemical Utilization, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, Jiangsu, People's Republic of China
| | - Guliang Yang
- National Engineering Laboratory for Rice and By-products Processing, Food Science and Engineering College, Central South University of Forestry and Technology, Changsha 410004, Hunan, People's Republic of China.
| | - Pujun Xie
- National Engineering Lab. for Biomass Chemical Utilization, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, Jiangsu, People's Republic of China.
| | - Chengzhang Wang
- National Engineering Lab. for Biomass Chemical Utilization, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, Jiangsu, People's Republic of China
| |
Collapse
|
5
|
Intasian P, Prakinee K, Phintha A, Trisrivirat D, Weeranoppanant N, Wongnate T, Chaiyen P. Enzymes, In Vivo Biocatalysis, and Metabolic Engineering for Enabling a Circular Economy and Sustainability. Chem Rev 2021; 121:10367-10451. [PMID: 34228428 DOI: 10.1021/acs.chemrev.1c00121] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Since the industrial revolution, the rapid growth and development of global industries have depended largely upon the utilization of coal-derived chemicals, and more recently, the utilization of petroleum-based chemicals. These developments have followed a linear economy model (produce, consume, and dispose). As the world is facing a serious threat from the climate change crisis, a more sustainable solution for manufacturing, i.e., circular economy in which waste from the same or different industries can be used as feedstocks or resources for production offers an attractive industrial/business model. In nature, biological systems, i.e., microorganisms routinely use their enzymes and metabolic pathways to convert organic and inorganic wastes to synthesize biochemicals and energy required for their growth. Therefore, an understanding of how selected enzymes convert biobased feedstocks into special (bio)chemicals serves as an important basis from which to build on for applications in biocatalysis, metabolic engineering, and synthetic biology to enable biobased processes that are greener and cleaner for the environment. This review article highlights the current state of knowledge regarding the enzymatic reactions used in converting biobased wastes (lignocellulosic biomass, sugar, phenolic acid, triglyceride, fatty acid, and glycerol) and greenhouse gases (CO2 and CH4) into value-added products and discusses the current progress made in their metabolic engineering. The commercial aspects and life cycle assessment of products from enzymatic and metabolic engineering are also discussed. Continued development in the field of metabolic engineering would offer diversified solutions which are sustainable and renewable for manufacturing valuable chemicals.
Collapse
Affiliation(s)
- Pattarawan Intasian
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Kridsadakorn Prakinee
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Aisaraphon Phintha
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand.,Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Duangthip Trisrivirat
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Nopphon Weeranoppanant
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand.,Department of Chemical Engineering, Faculty of Engineering, Burapha University, 169, Long-hard Bangsaen, Saensook, Muang, Chonburi 20131, Thailand
| | - Thanyaporn Wongnate
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| | - Pimchai Chaiyen
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong 21210, Thailand
| |
Collapse
|
6
|
Heath RS, Ruscoe RE, Turner NJ. The beauty of biocatalysis: sustainable synthesis of ingredients in cosmetics. Nat Prod Rep 2021; 39:335-388. [PMID: 34879125 DOI: 10.1039/d1np00027f] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Covering: 2015 up to July 2021The market for cosmetics is consumer driven and the desire for green, sustainable and natural ingredients is increasing. The use of isolated enzymes and whole-cell organisms to synthesise these products is congruent with these values, especially when combined with the use of renewable, recyclable or waste feedstocks. The literature of biocatalysis for the synthesis of ingredients in cosmetics in the past five years is herein reviewed.
Collapse
Affiliation(s)
- Rachel S Heath
- Manchester Institute of Biotechnology, Department of Chemistry, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| | - Rebecca E Ruscoe
- Manchester Institute of Biotechnology, Department of Chemistry, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| | - Nicholas J Turner
- Manchester Institute of Biotechnology, Department of Chemistry, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| |
Collapse
|
7
|
Dong L, Qi S, Jia J, Zhang Y, Hu Y. Enantioselective resolution of (±)-1-phenylethyl acetate using the immobilized extracellular proteases from deep-sea Bacillus sp. DL-1. BIOCATAL BIOTRANSFOR 2021. [DOI: 10.1080/10242422.2021.1897579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Lu Dong
- Guangdong Key Laboratory of Marine Materia Medical, South China Sea Institute of Oceanology, Chinese Academy of Sciences, CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangzhou, PR China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, PR China
| | - Shujuan Qi
- The Affiliated Traditional Chinese Medicine Hospital of Guangzhou Medical University, Guangzhou, PR China
| | - Jianwei Jia
- International College, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Yun Zhang
- Guangdong Key Laboratory of Marine Materia Medical, South China Sea Institute of Oceanology, Chinese Academy of Sciences, CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangzhou, PR China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, PR China
- Equipment Public Service Center, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, PR China
| | - Yunfeng Hu
- Guangdong Key Laboratory of Marine Materia Medical, South China Sea Institute of Oceanology, Chinese Academy of Sciences, CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangzhou, PR China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, PR China
| |
Collapse
|
8
|
Aggarwal S, Chakravarty A, Ikram S. A comprehensive review on incredible renewable carriers as promising platforms for enzyme immobilization & thereof strategies. Int J Biol Macromol 2020; 167:962-986. [PMID: 33186644 DOI: 10.1016/j.ijbiomac.2020.11.052] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 11/07/2020] [Accepted: 11/08/2020] [Indexed: 02/05/2023]
Abstract
Enzymes are the highly versatile bio-catalysts having the potential for being employed in biotechnological and industrial sectors to catalyze biosynthetic reactions over a commercial point of view. Immobilization of enzymes has improved catalytic properties, retention activities, thermal and storage stabilities as well as reusabilities of enzymes in synthetic environments that have enthralled significant attention over the past few years. Dreadful efforts have been emphasized on the renewable and synthetic supports/composite materials to reserve their inherent characteristics such as biocompatibility, non-toxicity, accessibility of numerous reactive sites for profitable immobilization of biological molecules that often serve diverse applications in the pharmaceutical, environmental, and energy sectors. Supports should be endowed with unique physicochemical properties including high specific surface area, hydrophobicity, hydrophilicity, enantioselectivities, multivalent functionalization which professed them as competent carriers for enzyme immobilization. Organic, inorganic, and nano-based platforms are more potent, stable, highly recovered even after used for continuous catalytic processes, broadly renders the enzymes to get efficiently immobilized to develop an inherent bio-catalytic system that displays higher activities as compared to free-counter parts. This review highlights the recent advances or developments on renewable and synthetic matrices that are utilized for the immobilization of enzymes to deliver emerging applications around the globe.
Collapse
Affiliation(s)
- Shalu Aggarwal
- Bio/Polymers Research Laboratory, Department of Chemistry, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Archana Chakravarty
- Bio/Polymers Research Laboratory, Department of Chemistry, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Saiqa Ikram
- Bio/Polymers Research Laboratory, Department of Chemistry, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, India.
| |
Collapse
|
9
|
Solid-state fermentation as a tool to enhance the polyphenolic compound contents of acidic Tamarindus indica by-products. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101851] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
10
|
Dong L, Xu Y, Zhang Y, Sun A, Hu Y. Enantioselective resolution of (±)-1-phenylethyl acetate by extracellular proteases from deep-sea bacterium Bacillus sp. DL-2. BIOCATAL BIOTRANSFOR 2019. [DOI: 10.1080/10242422.2019.1616697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Lu Dong
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
- Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, PR China
| | - Yongkai Xu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, PR China
| | - Yun Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, PR China
- Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, PR China
| | - Aijun Sun
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, PR China
- Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, PR China
| | - Yunfeng Hu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou, PR China
| |
Collapse
|
11
|
Akmoussi-Toumi S, Khemili-Talbi S, Ferioune I, Kebbouche-Gana S. Purification and characterization of an organic solvent-tolerant and detergent-stable lipase from Haloferax mediterranei CNCMM 50101. Int J Biol Macromol 2018; 116:817-830. [DOI: 10.1016/j.ijbiomac.2018.05.087] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 05/12/2018] [Accepted: 05/14/2018] [Indexed: 10/16/2022]
|
12
|
Tinikul R, Chenprakhon P, Maenpuen S, Chaiyen P. Biotransformation of Plant-Derived Phenolic Acids. Biotechnol J 2018; 13:e1700632. [DOI: 10.1002/biot.201700632] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 12/10/2017] [Indexed: 01/18/2023]
Affiliation(s)
- Ruchanok Tinikul
- Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology; Faculty of Science; Mahidol University; Bangkok 10400 Thailand
| | - Pirom Chenprakhon
- Institute for Innovative Learning; Mahidol University; Nakhon Pathom 73170 Thailand
| | - Somchart Maenpuen
- Department of Biochemistry; Faculty of Science; Burapha University; Chonburi 20131 Thailand
| | - Pimchai Chaiyen
- Department of Biomolecular Science and Engineering; School of Biomolecular Science & Engineering; Vidyasirimedhi Institute of Science and Technology (VISTEC); Wangchan Valley Rayong 21210 Thailand
| |
Collapse
|
13
|
Sarmah N, Revathi D, Sheelu G, Yamuna Rani K, Sridhar S, Mehtab V, Sumana C. Recent advances on sources and industrial applications of lipases. Biotechnol Prog 2017; 34:5-28. [DOI: 10.1002/btpr.2581] [Citation(s) in RCA: 172] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 10/18/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Nipon Sarmah
- Chemical Engineering Div.; CSIR-Indian Institute of Chemical Technology; Hyderabad 500007 India
- Academy of Scientific and Innovative Research (AcSIR); Chennai 600 113 India
| | - D. Revathi
- Chemical Engineering Div.; CSIR-Indian Institute of Chemical Technology; Hyderabad 500007 India
| | - G. Sheelu
- Medicinal Chemistry and Pharmacology Div.; CSIR-Indian Institute of Chemical Technology; Hyderabad 500007 India
| | - K. Yamuna Rani
- Chemical Engineering Div.; CSIR-Indian Institute of Chemical Technology; Hyderabad 500007 India
| | - S. Sridhar
- Chemical Engineering Div.; CSIR-Indian Institute of Chemical Technology; Hyderabad 500007 India
| | - V. Mehtab
- Chemical Engineering Div.; CSIR-Indian Institute of Chemical Technology; Hyderabad 500007 India
| | - C. Sumana
- Chemical Engineering Div.; CSIR-Indian Institute of Chemical Technology; Hyderabad 500007 India
- Academy of Scientific and Innovative Research (AcSIR); Chennai 600 113 India
| |
Collapse
|
14
|
Ülger C, Takaç S. Kinetics of lipase-catalysed methyl gallate production in the presence of deep eutectic solvent. BIOCATAL BIOTRANSFOR 2017. [DOI: 10.1080/10242422.2017.1359573] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Ceren Ülger
- Department of Chemical Engineering, Ankara University Faculty of Engineering, Ankara, Turkey
| | - Serpil Takaç
- Department of Chemical Engineering, Ankara University Faculty of Engineering, Ankara, Turkey
| |
Collapse
|
15
|
Bhardwaj KK, Saun NK, Gupta R. Immobilization of Lipase from Geobacillus sp. and Its Application in Synthesis of Methyl Salicylate. J Oleo Sci 2017; 66:391-398. [DOI: 10.5650/jos.ess16153] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
| | | | - Reena Gupta
- Department of Biotechnology, Himachal Pradesh University
| |
Collapse
|
16
|
Chyba A, Mastihubová M, Mastihuba V. Regioselective galloylation of methyl β-d-glucopyranoside by a lipase. MONATSHEFTE FUR CHEMIE 2016. [DOI: 10.1007/s00706-016-1696-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
17
|
Kumar A, Dhar K, Kanwar SS, Arora PK. Lipase catalysis in organic solvents: advantages and applications. Biol Proced Online 2016; 18:2. [PMID: 26766927 PMCID: PMC4711063 DOI: 10.1186/s12575-016-0033-2] [Citation(s) in RCA: 292] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 01/03/2016] [Indexed: 12/17/2022] Open
Abstract
Lipases are industrial biocatalysts, which are involved in several novel reactions, occurring in aqueous medium as well as non-aqueous medium. Furthermore, they are well-known for their remarkable ability to carry out a wide variety of chemo-, regio- and enantio-selective transformations. Lipases have been gained attention worldwide by organic chemists due to their general ease of handling, broad substrate tolerance, high stability towards temperatures and solvents and convenient commercial availability. Most of the synthetic reactions on industrial scale are carried out in organic solvents because of the easy solubility of non-polar compounds. The effect of organic system on their stability and activity may determine the biocatalysis pace. Because of worldwide use of lipases, there is a need to understand the mechanisms behind the lipase-catalyzed reactions in organic solvents. The unique interfacial activation of lipases has always fascinated enzymologists and recently, biophysicists and crystallographers have made progress in understanding the structure-function relationships of these enzymes. The present review describes the advantages of lipase-catalyzed reactions in organic solvents and various effects of organic solvents on their activity.
Collapse
Affiliation(s)
- Ashok Kumar
- Department of Biotechnology, Himachal Pradesh University, Shimla, 171 005 India
| | - Kartik Dhar
- Departmentof Microbiology, University of Chittagong, Chittagong, Bangladesh
| | | | - Pankaj Kumar Arora
- School of Biotechnology, Yeungnam University, Gyeongsan, 712-749 Republic of Korea
| |
Collapse
|