1
|
Montes-Narváez O, García-Juárez M, Beltrán-Pérez G, Espinosa-García C, González-Flores O, Delgado-Macuil RJ. ATR-FTIR spectroscopy to evaluate serum protein expression in a murine cerebral ischemia model. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 326:125261. [PMID: 39395276 DOI: 10.1016/j.saa.2024.125261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 09/22/2024] [Accepted: 10/05/2024] [Indexed: 10/14/2024]
Abstract
Stroke is a prevalent vascular disease that causes disability and death worldwide. Molecular techniques have been developed to assess serum concentrations of biomarkers associated with this disease, such as some proteins. ATR-FTIR was proposed as an alternative technique to determine protein expression during the early stages of stroke. Serum samples from sham, ischemic, and ischemic treated with estradiol benzoate (EB; as a neuroprotective agent) male rats were evaluated at 0, 2-, 4-, 6-, 12-, and 24-hours post-ischemia. The analysis was developed in the mid-infrared region but mainly focused on the protein region (1500-1700 cm-1), where it was possible to observe the modulation in the absorbance intensity. The peaks at 1545, 1645, 1635, and 1650 cm-1 associated with amide II, amide I, β-sheets, and α-helixes, respectively, were prominent peaks where protein modulation was observed. The results demonstrate that infrared spectroscopy could be a good alternative technique to determine the modulation of protein expression during stroke events.
Collapse
Affiliation(s)
- Omar Montes-Narváez
- Centro de Investigación en Reproducción Animal, Universidad Autónoma de Tlaxcala-CINVESTAV, Plaza Hidalgo S/N. San Nicolas Panotla, C.P. 90140 Tlaxcala, Mexico; Doctorado en Ciencias Biológicas, Universidad Autónoma de Tlaxcala, Tlaxcala 90000, Mexico
| | - Marcos García-Juárez
- Centro de Investigación en Reproducción Animal, Universidad Autónoma de Tlaxcala-CINVESTAV, Plaza Hidalgo S/N. San Nicolas Panotla, C.P. 90140 Tlaxcala, Mexico.
| | - Georgina Beltrán-Pérez
- Facultad de Ciencias Físico-Matemáticas, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Claudia Espinosa-García
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA; Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Oscar González-Flores
- Centro de Investigación en Reproducción Animal, Universidad Autónoma de Tlaxcala-CINVESTAV, Plaza Hidalgo S/N. San Nicolas Panotla, C.P. 90140 Tlaxcala, Mexico
| | - Raúl Jacobo Delgado-Macuil
- Instituto Politécnico Nacional, Centro de investigación en Biotecnología Aplicada, Tepetitla, Tlaxcala 90700, Mexico
| |
Collapse
|
2
|
Manoharan
Nair Sudha Kumari S, Thankappan Suryabai X. Sensing the Future-Frontiers in Biosensors: Exploring Classifications, Principles, and Recent Advances. ACS OMEGA 2024; 9:48918-48987. [PMID: 39713646 PMCID: PMC11656264 DOI: 10.1021/acsomega.4c07991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/29/2024] [Accepted: 11/18/2024] [Indexed: 12/24/2024]
Abstract
Biosensors are transforming healthcare by delivering swift, precise, and economical diagnostic solutions. These analytical instruments combine biological indicators with physical transducers to identify and quantify biomarkers, thereby improving illness detection, management, and patient surveillance. Biosensors are widely utilized in healthcare for the diagnosis of chronic and infectious diseases, tailored treatment, and real-time health monitoring. This thorough overview examines several categories of biosensors and their uses in the detection of numerous biomarkers, including glucose, proteins, nucleic acids, and infections. Biosensors are commonly classified based on the type of transducer employed or the specific biorecognition element utilized. This review introduces a novel classification based on substrate morphology, offering a comprehensive perspective on biosensor categorization. Considerable emphasis is placed on the advancement of point-of-care biosensors, facilitating decentralized diagnostics and alleviating the strain on centralized healthcare systems. Recent advancements in nanotechnology have significantly improved the sensitivity, selectivity, and downsizing of biosensors, rendering them more efficient and accessible. The study examines problems such as stability, reproducibility, and regulatory approval that must be addressed to enable the widespread implementation of biosensors in clinical environments. The study examines the amalgamation of biosensors with wearable devices and smartphones, emphasizing the prospects for ongoing health surveillance and individualized medical care. This viewpoint clarifies the distinct types of biosensors and their particular roles, together with recent developments in the "smart biosensor" sector, facilitated by artificial intelligence and the Internet of Medical Things (IoMT). This novel approach seeks to deliver a comprehensive evaluation of the present condition of biosensor technology in healthcare, recent developments, and prospective paths, emphasizing their significance in influencing the future of medical diagnostics and patient care.
Collapse
Affiliation(s)
- Sumitha Manoharan
Nair Sudha Kumari
- Centre for
Advanced Materials Research, Department of Physics, Government College for Women, Thiruvananthapuram, University of Kerala, Kerala 695014, India
| | - Xavier Thankappan Suryabai
- Centre for
Advanced Materials Research, Department of Physics, Government College for Women, Thiruvananthapuram, University of Kerala, Kerala 695014, India
| |
Collapse
|
3
|
Kaur M, Singh S, Kaur A. Structural changes in amide I and amide II regions of PCOS women analyzed by ATR-FTIR spectroscopy. Heliyon 2024; 10:e33494. [PMID: 39040335 PMCID: PMC11261041 DOI: 10.1016/j.heliyon.2024.e33494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/24/2024] Open
Abstract
The etiology of PCOS is complex and frequently mis or undiagnosed, which may enhance morbidity and reduce the quality of life. Attenuated total reflection- Fourier transform infrared (ATR-FTIR) spectroscopy examines the structural fingerprints of the biochemical compounds and can provide distinct FTIR spectra of the PCOS cases and controls. The present study recruited 61 PCOS cases and 38 control women. The student's t-test was used to compare BMI, WHR, and lipid profile. The FTIR spectral region was compared among both groups using the Mann-Whitney U test and multivariate analysis involved principal component analysis (PCA) and hierarchical cluster analysis (HCA). FTIR spectra of different phenotypes of PCOS were also analyzed using multivariate analysis. In univariate analysis, PCOS women had significantly higher WHR (p = 0.007), BMI (p = 0.04), triglycerides (p = 0.04), and VLDL (p = 0.02) than the controls. The spectral regions of amide I (1700-1600 cm-1) and amide II (1580-1480 cm-1), were significantly greater in the PCOS group than in the controls (p < 0.01 and p < 0.001, respectively). The PCA and HCA revealed a distinct molecular fingerprint for phenotype A (PCOM + OA + HA) and phenotype B (HA + OA). Our study postulated that the spectral regions of amide I and amide II can distinguish between PCOS cases and control women and it may be used for the diagnosis of cases.
Collapse
Affiliation(s)
- Mandeep Kaur
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Sukhjashanpreet Singh
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Anupam Kaur
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| |
Collapse
|
4
|
Zhu J, Xia H, Xu X, Zheng R, Liu C, Hong J, Huang Q. FTIR spectroscopy for assessment of hair from lung cancer patients and its application in monitoring the chemotherapy treatment effect. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 314:124185. [PMID: 38565049 DOI: 10.1016/j.saa.2024.124185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/08/2024] [Accepted: 03/22/2024] [Indexed: 04/04/2024]
Abstract
Lung cancer is the most common cancer and the leading cause of death in China. The current gold standard for clinical lung cancer diagnosis is based on histopathological examination of tumors, but it has the limitation for easy operation and convenient applications. Therefore, researchers are still striving to develop other tools and methods for non-invasive and rapid assessment of the health conditions of lung cancer patients. Hair, as a reflection of the metabolism of the body, is closely related to human health conditions. In principle, Fourier-transform infrared (FTIR) spectroscopy can probe the major chemical compositions in the hair. However, as indicated by previous studies, there is still the challenge to make good use of FTIR spectroscopy for achieving reliable analysis of hair from cancer patients. In this study, hair samples from 82 lung cancer patients were collected and subjected to FTIR measurements and analysis, which showed the protein content in the hair is closely related to the protein content in the blood serum of patients, and the contents of protein and lipid are statistically lower in the lung cancer patients. Furthermore, we demonstrated that FTIR spectroscopy could be employed to monitor the hair of lung cancer patients undergoing chemotherapy, and confirmed that the FTIR spectra of the hair may reflect the resultant effect of the chemotherapy. As such, this work validates the way of using FTIR spectroscopy in hair analysis for the assistance of medical diagnosis of lung cancer as well as monitoring the conditions of the patients under the medical treatment.
Collapse
Affiliation(s)
- Jianxia Zhu
- School of Nursing, Anhui Medical University, Hefei, Anhui 230032, China; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Haiqian Xia
- School of Nursing, Anhui Medical University, Hefei, Anhui 230032, China; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Xiuzhi Xu
- School of Nursing, Anhui Medical University, Hefei, Anhui 230032, China
| | - Rong Zheng
- School of Nursing, Anhui Medical University, Hefei, Anhui 230032, China
| | - Chao Liu
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China; Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, Anhui 230032, China
| | - Jingfang Hong
- School of Nursing, Anhui Medical University, Hefei, Anhui 230032, China.
| | - Qing Huang
- School of Nursing, Anhui Medical University, Hefei, Anhui 230032, China; CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China; Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, Anhui 230032, China.
| |
Collapse
|
5
|
Delrue C, De Bruyne S, Oyaert M, Delanghe JR, Moresco RN, Speeckaert R, Speeckaert MM. Infrared Spectroscopy in Gynecological Oncology: A Comprehensive Review of Diagnostic Potentials and Challenges. Int J Mol Sci 2024; 25:5996. [PMID: 38892184 PMCID: PMC11172863 DOI: 10.3390/ijms25115996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/25/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
The early detection of gynecological cancers, which is critical for improving patient survival rates, is challenging because of the vague early symptoms and the diagnostic limitations of current approaches. This comprehensive review delves into the game-changing potential of infrared (IR) spectroscopy, a noninvasive technology used to transform the landscape of cancer diagnosis in gynecology. By collecting the distinctive vibrational frequencies of chemical bonds inside tissue samples, Fourier-transform infrared (FTIR) spectroscopy provides a 'molecular fingerprint' that outperforms existing diagnostic approaches. We highlight significant advances in this field, particularly the identification of discrete biomarker bands in the mid- and near-IR spectra. Proteins, lipids, carbohydrates, and nucleic acids exhibited different absorption patterns. These spectral signatures not only serve to distinguish between malignant and benign diseases, but also provide additional information regarding the cellular changes associated with cancer. To underscore the practical consequences of these findings, we examined studies in which IR spectroscopy demonstrated exceptional diagnostic accuracy. This review supports the use of IR spectroscopy in normal clinical practice, emphasizing its capacity to detect and comprehend the intricate molecular underpinnings of gynecological cancers.
Collapse
Affiliation(s)
- Charlotte Delrue
- Department of Nephrology, Ghent University Hospital, 9000 Ghent, Belgium;
| | - Sander De Bruyne
- Department of Clinical Biology, Ghent University Hospital, 9000 Ghent, Belgium; (S.D.B.); (M.O.)
| | - Matthijs Oyaert
- Department of Clinical Biology, Ghent University Hospital, 9000 Ghent, Belgium; (S.D.B.); (M.O.)
| | - Joris R. Delanghe
- Department of Diagnostic Sciences, Ghent University Hospital, C. Heymanslaan 10, 9000 Ghent, Belgium;
| | - Rafael Noal Moresco
- Graduate Program in Pharmaceutical Sciences, Center of Health Sciences, Federal University of Santa Maria, Santa Maria 72500-000, Brazil;
| | | | - Marijn M. Speeckaert
- Department of Nephrology, Ghent University Hospital, 9000 Ghent, Belgium;
- Research Foundation-Flanders (FWO), 1000 Brussels, Belgium
| |
Collapse
|
6
|
Nazeer SS, Venkataraman RK, Jayasree RS, Bayry J. Infrared Spectroscopy for Rapid Triage of Cancer Using Blood Derivatives: A Reality Check. Anal Chem 2024; 96:957-965. [PMID: 38164878 DOI: 10.1021/acs.analchem.3c02590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Infrared (IR) spectroscopy of serum/plasma represents an alluring molecular diagnostic tool, especially for cancer, as it can provide a molecular fingerprint of clinical samples based on vibrational modes of chemical bonds. However, despite the superior performance, the routine adoption of this technique for clinical settings has remained elusive. This is due to the potential confounding factors that are often overlooked and pose a significant barrier to clinical translation. In this Perspective, we summarize the concerns associated with various confounding factors, such as fluid sampling, optical effects, hemolysis, abnormal cardiovascular and/or hepatic functions, infections, alcoholism, diet style, age, and gender of a patient or normal control cohort, and improper selection of numerical methods that ultimately would lead to improper spectral diagnosis. We also propose some precautionary measures to overcome the challenges associated with these confounding factors.
Collapse
Affiliation(s)
- Shaiju S Nazeer
- Department of Chemistry, Indian Institute of Space Sciences and Technology, Thiruvananthapuram, Kerala 695547, India
| | - Ravi Kumar Venkataraman
- Ultrafast Laser Spectroscopy Lab, Center for Integrative Petroleum Research, King Fahd University of Petroleum and Minerals, Dhahran 31261, Kingdom of Saudi Arabia
| | - Ramapurath S Jayasree
- Division of Biophotonics and Imaging, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala 695012, India
| | - Jagadeesh Bayry
- Department of Biological Sciences and Engineering, Indian Institute of Technology Palakkad, Palakkad 678623, India
| |
Collapse
|
7
|
Zhang S, Vasudevan S, Tan SPH, Olivo M. Fiber optic probe-based ATR-FTIR spectroscopy for rapid breast cancer detection: A pilot study. JOURNAL OF BIOPHOTONICS 2023; 16:e202300199. [PMID: 37496212 DOI: 10.1002/jbio.202300199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/11/2023] [Accepted: 07/25/2023] [Indexed: 07/28/2023]
Abstract
Breast cancer diagnosis is crucial for timely treatment and improved outcomes. This paper proposes a novel approach for rapid breast cancer diagnosis using optical fiber probe-based attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy from 750 to 4000 cm-1 . The technique enables direct analysis of tissue samples, eliminating the need for microtome sectioning and staining, thus saving time and resources. By capturing molecular fingerprint information, various machine-learning models were used to analyze the spectroscopic data to classify cancerous and non-cancerous tissues accurately. Comparing deparaffinized and paraffinized samples reveals the impact of sample preparation and experimental methods. The study demonstrates a strong correlation between the cancerous nature of a sample and its ATR-FTIR spectrum, suggesting its potential for breast cancer diagnosis (sensitivity of 74.2% and specificity of 78.3%). The proposed approach holds promise for integration into clinical operations, providing a rapid method for preliminary breast cancer diagnosis.
Collapse
Affiliation(s)
- Shuyan Zhang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Swetha Vasudevan
- Department of Biomedical Engineering, National University of Singapore, Singapore
| | - Sonia Peng Hwee Tan
- Department of Biomedical Engineering, National University of Singapore, Singapore
| | - Malini Olivo
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore
| |
Collapse
|
8
|
Zhang S, Qi Y, Tan SPH, Bi R, Olivo M. Molecular Fingerprint Detection Using Raman and Infrared Spectroscopy Technologies for Cancer Detection: A Progress Review. BIOSENSORS 2023; 13:bios13050557. [PMID: 37232918 DOI: 10.3390/bios13050557] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/12/2023] [Accepted: 05/16/2023] [Indexed: 05/27/2023]
Abstract
Molecular vibrations play a crucial role in physical chemistry and biochemistry, and Raman and infrared spectroscopy are the two most used techniques for vibrational spectroscopy. These techniques provide unique fingerprints of the molecules in a sample, which can be used to identify the chemical bonds, functional groups, and structures of the molecules. In this review article, recent research and development activities for molecular fingerprint detection using Raman and infrared spectroscopy are discussed, with a focus on identifying specific biomolecules and studying the chemical composition of biological samples for cancer diagnosis applications. The working principle and instrumentation of each technique are also discussed for a better understanding of the analytical versatility of vibrational spectroscopy. Raman spectroscopy is an invaluable tool for studying molecules and their interactions, and its use is likely to continue to grow in the future. Research has demonstrated that Raman spectroscopy is capable of accurately diagnosing various types of cancer, making it a valuable alternative to traditional diagnostic methods such as endoscopy. Infrared spectroscopy can provide complementary information to Raman spectroscopy and detect a wide range of biomolecules at low concentrations, even in complex biological samples. The article concludes with a comparison of the techniques and insights into future directions.
Collapse
Affiliation(s)
- Shuyan Zhang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos #07-01, Singapore 138634, Singapore
| | - Yi Qi
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos #07-01, Singapore 138634, Singapore
| | - Sonia Peng Hwee Tan
- Department of Biomedical Engineering, National University of Singapore (NUS), 4 Engineering Drive 3 Block 4, #04-08, Singapore 117583, Singapore
| | - Renzhe Bi
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos #07-01, Singapore 138634, Singapore
| | - Malini Olivo
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos #07-01, Singapore 138634, Singapore
| |
Collapse
|
9
|
The Convergence of FTIR and EVs: Emergence Strategy for Non-Invasive Cancer Markers Discovery. Diagnostics (Basel) 2022; 13:diagnostics13010022. [PMID: 36611313 PMCID: PMC9818376 DOI: 10.3390/diagnostics13010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/01/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
In conjunction with imaging analysis, pathology-based assessments of biopsied tissue are the gold standard for diagnosing solid tumors. However, the disadvantages of tissue biopsies, such as being invasive, time-consuming, and labor-intensive, have urged the development of an alternate method, liquid biopsy, that involves sampling and clinical assessment of various bodily fluids for cancer diagnosis. Meanwhile, extracellular vesicles (EVs) are circulating biomarkers that carry molecular profiles of their cell or tissue origins and have emerged as one of the most promising biomarkers for cancer. Owing to the biological information that can be obtained through EVs' membrane surface markers and their cargo loaded with biomolecules such as nucleic acids, proteins, and lipids, EVs have become useful in cancer diagnosis and therapeutic applications. Fourier-transform infrared spectroscopy (FTIR) allows rapid, non-destructive, label-free molecular profiling of EVs with minimal sample preparation. Since the heterogeneity of EV subpopulations may result in complicated FTIR spectra that are highly diverse, computational-assisted FTIR spectroscopy is employed in many studies to provide fingerprint spectra of malignant and non-malignant samples, allowing classification with high accuracy, specificity, and sensitivity. In view of this, FTIR-EV approach carries a great potential in cancer detection. The progression of FTIR-based biomarker identification in EV research, the rationale of the integration of a computationally assisted approach, along with the challenges of clinical translation are the focus of this review.
Collapse
|
10
|
Villamanca JJ, Hermogino LJ, Ong KD, Paguia B, Abanilla L, Lim A, Angeles LM, Espiritu B, Isais M, Tomas RC, Albano PM. Predicting the Likelihood of Colorectal Cancer with Artificial Intelligence Tools Using Fourier Transform Infrared Signals Obtained from Tumor Samples. APPLIED SPECTROSCOPY 2022; 76:1412-1428. [PMID: 35821580 DOI: 10.1177/00037028221116083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The early and accurate detection of colorectal cancer (CRC) significantly affects its prognosis and clinical management. However, current standard diagnostic procedures for CRC often lack sensitivity and specificity since most rely on visual examination. Hence, there is a need to develop more accurate methods for its diagnosis. Support vector machine (SVM) and feedforward neural network (FNN) models were designed using the Fourier transform infrared (FT-IR) spectral data of several colorectal tissues that were unanimously identified as either benign or malignant by different unrelated pathologists. The set of samples in which the pathologists had discordant readings were then analyzed using the AI models described above. Between the SVM and NN models, the NN model was able to outperform the SVM model based on their prediction confidence scores. Using the spectral data of the concordant samples as training set, the FNN was able to predict the histologically diagnosed malignant tissues (n = 118) at 59.9-99.9% confidence (average = 93.5%). Of the 118 samples, 84 (71.18%) were classified with an above average confidence score, 34 (28.81%) classified below the average confidence score, and none was misclassified. Moreover, it was able to correctly identify the histologically confirmed benign samples (n = 83) at 51.5-99.7% confidence (average = 91.64%). Of the 83 samples, 60 (72.29%) were classified with an above average confidence score, 22 (26.51%) classified below the average confidence score, and only 1 sample (1.20%) was misclassified. The study provides additional proof of the ability of attenuated total reflection (ATR) FT-IR enhanced by AI tools to predict the likelihood of CRC without dependence on morphological changes in tissues.
Collapse
Affiliation(s)
- John Jerald Villamanca
- Department of Biological Sciences, College of Science, 564927University of Santo Tomas, Manila, Philippines
| | - Lemuel John Hermogino
- Department of Biological Sciences, College of Science, 564927University of Santo Tomas, Manila, Philippines
| | - Katherine Denise Ong
- Department of Biological Sciences, College of Science, 564927University of Santo Tomas, Manila, Philippines
| | - Brian Paguia
- Department of Biological Sciences, College of Science, 564927University of Santo Tomas, Manila, Philippines
| | - Lorenzo Abanilla
- Department of Pathology, Divine Word Hospital, Tacloban City, Philippines
| | - Antonio Lim
- Department of Pathology, Divine Word Hospital, Tacloban City, Philippines
| | - Lara Mae Angeles
- Department of Pathology, 596481University of Santo Tomas Hospital, Manila, Philippines
| | - Bernadette Espiritu
- Department of Pathology, 603332Bulacan Medical Center, Malolos City, Philippines
| | - Maura Isais
- Department of Pathology, 603332Bulacan Medical Center, Malolos City, Philippines
- The Graduate School, 595547University of Santo Tomas, Manila, Philippines
| | - Rock Christian Tomas
- Department of Electrical Engineering, 54729University of the Philippines Los Baños, Los Baños, Philippines
| | - Pia Marie Albano
- Department of Biological Sciences, College of Science, 564927University of Santo Tomas, Manila, Philippines
- Department of Pathology, Divine Word Hospital, Tacloban City, Philippines
- Research Center for the Natural and Applied Sciences, 564927University of Santo Tomas, Manila, Philippines
| |
Collapse
|
11
|
ATR-IR Spectroscopy Application to Diagnostic Screening of Advanced Endometriosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4777434. [PMID: 35707272 PMCID: PMC9192200 DOI: 10.1155/2022/4777434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/13/2022] [Accepted: 05/19/2022] [Indexed: 11/18/2022]
Abstract
Endometriosis is one of the most common gynecological diseases among young women of reproductive age. Thus far, it has not been possible to define a parameter that is sensitive and specific enough to be a recognized biomarker for diagnosing this disease. Nonspecific symptoms of endometriosis and delayed diagnosis are impulses for researching noninvasive methods of differentiating endometriosis from other gynecological disorders. We compared three groups of individuals in our research: women with endometriosis (E), patients suffering from other gynecological disorders (nonendometriosis, NE), and healthy women from the control group (C). Partial least squares discriminant analysis (PLS-DA) models were developed based on selected serum biochemical parameters, specific regions of the serum’s infrared attenuated total reflectance (FTIR ATR) spectra, and combined data. Incorporating the spectral data into the models significantly improved differentiation among the three groups, with an overall accuracy of 87.5%, 97.3%, and 98.5%, respectively. This study shows that infrared spectroscopy and discriminant analysis can be used to differentiate serum samples among women with advanced endometriosis, women without this disease, i.e., healthy women, and, most importantly, also women with other benign gynecological disorders.
Collapse
|
12
|
Schiemer R, Furniss D, Phang S, Seddon AB, Atiomo W, Gajjar KB. Vibrational Biospectroscopy: An Alternative Approach to Endometrial Cancer Diagnosis and Screening. Int J Mol Sci 2022; 23:ijms23094859. [PMID: 35563249 PMCID: PMC9102412 DOI: 10.3390/ijms23094859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 01/27/2023] Open
Abstract
Endometrial cancer (EC) is the sixth most common cancer and the fourth leading cause of death among women worldwide. Early detection and treatment are associated with a favourable prognosis and reduction in mortality. Unlike other common cancers, however, screening strategies lack the required sensitivity, specificity and accuracy to be successfully implemented in clinical practice and current diagnostic approaches are invasive, costly and time consuming. Such limitations highlight the unmet need to develop diagnostic and screening alternatives for EC, which should be accurate, rapid, minimally invasive and cost-effective. Vibrational spectroscopic techniques, Mid-Infrared Absorption Spectroscopy and Raman, exploit the atomic vibrational absorption induced by interaction of light and a biological sample, to generate a unique spectral response: a “biochemical fingerprint”. These are non-destructive techniques and, combined with multivariate statistical analysis, have been shown over the last decade to provide discrimination between cancerous and healthy samples, demonstrating a promising role in both cancer screening and diagnosis. The aim of this review is to collate available evidence, in order to provide insight into the present status of the application of vibrational biospectroscopy in endometrial cancer diagnosis and screening, and to assess future prospects.
Collapse
Affiliation(s)
- Roberta Schiemer
- Division of Child Health, Obstetrics and Gynaecology, University of Nottingham, Nottingham NG5 1PB, UK;
- Correspondence:
| | - David Furniss
- Mid-Infrared Photonics Group, George Green Institute for Electromagnetics Research, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK; (D.F.); (S.P.); (A.B.S.)
| | - Sendy Phang
- Mid-Infrared Photonics Group, George Green Institute for Electromagnetics Research, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK; (D.F.); (S.P.); (A.B.S.)
| | - Angela B. Seddon
- Mid-Infrared Photonics Group, George Green Institute for Electromagnetics Research, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK; (D.F.); (S.P.); (A.B.S.)
| | - William Atiomo
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences (MBRU), Dubai P.O. Box 505055, United Arab Emirates;
| | - Ketankumar B. Gajjar
- Division of Child Health, Obstetrics and Gynaecology, University of Nottingham, Nottingham NG5 1PB, UK;
| |
Collapse
|
13
|
Cameron JM, Rinaldi C, Rutherford SH, Sala A, G Theakstone A, Baker MJ. Clinical Spectroscopy: Lost in Translation? APPLIED SPECTROSCOPY 2022; 76:393-415. [PMID: 34041957 DOI: 10.1177/00037028211021846] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This Focal Point Review paper discusses the developments of biomedical Raman and infrared spectroscopy, and the recent strive towards these technologies being regarded as reliable clinical tools. The promise of vibrational spectroscopy in the field of biomedical science, alongside the development of computational methods for spectral analysis, has driven a plethora of proof-of-concept studies which convey the potential of various spectroscopic approaches. Here we report a brief review of the literature published over the past few decades, with a focus on the current technical, clinical, and economic barriers to translation, namely the limitations of many of the early studies, and the lack of understanding of clinical pathways, health technology assessments, regulatory approval, clinical feasibility, and funding applications. The field of biomedical vibrational spectroscopy must acknowledge and overcome these hurdles in order to achieve clinical efficacy. Current prospects have been overviewed with comment on the advised future direction of spectroscopic technologies, with the aspiration that many of these innovative approaches can ultimately reach the frontier of medical diagnostics and many clinical applications.
Collapse
Affiliation(s)
| | - Christopher Rinaldi
- WestCHEM, Department of Pure and Applied Chemistry, Technology and Innovation Centre, Glasgow, UK
| | - Samantha H Rutherford
- WestCHEM, Department of Pure and Applied Chemistry, Technology and Innovation Centre, Glasgow, UK
| | - Alexandra Sala
- WestCHEM, Department of Pure and Applied Chemistry, Technology and Innovation Centre, Glasgow, UK
| | - Ashton G Theakstone
- WestCHEM, Department of Pure and Applied Chemistry, Technology and Innovation Centre, Glasgow, UK
| | | |
Collapse
|
14
|
Chen F, Sun C, Yue Z, Zhang Y, Xu W, Shabbir S, Zou L, Lu W, Wang W, Xie Z, Zhou L, Lu Y, Yu J. Screening ovarian cancers with Raman spectroscopy of blood plasma coupled with machine learning data processing. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 265:120355. [PMID: 34530200 DOI: 10.1016/j.saa.2021.120355] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
The mortality of ovarian cancer is closely related to its poor rate of early detection. In the search of an efficient diagnosis method, Raman spectroscopy of blood features as a promising technique allowing simple, rapid, minimally-invasive and cost-effective detection of cancers, in particular ovarian cancer. Although Raman spectroscopy has been demonstrated to be effective to detect ovarian cancers with respect to normal controls, a binary classification remains idealized with respect to the real clinical practice. This work considered a population of 95 woman patients initially suspected of an ovarian cancer and finally fixed with a cancer or a cyst. Additionally, 79 normal controls completed the ensemble of samples. Such sample collection proposed us a study case where a ternary classification should be realized with Raman spectroscopy of the collected blood samples coupled with suitable spectroscopic data treatment algorithms. In the medical as well as data points of view, the appearance of the cyst case considerably reduces the distances among the different populations and makes their distinction much more difficult, since the intermediate cyst case can share the specific features of the both cancer and normal cases. After a proper spectrum pretreatment, we first demonstrated the evidence of different behaviors among the Raman spectra of the 3 types of samples. Such difference was further visualized in a high dimensional space, where the data points of the cancer and the normal cases are separately clustered, whereas the data of the cyst case were scattered into the areas respectively occupied by the cancer and normal cases. We finally developed and tested an ensemble of models for a ternary classification with 2 consequent steps of binary classifications, based on machine learning algorithms, allowing identification with sensitivity and specificity of 81.0% and 97.3% for cancer samples, 63.6% and 91.5% for cyst samples, 100% and 90.6% for normal samples.
Collapse
Affiliation(s)
- Fengye Chen
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chen Sun
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zengqi Yue
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuqing Zhang
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Weijie Xu
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Sahar Shabbir
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Long Zou
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Weiguo Lu
- Center for Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Women's Reproductive Health Key Laboratory of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310011, China; Department of Gynecologic Oncology, Women's Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310011, China
| | - Wei Wang
- Department of Clinical Laboratory, Tongde Hospital of Zhejiang Province, Hangzhou 310012, China
| | - Zhenwei Xie
- Center for Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Women's Reproductive Health Key Laboratory of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310011, China; Department of Gynecologic Oncology, Women's Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310011, China
| | - Lanyun Zhou
- Center for Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Women's Reproductive Health Key Laboratory of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310011, China; Department of Gynecologic Oncology, Women's Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310011, China
| | - Yan Lu
- Center for Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Women's Reproductive Health Key Laboratory of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310011, China; Department of Gynecologic Oncology, Women's Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310011, China.
| | - Jin Yu
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
15
|
Alves MVS, Maciel LIL, Ramalho RRF, Lima LAS, Vaz BG, Morais CLM, Passos JOS, Pegado R, Lima KMG. Multivariate classification techniques and mass spectrometry as a tool in the screening of patients with fibromyalgia. Sci Rep 2021; 11:22625. [PMID: 34799667 PMCID: PMC8604931 DOI: 10.1038/s41598-021-02141-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/29/2021] [Indexed: 11/09/2022] Open
Abstract
Fibromyalgia is a rheumatological disorder that causes chronic pain and other symptomatic conditions such as depression and anxiety. Despite its relevance, the disease still presents a complex diagnosis where the doctor needs to have a correct clinical interpretation of the symptoms. In this context, it is valid to study tools that assist in the screening of this disease, using chemical work techniques such as mass spectroscopy. In this study, an analytical method is proposed to detect individuals with fibromyalgia (n = 20, 10 control samples and 10 samples with fibromyalgia) from blood plasma samples analyzed by mass spectrometry with paper spray ionization and subsequent multivariate classification of the spectral data (unsupervised and supervised), in addition to the treatment of selected variables with possible associations with metabolomics. Exploratory analysis with principal component analysis (PCA) and supervised analysis with successive projections algorithm with linear discriminant analysis (SPA-LDA) showed satisfactory results with 100% accuracy for sample prediction in both groups. This demonstrates that this combination of techniques can be used as a simple, reliable and fast tool in the development of clinical diagnosis of Fibromyalgia.
Collapse
Affiliation(s)
- Marcelo V S Alves
- Institute of Chemistry, Biological Chemistry and Chemometrics, Federal University of Rio Grande do Norte, Natal, 59072-970, Brazil
| | - Lanaia I L Maciel
- Institute of Chemistry, Federal University of Goiás, Samambaia St., Goiânia, GO, 74690-900, Brazil
| | - Ruver R F Ramalho
- Institute of Chemistry, Federal University of Goiás, Samambaia St., Goiânia, GO, 74690-900, Brazil
| | - Leomir A S Lima
- Estácio de Sá Goiás, North Regional, Goiânia, GO, 74063-010, Brazil
| | - Boniek G Vaz
- Institute of Chemistry, Federal University of Goiás, Samambaia St., Goiânia, GO, 74690-900, Brazil
| | - Camilo L M Morais
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, PR1 2HE, UK
| | - João O S Passos
- Postgraduation Program in Rehabilitation Sciences, Faculty of Health Science of Trairí, Federal University of Rio Grande do Norte, Trairí St., Santa Cruz, RN, 59200-000, Brazil
| | - Rodrigo Pegado
- Postgraduation Program in Rehabilitation Sciences, Faculty of Health Science of Trairí, Federal University of Rio Grande do Norte, Trairí St., Santa Cruz, RN, 59200-000, Brazil
| | - Kássio M G Lima
- Institute of Chemistry, Biological Chemistry and Chemometrics, Federal University of Rio Grande do Norte, Natal, 59072-970, Brazil.
| |
Collapse
|
16
|
Kochan K, Bedolla DE, Perez-Guaita D, Adegoke JA, Chakkumpulakkal Puthan Veettil T, Martin M, Roy S, Pebotuwa S, Heraud P, Wood BR. Infrared Spectroscopy of Blood. APPLIED SPECTROSCOPY 2021; 75:611-646. [PMID: 33331179 DOI: 10.1177/0003702820985856] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The magnitude of infectious diseases in the twenty-first century created an urgent need for point-of-care diagnostics. Critical shortages in reagents and testing kits have had a large impact on the ability to test patients with a suspected parasitic, bacteria, fungal, and viral infections. New point-of-care tests need to be highly sensitive, specific, and easy to use and provide results in rapid time. Infrared spectroscopy, coupled to multivariate and machine learning algorithms, has the potential to meet this unmet demand requiring minimal sample preparation to detect both pathogenic infectious agents and chronic disease markers in blood. This focal point article will highlight the application of Fourier transform infrared spectroscopy to detect disease markers in blood focusing principally on parasites, bacteria, viruses, cancer markers, and important analytes indicative of disease. Methodologies and state-of-the-art approaches will be reported and potential confounding variables in blood analysis identified. The article provides an up to date review of the literature on blood diagnosis using infrared spectroscopy highlighting the recent advances in this burgeoning field.
Collapse
Affiliation(s)
- Kamila Kochan
- 2541Monash University - Centre for Biospectroscopy, Clayton, Victoria, Australia
| | - Diana E Bedolla
- 2541Monash University - Centre for Biospectroscopy, Clayton, Victoria, Australia
| | - David Perez-Guaita
- 2541Monash University - Centre for Biospectroscopy, Clayton, Victoria, Australia
| | - John A Adegoke
- 2541Monash University - Centre for Biospectroscopy, Clayton, Victoria, Australia
| | | | - Miguela Martin
- 2541Monash University - Centre for Biospectroscopy, Clayton, Victoria, Australia
| | - Supti Roy
- 2541Monash University - Centre for Biospectroscopy, Clayton, Victoria, Australia
| | - Savithri Pebotuwa
- 2541Monash University - Centre for Biospectroscopy, Clayton, Victoria, Australia
| | - Philip Heraud
- 2541Monash University - Centre for Biospectroscopy, Clayton, Victoria, Australia
| | - Bayden R Wood
- 2541Monash University - Centre for Biospectroscopy, Clayton, Victoria, Australia
| |
Collapse
|
17
|
Li L, Wu J, Yang L, Wang H, Xu Y, Shen K. Fourier Transform Infrared Spectroscopy: An Innovative Method for the Diagnosis of Ovarian Cancer. Cancer Manag Res 2021; 13:2389-2399. [PMID: 33737836 PMCID: PMC7965685 DOI: 10.2147/cmar.s291906] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 02/03/2021] [Indexed: 12/24/2022] Open
Abstract
Ovarian cancer is the most lethal gynecologic malignancy due to the late diagnoses at advanced stages, drug resistance and the high recurrence rate. Thus, there is an urgent need to develop new techniques to diagnose and monitor ovarian cancer patients. Fourier transform infrared (FTIR) spectroscopy has great potential in the diagnosis of this disease, as well as the real-time monitoring of cancer development and chemoresistance. As a noninvasive, simple and convenient technique, it can not only distinguish the molecular differences between normal and malignant tissues, but also be used to identify the characteristics of different types of ovarian cancer. FTIR spectroscopy is also widely used in monitoring cancer cells in response to antitumor drugs, distinguishing cells in different growth states, and identifying new synthetic drugs. In this paper, the applications of FTIR spectroscopy for ovarian cancer diagnosis and other works carried out so far are described in detail.
Collapse
Affiliation(s)
- Lei Li
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Jinguang Wu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing, People's Republic of China
| | - Limin Yang
- State Key Laboratory of Nuclear Physics and Technology, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing, People's Republic of China
| | - Huizi Wang
- Medical Science Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Yizhuang Xu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing, People's Republic of China
| | - Keng Shen
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| |
Collapse
|
18
|
Barauna VG, Singh MN, Barbosa LL, Marcarini WD, Vassallo PF, Mill JG, Ribeiro-Rodrigues R, Campos LCG, Warnke PH, Martin FL. Ultrarapid On-Site Detection of SARS-CoV-2 Infection Using Simple ATR-FTIR Spectroscopy and an Analysis Algorithm: High Sensitivity and Specificity. Anal Chem 2021; 93:2950-2958. [PMID: 33481583 PMCID: PMC7857139 DOI: 10.1021/acs.analchem.0c04608] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 01/12/2021] [Indexed: 12/15/2022]
Abstract
There is an urgent need for ultrarapid testing regimens to detect the severe acute respiratory syndrome coronavirus 2 [SARS-CoV-2] infections in real-time within seconds to stop its spread. Current testing approaches for this RNA virus focus primarily on diagnosis by RT-qPCR, which is time-consuming, costly, often inaccurate, and impractical for general population rollout due to the need for laboratory processing. The latency until the test result arrives with the patient has led to further virus spread. Furthermore, latest antigen rapid tests still require 15-30 min processing time and are challenging to handle. Despite increased polymerase chain reaction (PCR)-test and antigen-test efforts, the pandemic continues to evolve worldwide. Herein, we developed a superfast, reagent-free, and nondestructive approach of attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy with subsequent chemometric analysis toward the prescreening of virus-infected samples. Contrived saliva samples spiked with inactivated γ-irradiated COVID-19 virus particles at levels down to 1582 copies/mL generated infrared (IR) spectra with a good signal-to-noise ratio. Predominant virus spectral peaks are tentatively associated with nucleic acid bands, including RNA. At low copy numbers, the presence of a virus particle was found to be capable of modifying the IR spectral signature of saliva, again with discriminating wavenumbers primarily associated with RNA. Discrimination was also achievable following ATR-FTIR spectral analysis of swabs immersed in saliva variously spiked with virus. Next, we nested our test system in a clinical setting wherein participants were recruited to provide demographic details, symptoms, parallel RT-qPCR testing, and the acquisition of pharyngeal swabs for ATR-FTIR spectral analysis. Initial categorization of swab samples into negative versus positive COVID-19 infection was based on symptoms and PCR results (n = 111 negatives and 70 positives). Following training and validation (using n = 61 negatives and 20 positives) of a genetic algorithm-linear discriminant analysis (GA-LDA) algorithm, a blind sensitivity of 95% and specificity of 89% was achieved. This prompt approach generates results within 2 min and is applicable in areas with increased people traffic that require sudden test results such as airports, events, or gate controls.
Collapse
Affiliation(s)
- Valério G. Barauna
- Department
of Physiological Sciences, Federal University
of Espírito Santo, 29075-910 Vitoria, Brazil
| | - Maneesh N. Singh
- Biocel
UK Ltd., 15 Riplingham
Road, West Ella, Hull HU10
6TS, U.K.
| | - Leonardo Leal Barbosa
- Department
of Physiological Sciences, Federal University
of Espírito Santo, 29075-910 Vitoria, Brazil
| | - Wena Dantas Marcarini
- Department
of Physiological Sciences, Federal University
of Espírito Santo, 29075-910 Vitoria, Brazil
| | - Paula Frizera Vassallo
- Department
of Physiological Sciences, Federal University
of Espírito Santo, 29075-910 Vitoria, Brazil
- Clinical
Hospital, Federal University of Minas Gerais, 31270-901 Belo
Horizonte, Brazil
| | - Jose Geraldo Mill
- Department
of Physiological Sciences, Federal University
of Espírito Santo, 29075-910 Vitoria, Brazil
| | | | - Luciene C. G. Campos
- Department
of Biological Science, Santa Cruz State
University, 45662-900 Bahia, Brazil
| | - Patrick H. Warnke
- Praxisklinik
am Ballastkai, Ballastkai
5, 24937 Flensburg, Germany
- Department
of OMF-Surgery, Christian-Albrechts-University
of Kiel, 24118 Kiel, Germany
| | | |
Collapse
|
19
|
Use of Fourier-Transform Infrared Spectroscopy (FT-IR) for Monitoring Experimental Helicobacter pylori Infection and Related Inflammatory Response in Guinea Pig Model. Int J Mol Sci 2020; 22:ijms22010281. [PMID: 33396581 PMCID: PMC7795336 DOI: 10.3390/ijms22010281] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/25/2020] [Accepted: 12/26/2020] [Indexed: 12/17/2022] Open
Abstract
Infections due to Gram-negative bacteria Helicobacter pylori may result in humans having gastritis, gastric or duodenal ulcer, and even gastric cancer. Investigation of quantitative changes of soluble biomarkers, correlating with H. pylori infection, is a promising tool for monitoring the course of infection and inflammatory response. The aim of this study was to determine, using an experimental model of H. pylori infection in guinea pigs, the specific characteristics of infrared spectra (IR) of sera from H. pylori infected (40) vs. uninfected (20) guinea pigs. The H. pylori status was confirmed by histological, molecular, and serological examination. The IR spectra were measured using a Fourier-transform (FT)-IR spectrometer Spectrum 400 (PerkinElmer) within the range of wavenumbers 3000–750 cm−1 and converted to first derivative spectra. Ten wavenumbers correlated with H. pylori infection, based on the chi-square test, were selected for a K-nearest neighbors (k-NN) algorithm. The wavenumbers correlating with infection were identified in the W2 and W3 windows associated mainly with proteins and in the W4 window related to nucleic acids and hydrocarbons. The k-NN for detection of H. pylori infection has been developed based on chemometric data. Using this model, animals were classified as infected with H. pylori with 100% specificity and 97% sensitivity. To summarize, the IR spectroscopy and k-NN algorithm are useful for monitoring experimental H. pylori infection and related inflammatory response in guinea pig model and may be considered for application in humans.
Collapse
|
20
|
Hackshaw KV, Miller JS, Aykas DP, Rodriguez-Saona L. Vibrational Spectroscopy for Identification of Metabolites in Biologic Samples. Molecules 2020; 25:E4725. [PMID: 33076318 PMCID: PMC7587585 DOI: 10.3390/molecules25204725] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 09/27/2020] [Accepted: 09/28/2020] [Indexed: 12/16/2022] Open
Abstract
Vibrational spectroscopy (mid-infrared (IR) and Raman) and its fingerprinting capabilities offer rapid, high-throughput, and non-destructive analysis of a wide range of sample types producing a characteristic chemical "fingerprint" with a unique signature profile. Nuclear magnetic resonance (NMR) spectroscopy and an array of mass spectrometry (MS) techniques provide selectivity and specificity for screening metabolites, but demand costly instrumentation, complex sample pretreatment, are labor-intensive, require well-trained technicians to operate the instrumentation, and are less amenable for implementation in clinics. The potential for vibration spectroscopy techniques to be brought to the bedside gives hope for huge cost savings and potential revolutionary advances in diagnostics in the clinic. We discuss the utilization of current vibrational spectroscopy methodologies on biologic samples as an avenue towards rapid cost saving diagnostics.
Collapse
Affiliation(s)
- Kevin V. Hackshaw
- Department of Internal Medicine, Division of Rheumatology, Dell Medical School, The University of Texas, 1601 Trinity St, Austin, TX 78712, USA
| | - Joseph S. Miller
- Department of Medicine, Ohio University Heritage College of Osteopathic Medicine, Dublin, OH 43016, USA;
| | - Didem P. Aykas
- Department of Food Science and Technology, Ohio State University, Columbus, OH 43210, USA; (D.P.A.); (L.R.-S.)
- Department of Food Engineering, Faculty of Engineering, Adnan Menderes University, Aydin 09100, Turkey
| | - Luis Rodriguez-Saona
- Department of Food Science and Technology, Ohio State University, Columbus, OH 43210, USA; (D.P.A.); (L.R.-S.)
| |
Collapse
|
21
|
Biofluid diagnostics by FTIR spectroscopy: A platform technology for cancer detection. Cancer Lett 2020; 477:122-130. [DOI: 10.1016/j.canlet.2020.02.020] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/31/2020] [Accepted: 02/14/2020] [Indexed: 12/19/2022]
|
22
|
Guang P, Huang W, Guo L, Yang X, Huang F, Yang M, Wen W, Li L. Blood-based FTIR-ATR spectroscopy coupled with extreme gradient boosting for the diagnosis of type 2 diabetes: A STARD compliant diagnosis research. Medicine (Baltimore) 2020; 99:e19657. [PMID: 32282717 PMCID: PMC7220067 DOI: 10.1097/md.0000000000019657] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Timely diagnosis of type 2 diabetes and early intervention and treatment of it are important for controlling metabolic disorders, delaying and reducing complications, reducing mortality, and improving quality of life. Type 2 diabetes was diagnosed by Fourier transform mid-infrared (FTIR) attenuated total reflection (ATR) spectroscopy in combination with extreme gradient boosting (XGBoost). Whole blood FTIR-ATR spectra of 51 clinically diagnosed type 2 diabetes and 55 healthy volunteers were collected. For the complex composition of whole blood and much spectral noise, Savitzky-Golay smoothing was first applied to the FTIR-ATR spectrum. Then PCA was used to eliminate redundant data and got the best number of principle components. Finally, the XGBoost algorithm was used to discriminate the type 2 diabetes from healthy volunteers and the grid search algorithm was used to optimize the relevant parameters of the XGBoost model to improve the robustness and generalization ability of the model. The sensitivity of the optimal XGBoost model was 95.23% (20/21), the specificity was 96.00% (24/25), and the accuracy was 95.65% (44/46). The experimental results show that FTIR-ATR spectroscopy combined with XGBoost algorithm can diagnose type 2 diabetes quickly and accurately without reagents.
Collapse
Affiliation(s)
- Peiwen Guang
- Department of Opto-Electronic Engineering, Jinan University, Guangzhou
| | - Wendong Huang
- Department of Pharmacy, Maoming People's Hospital, Maoming
| | - Liu Guo
- Department of Opto-Electronic Engineering, Jinan University, Guangzhou
| | - Xinhao Yang
- Department of Opto-Electronic Engineering, Jinan University, Guangzhou
| | - Furong Huang
- Department of Opto-Electronic Engineering, Jinan University, Guangzhou
| | - Maoxun Yang
- Zhuhai Hopegenes Medical & Pharmaceutical Institute Co., Ltd, Hengqin New Area, Zhuhai
| | - Wangrong Wen
- First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Li Li
- First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
23
|
Su KY, Lee WL. Fourier Transform Infrared Spectroscopy as a Cancer Screening and Diagnostic Tool: A Review and Prospects. Cancers (Basel) 2020; 12:E115. [PMID: 31906324 PMCID: PMC7017192 DOI: 10.3390/cancers12010115] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/21/2019] [Accepted: 12/24/2019] [Indexed: 02/07/2023] Open
Abstract
Infrared spectroscopy has long been used to characterize chemical compounds, but the applicability of this technique to the analysis of biological materials containing highly complex chemical components is arguable. However, recent advances in the development of infrared spectroscopy have significantly enhanced the capacity of this technique in analyzing various types of biological specimens. Consequently, there is an increased number of studies investigating the application of infrared spectroscopy in screening and diagnosis of various diseases. The lack of highly sensitive and specific methods for early detection of cancer has warranted the search for novel approaches. Being more simple, rapid, accurate, inexpensive, non-destructive and suitable for automation compared to existing screening, diagnosis, management and monitoring methods, Fourier transform infrared spectroscopy can potentially improve clinical decision-making and patient outcomes by detecting biochemical changes in cancer patients at the molecular level. Besides the commonly analyzed blood and tissue samples, extracellular vesicle-based method has been gaining popularity as a non-invasive approach. Therefore, infrared spectroscopic analysis of extracellular vesicles could be a useful technique in the future for biomedical applications. In this review, we discuss the potential clinical applications of Fourier transform infrared spectroscopic analysis using various types of biological materials for cancer. Additionally, the rationale and advantages of using extracellular vesicles in the spectroscopic analysis for cancer diagnostics are discussed. Furthermore, we highlight the challenges and future directions of clinical translation of the technique for cancer.
Collapse
Affiliation(s)
| | - Wai-Leng Lee
- School of Science, Monash University Malaysia, Subang Jaya 47500, Malaysia
| |
Collapse
|
24
|
Ghannad M, Olsen M, Boutron I, Bossuyt PM. A systematic review finds that spin or interpretation bias is abundant in evaluations of ovarian cancer biomarkers. J Clin Epidemiol 2019; 116:9-17. [DOI: 10.1016/j.jclinepi.2019.07.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 06/20/2019] [Accepted: 07/15/2019] [Indexed: 11/26/2022]
|
25
|
Magalhães S, Trindade D, Martins T, Martins Rosa I, Delgadillo I, Goodfellow BJ, da Cruz E Silva OAB, Henriques AG, Nunes A. Monitoring plasma protein aggregation during aging using conformation-specific antibodies and FTIR spectroscopy. Clin Chim Acta 2019; 502:25-33. [PMID: 31790700 DOI: 10.1016/j.cca.2019.11.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/15/2019] [Accepted: 11/18/2019] [Indexed: 11/29/2022]
Abstract
The loss of proteostasis during aging has been well described using different models, however little is known with respect to protein aggregation levels in biofluids with aging. Therefore, the aim of this study was to assess the pattern of age-related protein aggregation in human plasma using two distinct approaches: analysis with conformation-specific antibodies and FTIR spectroscopy. The latter has been widely used in biomedical research to study protein conformational changes in health and disease. Samples from a primary care based-cohort from the Aveiro region, Portugal, were used for slot-blot analyses followed by immunodetection with conformation-specific antibodies and for the acquisition of FTIR spectra. Immunoblot analyses revealed an age-dependent evolution of the protein conformational profile in human plasma, towards a decrease in prefibrillar oligomers and an increase in fibrillar structures. This finding was also supported by PLS-R multivariate analysis of FTIR data, where a positive correlation between the age of the donors and secondary structure of plasma proteins could be observed. Samples from younger donors are characterized by antiparallel β-sheet-containing structures while intermolecular β-sheets characterized older samples. Exclusion of age-associated co-morbidities improved the correlation between protein conformational profiles and aging. The results reveal structural changes in human plasma proteins from middle to old age, confirming the age-associated changes in protein aggregation, and support the applicability of FTIR as a reliable approach to study proteostasis during aging.
Collapse
Affiliation(s)
- Sandra Magalhães
- iBiMED - Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro, Portugal; CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal.
| | - Dário Trindade
- iBiMED - Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro, Portugal.
| | - Tânia Martins
- iBiMED - Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro, Portugal.
| | - Ilka Martins Rosa
- iBiMED - Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro, Portugal.
| | | | - Brian J Goodfellow
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal.
| | - Odete A B da Cruz E Silva
- iBiMED - Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro, Portugal; The Discovery CTR, University of Aveiro Campus, 3810-193 Aveiro, Portugal.
| | - Ana Gabriela Henriques
- iBiMED - Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro, Portugal.
| | - Alexandra Nunes
- iBiMED - Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro, Portugal.
| |
Collapse
|
26
|
Bury D, Morais CLM, Martin FL, Lima KMG, Ashton KM, Baker MJ, Dawson TP. Discrimination of fresh frozen non-tumour and tumour brain tissue using spectrochemical analyses and a classification model. Br J Neurosurg 2019; 34:40-45. [PMID: 31642351 DOI: 10.1080/02688697.2019.1679352] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Introduction: In order for brain tumours to be successfully treated, maximal resection is beneficial. A method to detect infiltrative tumour edges intraoperatively, improving on current methods would be clinically useful. Vibrational spectroscopy offers the potential to provide a handheld, reagent-free method for tumour detection.Purpose: This study was designed to determine the ability of both Raman and Fourier-transform infrared (FTIR) spectroscopy towards differentiating between normal brain tissue, glioma or meningioma.Method: Unfixed brain tissue, which had previously only been frozen, comprising normal, glioma or meningioma tissue was placed onto calcium fluoride slides for analysis using Raman and attenuated total reflection (ATR)-FTIR spectroscopy. Matched haematoxylin and eosin slides were used to confirm tumour areas. Analyses were then conducted to generate a classification model.Results: This study demonstrates the ability of both Raman and ATR-FTIR spectroscopy to discriminate tumour from non-tumour fresh frozen brain tissue with 94% and 97.2% of cases correctly classified, with sensitivities of 98.8% and 100%, respectively. This decreases when spectroscopy is used to determine tumour type.Conclusion: The study demonstrates the ability of both Raman and ATR-FTIR spectroscopy to detect tumour tissue from non-tumour brain tissue with a high degree of accuracy. This demonstrates the ability of spectroscopy when targeted for a cancer diagnosis. However, further improvement would be required for a classification model to determine tumour type using this technology, in order to make this tool clinically viable.
Collapse
Affiliation(s)
- Danielle Bury
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, UK
| | - Camilo L M Morais
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, UK
| | - Francis L Martin
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, UK
| | - Kássio M G Lima
- Biological Chemistry and Chemometrics, Institute of Chemistry, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Katherine M Ashton
- Department of Neuropathology, Royal Preston Hospital, Lancashire Teaching Hospitals NHS Trust, Preston, UK
| | - Matthew J Baker
- WestCHEM, Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, Glasgow, UK
| | - Timothy P Dawson
- Department of Neuropathology, Royal Preston Hospital, Lancashire Teaching Hospitals NHS Trust, Preston, UK
| |
Collapse
|
27
|
Balan V, Mihai CT, Cojocaru FD, Uritu CM, Dodi G, Botezat D, Gardikiotis I. Vibrational Spectroscopy Fingerprinting in Medicine: from Molecular to Clinical Practice. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E2884. [PMID: 31489927 PMCID: PMC6766044 DOI: 10.3390/ma12182884] [Citation(s) in RCA: 162] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/01/2019] [Accepted: 09/03/2019] [Indexed: 12/12/2022]
Abstract
In the last two decades, Fourier Transform Infrared (FTIR) and Raman spectroscopies turn out to be valuable tools, capable of providing fingerprint-type information on the composition and structural conformation of specific molecular species. Vibrational spectroscopy's multiple features, namely highly sensitive to changes at the molecular level, noninvasive, nondestructive, reagent-free, and waste-free analysis, illustrate the potential in biomedical field. In light of this, the current work features recent data and major trends in spectroscopic analyses going from in vivo measurements up to ex vivo extracted and processed materials. The ability to offer insights into the structural variations underpinning pathogenesis of diseases could provide a platform for disease diagnosis and therapy effectiveness evaluation as a future standard clinical tool.
Collapse
Affiliation(s)
- Vera Balan
- Faculty of Medical Bioengineering, Grigore T. Popa University of Medicine and Pharmacy of Iași, Iași 700115, Romania.
| | - Cosmin-Teodor Mihai
- Advanced Centre for Research-Development in Experimental Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iași, Iași 700115, Romania.
| | - Florina-Daniela Cojocaru
- Advanced Centre for Research-Development in Experimental Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iași, Iași 700115, Romania.
| | - Cristina-Mariana Uritu
- Advanced Centre for Research-Development in Experimental Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iași, Iași 700115, Romania.
| | - Gianina Dodi
- Advanced Centre for Research-Development in Experimental Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iași, Iași 700115, Romania.
| | - Doru Botezat
- Advanced Centre for Research-Development in Experimental Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iași, Iași 700115, Romania.
| | - Ioannis Gardikiotis
- Advanced Centre for Research-Development in Experimental Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iași, Iași 700115, Romania
| |
Collapse
|
28
|
Duan P, Li J, Yang W, Li X, Long M, Feng X, Zhang Y, Chen C, Morais CLM, Martin FL, Luo J, Liu D, Xiong C. Fourier transform infrared and Raman-based biochemical profiling of different grades of pure foetal-type hepatoblastoma. JOURNAL OF BIOPHOTONICS 2019; 12:e201800304. [PMID: 30993892 DOI: 10.1002/jbio.201800304] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 04/05/2019] [Accepted: 04/07/2019] [Indexed: 06/09/2023]
Abstract
The biomolecular events resulting from the progression of hepatoblastoma remain to be elucidated. Fourier-transform infrared (FTIR) and Raman spectroscopies are capable of noninvasively and accurately capturing the biochemical properties of biological tissue from its pathological status. Our aim was to probe critial biomolecular changes of liver accompanying the progression of pure foetal hepatoblastoma (PFH) by FTIR and Raman spectroscopies. Herein, biochemical alterations were both evident in the FTIR spectra (regions of 3100-2800 cm-1 and 1800-900 cm-1 ) and the Raman spectra (region of 1800-400 cm-1 ) among normal, borderline and malignant liver tissues. Compared with normal tissues, the ratios of protein-to-lipid, α-helix-to-β-sheet, RNA-to-DNA, CH3 methyl-to-CH2 methylene, glucose-to-phospholipids, and unsaturated-to-saturated lipids intensities were significantly higher in malignant tissues, while the ratios of RNA-to-Amide II, DNA-to-Amide II, glycogen-to-cholesterol and Amide I-to-Amide II intensities were remarkably lower. These biochemical alterations in the transition from normal to malignant have profound implications not only for cyto-pathological classification but also for molecular understanding of PFH progression. The successive changes of the spectral characteristics have been shown to be consistent with the development of PFH, indicating that FTIR and Raman spectroscopies are excellent tools to interrogate the biochemical features of different grades of PFH.
Collapse
Affiliation(s)
- Peng Duan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Reproductive Medicine, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Junyi Li
- State Key Laboratory of Tribology, Tsinghua University, Beijing, China
| | - Weiyingxue Yang
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiandong Li
- Department of Clinical Laboratory, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Manman Long
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaobing Feng
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuge Zhang
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunling Chen
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Camilo L M Morais
- Lancashire Teaching Hospitals NHS Trust, Preston, UK
- Biocel Ltd, Hull, UK
| | | | - Jianbin Luo
- State Key Laboratory of Tribology, Tsinghua University, Beijing, China
| | - Dameng Liu
- State Key Laboratory of Tribology, Tsinghua University, Beijing, China
| | - Chengliang Xiong
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Center for Reproductive Medicine, Wuhan Tongji Reproductive Medicine Hospital, Wuhan, China
| |
Collapse
|
29
|
Duan P, Liu B, Morais CLM, Zhao J, Li X, Tu J, Yang W, Chen C, Long M, Feng X, Martin FL, Xiong C. 4-Nonylphenol effects on rat testis and sertoli cells determined by spectrochemical techniques coupled with chemometric analysis. CHEMOSPHERE 2019; 218:64-75. [PMID: 30469005 DOI: 10.1016/j.chemosphere.2018.11.086] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 11/11/2018] [Accepted: 11/12/2018] [Indexed: 06/09/2023]
Abstract
Herein, vibrational spectroscopy has been applied for qualitative identification of biomolecular alterations that occur in cells and tissues following chemical treatment. Towards this end, we combined attenuated total reflection Fourier-transform infrared (ATR-FTIR) and Raman spectroscopy to assess testicular toxicology after 4-nonylphenol (NP) exposure, an estrogenic endocrine disruptor affecting testicular function in rats and other species. Rats aged 21, 35 or 50 days received NP at intra-peritoneal doses of 0, 25, 50 or 100 mg/kg for 20 consecutive days. Primary Sertoli cells (SCs) were treated with NP at various concentrations (0, 2.5, 5, 10 or 20 μM) for 12 h. Post-exposure, testicular cells, interstitial tissue and SCs were interrogated respectively using spectrochemical techniques coupled with multivariate analysis. Distinct biomolecular segregation between the NP-exposed samples vs. control were observed based on infrared (IR) spectral regions of 3200-2800 cm-1 and 1800-900 cm-1, and the Raman spectral region of 1800-900 cm-1. For in vivo experiments, the main wavenumbers responsible for segregation varied significantly among the three age classes. The main IR and Raman band differences between NP-exposed and control groups were observed for Amide (proteins), lipids and DNA/RNA. An interesting finding was that the peptide aggregation level, Amide Ӏ-to-Amide II ratio, and phosphate-to-carbohydrate ratio were considerably reduced in ex vivo NP-exposed testicular cells or SCs in vitro. This study demonstrates that ATR-FTIR and Raman spectroscopy techniques can be applied towards analysing NP-induced testicular biomolecular alterations.
Collapse
Affiliation(s)
- Peng Duan
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Center for Reproductive Medicine, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, 441000, China
| | - Bisen Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Camilo L M Morais
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK
| | - Jing Zhao
- Department of Epidemiology and Health Statistics, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan, 430030, China
| | - Xiandong Li
- Department of Clinical Laboratory, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Jian Tu
- Reproductive Medicine Center, Maternal and Child Health Care Hospital of Yueyang City, Yueyang, 414000, China
| | - Weiyingxue Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chunling Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Manman Long
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaobing Feng
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Francis L Martin
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK.
| | - Chengliang Xiong
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Center for Reproductive Medicine, Wuhan Tongji Reproductive Medicine Hospital, 128 Sanyang Road, Wuhan, 430013, China.
| |
Collapse
|
30
|
Bury D, Morais CLM, Paraskevaidi M, Ashton KM, Dawson TP, Martin FL. Spectral classification for diagnosis involving numerous pathologies in a complex clinical setting: A neuro-oncology example. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 206:89-96. [PMID: 30086451 DOI: 10.1016/j.saa.2018.07.078] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/26/2018] [Accepted: 07/27/2018] [Indexed: 06/08/2023]
Abstract
Much effort is currently being placed into developing new blood tests for cancer diagnosis in the hope of moving cancer diagnosis earlier and by less invasive means than current techniques, e.g., biopsy. Current methods are expected to diagnose and begin treatment of cancer within 62 days of patient presentation, though due to high volume and pressures within the NHS in the UK any technique that can reduce time to diagnosis would allow reduction in the time to treat for patients. The use of vibrational spectroscopy, notably infrared (IR) spectroscopy, has been under investigation for many years with varying success. This technique holds promise as is would combine a generally well accepted test (a blood test) with analysis that is reagent free and cheap to run. It has been demonstrated that, when asked simple clinical questions (i.e., cancer vs. no cancer), results from spectroscopic studies are promising. However, in order to become a clinically useful tool, it is important that the test differentiates a variety of cancer types from healthy patients. This study has analysed plasma samples with attenuated total reflection Fourier-transform IR spectroscopy (ATR-FTIR), to establish if the technique is able to distinguish normal from primary or metastatic brain tumours. We have shown that when asked specific questions, i.e., high-grade glioma vs. low-grade glioma, the results show a significantly high accuracy (100%). Crucially, when combined with meningiomas and metastatic lesions, the accuracy remains high (88-100%) with only minimal overlap between the two metastatic adenocarcinoma groups. Therefore in a clinical setting, this novel technique demonstrates potential benefit when used in conjuction with existing diagnostic methods.
Collapse
Affiliation(s)
- Danielle Bury
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK
| | - Camilo L M Morais
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK
| | - Maria Paraskevaidi
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK
| | - Katherine M Ashton
- Department of Neuropathology, Royal Preston Hospital, Lancashire Teaching Hospitals NHS Trust, Preston PR2 9HT, UK
| | - Timothy P Dawson
- Department of Neuropathology, Royal Preston Hospital, Lancashire Teaching Hospitals NHS Trust, Preston PR2 9HT, UK
| | - Francis L Martin
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK.
| |
Collapse
|
31
|
Siddiqui AJ, Sherazi STH, Ahmed S, Iqbal Choudhary M, Musharraf SG. A comparative profiling of oral cancer patients and high risk niswar users using FT-IR and chemometric analysis. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 203:177-184. [PMID: 29864641 DOI: 10.1016/j.saa.2018.05.107] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 05/22/2018] [Accepted: 05/27/2018] [Indexed: 06/08/2023]
Abstract
Oral cancer is one of the major cancer types, which has increased sustainably in Southeast Asian countries due to the extensive use of a variety of tobacco and betel nut products. The current study is focused on developing an easy, efficient and cost-effective method for plasma profiling of oral cancer patients and tobacco users in order to have a progressive picture towards oral cancer. For this purpose, the profiling of 147 plasma samples including 67 oral cancer patients' samples, 60 "niswar" (a dipping tobacco product) user samples, and 20 healthy controls using attenuated total reflectance-fourier transform infrared spectroscopy (ATR-FTIR), and chemometric analysis was carried out. Fingerprint region (500-1500 cm-1) of all three groups showed interesting variations in peaks pattern. From these observations, height ratios of two bands H1646/H1550 and H1080/H1024 with p value of 2.01 × 10-6 and 8.39 × 10-7, respectively, showed a pattern between healthy to oral cancer and "niswar" user samples. Chemometric analysis of the data showed a clean separation among the groups. PLS-DA and OPLS-DA models provided 87.7% and 89.5% classification rate, respectively. Area under the curve (AUC) for healthy control, oral cancer and "niswar" users were found to be 0.97, 0.95 and 0.92%, respectively. The results of the present study indicate that FT-IR spectroscopy, in conjunction with chemometric data, can be effectively used for the preliminary differentiation of plasma samples of oral cancer patients, "niswar" users and control samples of healthy persons.
Collapse
Affiliation(s)
- Amna Jabbar Siddiqui
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | | | - Shakil Ahmed
- Industrial Analytical Centre (IAC), H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - M Iqbal Choudhary
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 22254, Saudi Arabia
| | - Syed Ghulam Musharraf
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan.
| |
Collapse
|
32
|
Siqueira LFS, Lima KMG. MIR-biospectroscopy coupled with chemometrics in cancer studies. Analyst 2018; 141:4833-47. [PMID: 27433557 DOI: 10.1039/c6an01247g] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
This review focuses on chemometric techniques applied in MIR-biospectroscopy for cancer diagnosis and analysis over the last ten years of research. Experimental applications of chemometrics coupled with biospectroscopy are discussed throughout this work. The advantages and drawbacks of this association are also highlighted. Chemometric algorithms are evidenced as a powerful tool for cancer diagnosis, classification, and in different matrices. In fact, it is shown how chemometrics can be implemented along all different types of cancer analyses.
Collapse
Affiliation(s)
- Laurinda F S Siqueira
- Biological Chemistry and Chemometrics, Institute of Chemistry, Federal University of Rio Grande of Norte, Natal 59072-970, RN-Brazil.
| | - Kássio M G Lima
- Biological Chemistry and Chemometrics, Institute of Chemistry, Federal University of Rio Grande of Norte, Natal 59072-970, RN-Brazil.
| |
Collapse
|
33
|
Li L, Bi X, Sun H, Liu S, Yu M, Zhang Y, Weng S, Yang L, Bao Y, Wu J, Xu Y, Shen K. Characterization of ovarian cancer cells and tissues by Fourier transform infrared spectroscopy. J Ovarian Res 2018; 11:64. [PMID: 30071867 PMCID: PMC6090913 DOI: 10.1186/s13048-018-0434-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 07/18/2018] [Indexed: 12/31/2022] Open
Abstract
Background Ovarian cancer is the most lethal of gynecological malignancies. Fourier Transform Infrared (FTIR) spectroscopy has gradually developed as a convenient, inexpensive and non-destructive technique for the study of many diseases. In this study, FTIR spectra of normal and several heterogeneous ovarian cancer cell lines as well as ovarian cancer tissue samples were compared in the spectral region of 4000 cm− 1 - 600 cm− 1. Methods Cell samples were collected from human ovarian surface epithelial cell line (HOSEpiC) and five ovarian cancer cell lines (ES2, A2780, OVCAR3, SKOV3 and IGROV1). Validation spectra were performed on normal and cancerous tissue samples from 12 ovarian cancer patients. FTIR spectra were collected from a NICOLET iN10 MX spectrometer and the spectral data were analyzed by OMNIC 8.0 software. Results Spectral features discriminating malignant tissues from normal tissues were integrated by cell line data and tissue data. In particular changes in cancerous tissues, the decrease in the amount of lipids and nucleic acids were observed. Protein conformation and composition were also altered in some cancer cells. The band intensity ratio of 1454/1400 was higher in normal cells/tissues and lower in cancer cells/tissues. Conclusion The spectral features revealed the important molecular characteristics about ovarian cancer cells/tissues. These findings demonstrate the possible diagnostic use of FTIR spectroscopy, providing the research model and evidences, and supporting the future study on more tissue samples to establish a data bank of spectra features for the possible discrimination of ovarian cancers.
Collapse
Affiliation(s)
- Lei Li
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Shuai Fu Yuan, Eastern District, Beijing, 100730, China
| | - Xiaoning Bi
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Shuai Fu Yuan, Eastern District, Beijing, 100730, China
| | - Hengzi Sun
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Shuai Fu Yuan, Eastern District, Beijing, 100730, China
| | - Simiao Liu
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Shuai Fu Yuan, Eastern District, Beijing, 100730, China
| | - Mei Yu
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Shuai Fu Yuan, Eastern District, Beijing, 100730, China
| | - Ying Zhang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Shuai Fu Yuan, Eastern District, Beijing, 100730, China
| | - Shifu Weng
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, No. 202 Chengfu Road, Haidian District, Beijing, 100871, China
| | - Limin Yang
- State Key Laboratory of Nuclear Physics and Technology, Institute of Heavy Ion Physics, School of Physics, Peking University, No. 202 Chengfu Road, Haidian District, Beijing, 100871, China
| | - Yanan Bao
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, No. 202 Chengfu Road, Haidian District, Beijing, 100871, China
| | - Jinguang Wu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, No. 202 Chengfu Road, Haidian District, Beijing, 100871, China
| | - Yizhuang Xu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, No. 202 Chengfu Road, Haidian District, Beijing, 100871, China.
| | - Keng Shen
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Shuai Fu Yuan, Eastern District, Beijing, 100730, China.
| |
Collapse
|
34
|
Neves ACO, Morais CLM, Mendes TPP, Vaz BG, Lima KMG. Mass spectrometry and multivariate analysis to classify cervical intraepithelial neoplasia from blood plasma: an untargeted lipidomic study. Sci Rep 2018; 8:3954. [PMID: 29500376 PMCID: PMC5834598 DOI: 10.1038/s41598-018-22317-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 02/21/2018] [Indexed: 02/06/2023] Open
Abstract
Cervical cancer is still an important issue of public health since it is the fourth most frequent type of cancer in women worldwide. Much effort has been dedicated to combating this cancer, in particular by the early detection of cervical pre-cancerous lesions. For this purpose, this paper reports the use of mass spectrometry coupled with multivariate analysis as an untargeted lipidomic approach to classifying 76 blood plasma samples into negative for intraepithelial lesion or malignancy (NILM, n = 42) and squamous intraepithelial lesion (SIL, n = 34). The crude lipid extract was directly analyzed with mass spectrometry for untargeted lipidomics, followed by multivariate analysis based on the principal component analysis (PCA) and genetic algorithm (GA) with support vector machines (SVM), linear (LDA) and quadratic (QDA) discriminant analysis. PCA-SVM models outperformed LDA and QDA results, achieving sensitivity and specificity values of 80.0% and 83.3%, respectively. Five types of lipids contributing to the distinction between NILM and SIL classes were identified, including prostaglandins, phospholipids, and sphingolipids for the former condition and Tetranor-PGFM and hydroperoxide lipid for the latter. These findings highlight the potentiality of using mass spectrometry associated with chemometrics to discriminate between healthy women and those suffering from cervical pre-cancerous lesions.
Collapse
Affiliation(s)
- Ana C O Neves
- Institute of Chemistry, Biological Chemistry and Chemometrics, Federal University of Rio Grande do Norte, Natal, 59072-970, RN, Brazil
| | - Camilo L M Morais
- Institute of Chemistry, Biological Chemistry and Chemometrics, Federal University of Rio Grande do Norte, Natal, 59072-970, RN, Brazil
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, PR1 2HE, United Kingdom
| | - Thais P P Mendes
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, PR1 2HE, United Kingdom
| | - Boniek G Vaz
- Institute of Chemistry, Federal University of Goiás, Goiânia, 74690-900, GO, Brazil
| | - Kássio M G Lima
- Institute of Chemistry, Biological Chemistry and Chemometrics, Federal University of Rio Grande do Norte, Natal, 59072-970, RN, Brazil.
| |
Collapse
|
35
|
Huleihel M, Shufan E, Tsror L, Sharaha U, Lapidot I, Mordechai S, Salman A. Differentiation of mixed soil-borne fungi in the genus level using infrared spectroscopy and multivariate analysis. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 180:155-165. [PMID: 29433053 DOI: 10.1016/j.jphotobiol.2018.02.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 01/24/2018] [Accepted: 02/06/2018] [Indexed: 01/31/2023]
Abstract
Early detection of soil-borne pathogens, which have a negative effect on almost all agricultural crops, is crucial for effective targeting with the most suitable antifungal agents and thus preventing and/or reducing their severity. They are responsible for severe diseases in various plants, leading in many cases to substantial economic losses. In this study, infrared (IR) spectroscopic method, which is known as sensitive, accurate and rapid, was used to discriminate between different fungi in a mixture was evaluated. Mixed and pure samples of Colletotrichum, Verticillium, Rhizoctonia, and Fusarium genera were measured using IR microscopy. Our spectral results showed that the best differentiation between pure and mixed fungi was obtained in the 675-1800 cm-1 wavenumber region. Principal components analysis (PCA), followed by linear discriminant analysis (LDA) as a linear classifier, was performed on the spectra of the measured classes. Our results showed that it is possible to differentiate between mixed-calculated categories of phytopathogens with high success rates (~100%) when the mixing percentage range is narrow (40-60) in the genus level; when the mixing percentage range is wide (10-90), the success rate exceeded 85%. Also, in the measured mixed categories of phytopathogens it is possible to differentiate between the different categories with ~100% success rate.
Collapse
Affiliation(s)
- M Huleihel
- Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.
| | - E Shufan
- Department of Physics, SCE-Sami Shamoon College of Engineering, Beer-Sheva 84100, Israel
| | - L Tsror
- Department of Plant Pathology, Institute of Plant Protection, Agricultural Research Organization, Gilat Research Center, M.P. Negev 85250, Israel
| | - U Sharaha
- Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - I Lapidot
- Department of Electrical and Electronics Engineering, ACLP-Afeka Center for Language Processing, Afeka Tel-Aviv Academic College of Engineering, Israel
| | - S Mordechai
- Department of Physics, Ben-Gurion University, Beer-Sheva 84105, Israel
| | - A Salman
- Department of Physics, SCE-Sami Shamoon College of Engineering, Beer-Sheva 84100, Israel.
| |
Collapse
|
36
|
Depciuch J, Parlinska-Wojtan M. Qualitative and quantitative changes in phospholipids and proteins investigated by spectroscopic techniques in olfactory bulbectomy animal depression model. J Pharm Biomed Anal 2018; 148:24-31. [DOI: 10.1016/j.jpba.2017.09.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 09/04/2017] [Accepted: 09/12/2017] [Indexed: 10/18/2022]
|
37
|
De Bruyne S, Speeckaert MM, Delanghe JR. Applications of mid-infrared spectroscopy in the clinical laboratory setting. Crit Rev Clin Lab Sci 2017; 55:1-20. [PMID: 29239240 DOI: 10.1080/10408363.2017.1414142] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Fourier transform mid-infrared (MIR-FTIR) spectroscopy is a nondestructive, label-free, highly sensitive and specific technique that provides complete information on the chemical composition of biological samples. The technique both can offer fundamental structural information and serve as a quantitative analysis tool. Therefore, it has many potential applications in different fields of clinical laboratory science. Although considerable technological progress has been made to promote biomedical applications of this powerful analytical technique, most clinical laboratory analyses are based on spectroscopic measurements in the visible or ultraviolet (UV) spectrum and the potential role of FTIR spectroscopy still remains unexplored. In this review, we present some general principles of FTIR spectroscopy as a useful method to study molecules in specimens by MIR radiation together with a short overview of methods to interpret spectral data. We aim at illustrating the wide range of potential applications of the proposed technique in the clinical laboratory setting with a focus on its advantages and limitations and discussing the future directions. The reviewed applications of MIR spectroscopy include (1) quantification of clinical parameters in body fluids, (2) diagnosis and monitoring of cancer and other diseases by analysis of body fluids, cells, and tissues, (3) classification of clinically relevant microorganisms, and (4) analysis of kidney stones, nails, and faecal fat.
Collapse
Affiliation(s)
- Sander De Bruyne
- a Department of Clinical Chemistry , Ghent University Hospital , Ghent , Belgium
| | | | - Joris R Delanghe
- a Department of Clinical Chemistry , Ghent University Hospital , Ghent , Belgium
| |
Collapse
|
38
|
Oleszko A, Hartwich J, Wójtowicz A, Gąsior-Głogowska M, Huras H, Komorowska M. Comparison of FTIR-ATR and Raman spectroscopy in determination of VLDL triglycerides in blood serum with PLS regression. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 183:239-246. [PMID: 28454077 DOI: 10.1016/j.saa.2017.04.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 04/13/2017] [Accepted: 04/16/2017] [Indexed: 06/07/2023]
Abstract
Hypertriglyceridemia, related with triglyceride (TG) in plasma above 1.7mmol/L is one of the cardiovascular risk factors. Very low density lipoproteins (VLDL) are the main TG carriers. Despite being time consuming, demanding well-qualified staff and expensive instrumentation, ultracentrifugation technique still remains the gold standard for the VLDL isolation. Therefore faster and simpler method of VLDL-TG determination is needed. Vibrational spectroscopy, including FT-IR and Raman, is widely used technique in lipid and protein research. The aim of this study was assessment of Raman and FT-IR spectroscopy in determination of VLDL-TG directly in serum with the isolation step omitted. TG concentration in serum and in ultracentrifugated VLDL fractions from 32 patients were measured with reference colorimetric method. FT-IR and Raman spectra of VLDL and serum samples were acquired. Partial least square (PLS) regression was used for calibration and leave-one-out cross validation. Our results confirmed possibility of reagent-free determination of VLDL-TG directly in serum with both Raman and FT-IR spectroscopy. Quantitative VLDL testing by FT-IR and/or Raman spectroscopy applied directly to maternal serum seems to be promising screening test to identify women with increased risk of adverse pregnancy outcomes and patient friendly method of choice based on ease of performance, accuracy and efficiency.
Collapse
Affiliation(s)
- Adam Oleszko
- Wrocław University of Science and Technology, Faculty of Fundamental Problems of Technology, Department of Biomedical Engineering, 27 Stanisława Wyspiańskiego St., 50-370 Wrocław, Poland.
| | - Jadwiga Hartwich
- Jagiellonian University Medical College, Department of Analytical Biochemistry, 9 Medyczna St., 30-688 Kraków, Poland
| | - Anna Wójtowicz
- Jagiellonian University, Kraków, Department of Obstetrics & Perinatology, 23 Kopernika St., 31-501 Krakow, Poland
| | - Marlena Gąsior-Głogowska
- Wrocław University of Science and Technology, Faculty of Fundamental Problems of Technology, Department of Biomedical Engineering, 27 Stanisława Wyspiańskiego St., 50-370 Wrocław, Poland
| | - Hubert Huras
- Jagiellonian University, Kraków, Department of Obstetrics & Perinatology, 23 Kopernika St., 31-501 Krakow, Poland
| | - Małgorzata Komorowska
- Wrocław University of Science and Technology, Faculty of Fundamental Problems of Technology, Department of Biomedical Engineering, 27 Stanisława Wyspiańskiego St., 50-370 Wrocław, Poland
| |
Collapse
|
39
|
Hughes C, Baker MJ. Can mid-infrared biomedical spectroscopy of cells, fluids and tissue aid improvements in cancer survival? A patient paradigm. Analyst 2017; 141:467-75. [PMID: 26501136 DOI: 10.1039/c5an01858g] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This review will take a fresh approach from the patient perspective; offering insight into the applications of mid-infrared biomedical spectroscopy in a scenario whereby the patient presents with non-specific symptoms and via an extensive diagnostic process multiple lesions are discovered but no clear sign of the primary tumour; a condition known as cancer of unknown primary (CUP). With very limited options to diagnose the cancer origin, treatment options are likely to be ineffective and prognosis is consequentially very poor. CUP has not yet been targeted by infrared biospectroscopy, however, this timely, concise dissemination will focus on a series of research highlights and breakthroughs from the field for the management of a variety of cancer-related diseases - many examples of which have occurred within this year alone. The case for integration of mid-infrared (MIR) technology into clinical practice will be demonstrated largely via diagnostic, but also therapeutic and prognostic avenues by means of including cytological, bio-fluid and tissue analysis. The review is structured around CUP but is relevant for all cancer diagnoses. Infrared spectroscopy is fast developing a reputation as a valid and powerful tool for the detection and diagnosis of cancer using a variety of sample formats. The technology will produce data and tools that are designed to complement routine clinical practice; enhancing the ability of the clinician to make a reliable and non-subjective decision and enabling decreased levels of mortality and morbidity and gains in patient quality of life.
Collapse
Affiliation(s)
- Caryn Hughes
- School of Chemical Engineering & Analytical Sciences, Faculty of Engineering & Physical Science, University of Manchester, Brunswick Street, Manchester, M13 9PL, UK. and WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, Technology and Innovation Centre, 99 George Street, Glasgow, G1 1RD, UK.
| | - Matthew J Baker
- WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, Technology and Innovation Centre, 99 George Street, Glasgow, G1 1RD, UK.
| |
Collapse
|
40
|
Lechowicz L, Chrapek M, Gaweda J, Urbaniak M, Konieczna I. Use of Fourier-transform infrared spectroscopy in the diagnosis of rheumatoid arthritis: a pilot study. Mol Biol Rep 2016; 43:1321-1326. [PMID: 27640014 PMCID: PMC5102982 DOI: 10.1007/s11033-016-4079-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 09/09/2016] [Indexed: 12/11/2022]
Abstract
Rheumatoid arthritis is an autoimmune inflammatory disease leading to joint cartilage, bone degradation and limitation of mobility. Diagnosis of RA is difficult and complex. There are also no effective methods for clear discrimination between RA patients and non-RA individuals. In this work we use IR spectroscopy to differentiate RA patients and blood donors’ sera. We found differences between investigated sera (RA and non-RA) in range of 3000–2800 and 1800–800 cm−1 (W1–W5 regions). Based on mathematical analysis we developed a K-NN model characterized by 85 % of sensitivity and 100 % of specificity. Also we found that, wavenumber 1424 cm−1, comprising in W3 region, was the most effective in human sera distinguishing. We conclude that IR spectroscopy may serve as a fast and easy method useful in RA serology.
Collapse
Affiliation(s)
- Lukasz Lechowicz
- Department of Microbiology, Institute of Biology, Jan Kochanowski University, Swietokrzyska 15, 25-406, Kielce, Poland.
| | - Magdalena Chrapek
- Department of Probability and Statistics, Jan Kochanowski University, Swietokrzyska 11, 25-406, Kielce, Poland
| | - Jozef Gaweda
- Swietokrzyskie Rheumatology Center, St. Luke Specialized Hospital, Gimnazjalna 41B, 26-200, Konskie, Poland
| | - Mariusz Urbaniak
- Organic Chemistry Division, Jan Kochanowski University, Swietokrzyska 11, 25-406, Kielce, Poland
| | - Iwona Konieczna
- Department of Microbiology, Institute of Biology, Jan Kochanowski University, Swietokrzyska 15, 25-406, Kielce, Poland
| |
Collapse
|
41
|
Neves ACO, Silva PP, Morais CLM, Miranda CG, Crispim JCO, Lima KMG. ATR-FTIR and multivariate analysis as a screening tool for cervical cancer in women from northeast Brazil: a biospectroscopic approach. RSC Adv 2016. [DOI: 10.1039/c6ra21331f] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cervical cancer is the fourth most frequent cancer in women worldwide and the third in Brazil.
Collapse
Affiliation(s)
- Ana C. O. Neves
- Institute of Chemistry, Biological Chemistry and Chemometrics
- Federal University of Rio Grande do Norte
- Natal 59072-970
- Brazil
| | - Priscila P. Silva
- Institute of Chemistry, Biological Chemistry and Chemometrics
- Federal University of Rio Grande do Norte
- Natal 59072-970
- Brazil
| | - Camilo L. M. Morais
- Institute of Chemistry, Biological Chemistry and Chemometrics
- Federal University of Rio Grande do Norte
- Natal 59072-970
- Brazil
| | - Cleine G. Miranda
- Healthy Sciences Center
- Federal University of Rio Grande do Norte
- Natal 59010-180
- Brazil
| | - Janaina C. O. Crispim
- Healthy Sciences Center
- Federal University of Rio Grande do Norte
- Natal 59010-180
- Brazil
| | - Kássio M. G. Lima
- Institute of Chemistry, Biological Chemistry and Chemometrics
- Federal University of Rio Grande do Norte
- Natal 59072-970
- Brazil
| |
Collapse
|
42
|
Chen HZ, Tang GQ, Ai W, Xu LL, Cai K. Use of random forest in FTIR analysis of LDL cholesterol and tri-glycerides for hyperlipidemia. Biotechnol Prog 2015; 31:1693-702. [DOI: 10.1002/btpr.2161] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 08/21/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Hua-Zhou Chen
- School of Science; Guilin University of Technology; Guilin 541004 China
| | - Guo-Qiang Tang
- School of Science; Guilin University of Technology; Guilin 541004 China
| | - Wu Ai
- School of Science; Guilin University of Technology; Guilin 541004 China
| | - Li-Li Xu
- School of Ocean; Qinzhou University; Qinzhou 535000 China
| | - Ken Cai
- School of Information Science and Technology; Zhongkai University of Agriculture and Engineering; Guangzhou 510225 China
| |
Collapse
|