1
|
Montes‐Serrano I, Satzer P, Jungbauer A, Dürauer A. Characterization of hydrodynamics and volumetric power input in microtiter plates for the scale-up of downstream operations. Biotechnol Bioeng 2022; 119:523-534. [PMID: 34741535 PMCID: PMC9299155 DOI: 10.1002/bit.27983] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/20/2021] [Accepted: 10/28/2021] [Indexed: 12/24/2022]
Abstract
Parameter estimation for scale-up of downstream operations from microtiter plates (MTPs) is mostly done empirically because engineering correlations between microplates and stirred tank reactors (STRs) are not yet available. It is challenging to change the operation mode from shaken MTPs to large-scale STRs. For the scale-up of STRs, volumetric power input is well-established although it is unclear whether this parameter can be used to transfer the operations from MTPs. We determine the volumetric power input in MTPs via the temperature increase caused by the motion of the liquid. The hydrodynamics in MTPs are studied with computational fluid dynamics (CFD). Mixing is investigated in 96-, 24-, and 6-well MTPs to cover different geometries, filling volumes, shaking diameters, and shaking frequencies. All CFD simulations are validated by experimental results, which now allows prediction of the volumetric power input and hydrodynamics at various conditions in MTPs without the need for further experiments. We provide a map of the power input achievable in MTPs. Based on this map, from knowing about large-scale conditions, adequate microscale conditions can be adjusted for process development. This enables the direct scale-up of downstream unit operations from MTPs to STRs.
Collapse
Affiliation(s)
| | - Peter Satzer
- Austrian Centre of Industrial Biotechnology (acib GmbH)ViennaAustria
| | - Alois Jungbauer
- Austrian Centre of Industrial Biotechnology (acib GmbH)ViennaAustria
- Department of Biotechnology, Institute of Bioprocess Science & EngineeringUniversity of Natural Resources and Life Sciences, Vienna (BOKU)ViennaAustria
| | - Astrid Dürauer
- Austrian Centre of Industrial Biotechnology (acib GmbH)ViennaAustria
- Department of Biotechnology, Institute of Bioprocess Science & EngineeringUniversity of Natural Resources and Life Sciences, Vienna (BOKU)ViennaAustria
| |
Collapse
|
2
|
Rathore AS, Bhambure R. High-Throughput Process Development: I-Process Chromatography. Methods Mol Biol 2021; 2178:11-20. [PMID: 33128739 DOI: 10.1007/978-1-0716-0775-6_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Chromatographic separation serves as "a workhorse" for downstream process development and plays a key role in the removal of product-related, host-cell-related, and process-related impurities. Complex and poorly characterized raw materials and feed material, low feed concentration, product instability, and poor mechanistic understanding of the processes are some of the critical challenges that are faced during the development of a chromatographic step. Traditional process development is performed as a trial-and-error-based evaluation and often leads to a suboptimal process. A high-throughput process development (HTPD) platform involves the integration of miniaturization, automation, and parallelization and provides a systematic approach for time- and resource-efficient chromatographic process development. Creation of such platforms requires the integration of mechanistic knowledge of the process with various statistical tools for data analysis. The relevance of such a platform is high in view of the constraints with respect to time and resources that the biopharma industry faces today.This protocol describes the steps involved in performing the HTPD of chromatography steps. It describes the operation of a commercially available device (PreDictor™ plates from GE Healthcare). This device is available in 96-well format with 2 or 6 μL well size. We also discuss the challenges that one faces when performing such experiments as well as possible solutions to alleviate them. Besides describing the operation of the device, the protocol also presents an approach for statistical analysis of the data that are gathered from such a platform. A case study involving the use of the protocol for examining ion exchange chromatography of the Granulocyte Colony Stimulating Factor (GCSF), a therapeutic product, is briefly discussed. This is intended to demonstrate the usefulness of this protocol in generating data that are representative of the data obtained at the traditional lab scale. The agreement in the data is indeed very significant (regression coefficient 0.93). We think that this protocol will be of significant value to those involved in performing the high-throughput process development of the chromatography process.
Collapse
Affiliation(s)
- Anurag S Rathore
- Department of Chemical Engineering, Indian Institute of Technology, New Delhi, India.
| | - R Bhambure
- Department of Chemical Engineering, Indian Institute of Technology, New Delhi, India
| |
Collapse
|
3
|
Stein D, Thom V, Hubbuch J. High throughput screening setup of a scale-down device for membrane chromatography-aggregate removal of monoclonal antibodies. Biotechnol Prog 2020; 36:e3055. [PMID: 32710474 DOI: 10.1002/btpr.3055] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 07/18/2020] [Accepted: 07/23/2020] [Indexed: 11/07/2022]
Abstract
In biopharmaceutical process development, resin-based high throughput screening (HTS) is well known for overcoming experimental limitations by permitting automated parallel processing at miniaturized scale, which results in fast data generation and reduced feed consumption. For membrane adsorber (MA), HTS solutions have so far only been available to a partial extent. Three case studies were performed with the aim of aligning HTS applications for MAs with those established for column chromatography: Process parameter range determination, mechanistic modeling (MM), and scalability. In order to exploit the MA typically features, such as high mass transfer and easy scalability, for scalable high throughput process development, a scale-down device (SDD) for MA was developed. Its applicability is confirmed for a monoclonal antibody aggregate removal step. The first case study explores the experimental application of the SDD developed. It uses bind and elute mode and variations of pH and salt concentration to obtain process operation windows for ion-exchange MAs Sartobind® S and Q. In the second case study, we successfully developed a mechanistic model based on parameters obtained from the SDD-HTS setup. The results proved to validate the use of the SDD developed for parameter estimation and thus model-based process development. The third case study shows the transferability and scalability of data from the SDD-HTS setup using both a direct scale factor and MM. Both approaches show good applicability with a deviation below 20% in the prediction of 10% dynamic breakthrough capacity and reliable scale-up from 0.42 to 800 ml.
Collapse
Affiliation(s)
- Dominik Stein
- Sartorius Stedim Biotech GmbH, Goettingen, Germany.,Department of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Volkmar Thom
- Sartorius Stedim Biotech GmbH, Goettingen, Germany
| | - Jürgen Hubbuch
- Department of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| |
Collapse
|
4
|
Gan L, Zhao Y, Mahmood T, Guo Y. Effects of dietary vitamins supplementation level on the production performance and intestinal microbiota of aged laying hens. Poult Sci 2020; 99:3594-3605. [PMID: 32616256 PMCID: PMC7597815 DOI: 10.1016/j.psj.2020.04.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/08/2020] [Accepted: 04/01/2020] [Indexed: 12/14/2022] Open
Abstract
The objective of this study was to investigate the effects of higher vitamins supplementation level on the performance, immunity, and intestinal microbiota of old laying hens. Twelve birds were randomly chosen from 312 healthy, 65-wk-old Hy-Line Brown layers for sampling after a 7-wk acclimation period. The remaining 300 hens were randomly allocated to 1 of 4 dietary treatments for a 13-wk feeding trial: basal diet (CON), basal diet with 2-fold supplementation level of lipid-soluble vitamins (LV), 2-fold supplementation level of water-soluble vitamins (WV), or 2-fold supplementation level of both lipid-soluble and water-soluble vitamins (BV), respectively. Compared with 72-wk-old laying hens, the 85-wk-old laying hens showed declined egg quality, which implied by inferior eggshell strength and yolk color (P < 0.05). However, after 13 wks feeding trial, the birds in WV group had higher yellowness of yolk color, and LV group had increased laying rate (P < 0.05) compared with CON. Meanwhile, WV and/or BV groups showed improved GSH/GSSG levels in liver and increased secretory immunoglobulin A concentrations in jejunum compared with CON (P < 0.05). In addition, higher dietary vitamin supplementation levels significantly altered the composition of intestinal microbiota, as evidenced by increased abundance of ileal Lactobacillus, whereas reduced richness of ileal Romboutsia, Turicibacter, and cecal Faecalibacterium (P < 0.05) in WV group and increased cecal Megasphaera and Phascolarctobacterium (P < 0.05) in LV group compared with CON group. In conclusion, higher vitamin supplementation levels in the diet could improve laying performance and egg quality of aged hens, which was closely correlated with the increased abundance of beneficial microbiota in the intestine.
Collapse
Affiliation(s)
- Liping Gan
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Yizhu Zhao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Tahir Mahmood
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China.
| |
Collapse
|
5
|
Singh N, Herzer S. Downstream Processing Technologies/Capturing and Final Purification : Opportunities for Innovation, Change, and Improvement. A Review of Downstream Processing Developments in Protein Purification. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2019; 165:115-178. [PMID: 28795201 DOI: 10.1007/10_2017_12] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Increased pressure on upstream processes to maximize productivity has been crowned with great success, although at the cost of shifting the bottleneck to purification. As drivers were economical, focus is on now on debottlenecking downstream processes as the main drivers of high manufacturing cost. Devising a holistically efficient and economical process remains a key challenge. Traditional and emerging protein purification strategies with particular emphasis on methodologies implemented for the production of recombinant proteins of biopharmaceutical importance are reviewed. The breadth of innovation is addressed, as well as the challenges the industry faces today, with an eye to remaining impartial, fair, and balanced. In addition, the scope encompasses both chromatographic and non-chromatographic separations directed at the purification of proteins, with a strong emphasis on antibodies. Complete solutions such as integrated USP/DSP strategies (i.e., continuous processing) are discussed as well as gains in data quantity and quality arising from automation and high-throughput screening (HTS). Best practices and advantages through design of experiments (DOE) to access a complex design space such as multi-modal chromatography are reviewed with an outlook on potential future trends. A discussion of single-use technology, its impact and opportunities for further growth, and the exciting developments in modeling and simulation of DSP rounds out the overview. Lastly, emerging trends such as 3D printing and nanotechnology are covered. Graphical Abstract Workflow of high-throughput screening, design of experiments, and high-throughput analytics to understand design space and design space boundaries quickly. (Reproduced with permission from Gregory Barker, Process Development, Bristol-Myers Squibb).
Collapse
Affiliation(s)
- Nripen Singh
- Bristol-Myers Squibb, Global Manufacturing and Supply, Devens, MA, 01434, USA.
| | - Sibylle Herzer
- Bristol-Myers Squibb, Global Manufacturing and Supply, Hopewell, NJ, 01434, USA
| |
Collapse
|
6
|
Pollard J, McDonald P, Hesslein A. Lessons learned in building high-throughput process development capabilities. Eng Life Sci 2016. [DOI: 10.1002/elsc.201400254] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
| | - Paul McDonald
- Purification Development; Genentech; South San Francisco USA
| | - Ashley Hesslein
- Global Biological Development; Bayer HealthCare; Berkeley USA
| |
Collapse
|
7
|
Effect of sodium chloride on solute–solvent interactions in aqueous polyethylene glycol–sodium sulfate two-phase systems. J Chromatogr A 2015; 1425:51-61. [PMID: 26615710 DOI: 10.1016/j.chroma.2015.11.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 11/04/2015] [Accepted: 11/05/2015] [Indexed: 01/01/2023]
|
8
|
da Silva NR, Ferreira LA, Madeira PP, Teixeira JA, Uversky VN, Zaslavsky BY. Analysis of partitioning of organic compounds and proteins in aqueous polyethylene glycol-sodium sulfate aqueous two-phase systems in terms of solute-solvent interactions. J Chromatogr A 2015; 1415:1-10. [PMID: 26342872 DOI: 10.1016/j.chroma.2015.08.053] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 08/21/2015] [Accepted: 08/24/2015] [Indexed: 12/30/2022]
Abstract
Partition behavior of nine small organic compounds and six proteins was examined in poly(ethylene glycol)-8000-sodium sulfate aqueous two-phase systems containing 0.5M osmolyte (sorbitol, sucrose, trehalose, TMAO) and poly(ethylene glycol)-10000-sodium sulfate system, all in 0.01M sodium phosphate buffer, pH 6.8. The differences between the solvent properties of the coexisting phases (solvent dipolarity/polarizability, hydrogen bond donor acidity, and hydrogen bond acceptor basicity) were characterized with solvatochromic dyes using the solvatochromic comparison method. Differences between the electrostatic properties of the phases were determined by analysis of partitioning of sodium salts of dinitrophenylated (DNP-) amino acids with aliphatic alkyl side-chain. It was found out that the partition coefficient of all compounds examined (including proteins) may be described in terms of solute-solvent interactions. The results obtained in the study show that solute-solvent interactions of nonionic organic compounds and proteins in polyethylene glycol-sodium sulfate aqueous two-phase system differ from those in polyethylene glycol-dextran system.
Collapse
Affiliation(s)
- Nuno R da Silva
- IBB-Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal; Institute for Biological Instrumentation, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia
| | - Luisa A Ferreira
- Analiza, Inc., 3615 Superior Ave., Cleveland, OH 44114, USA; Institute for Biological Instrumentation, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia
| | - Pedro P Madeira
- Laboratory of Separation and Reaction Engineering, Department of Chemical Engineering, Faculty of Engineering of the University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; Institute for Biological Instrumentation, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia
| | - José A Teixeira
- IBB-Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal; Institute for Biological Instrumentation, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia
| | - Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; Institute for Biological Instrumentation, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia
| | - Boris Y Zaslavsky
- Analiza, Inc., 3615 Superior Ave., Cleveland, OH 44114, USA; Institute for Biological Instrumentation, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia.
| |
Collapse
|