1
|
Muñoz F, Haidar ZS, Puigdollers A, Guerra I, Padilla MC, Ortega N, García MJ. A novel Chilean salmon fish backbone-based nanoHydroxyApatite functional biomaterial for potential use in bone tissue engineering. Front Med (Lausanne) 2024; 11:1330482. [PMID: 38774396 PMCID: PMC11106468 DOI: 10.3389/fmed.2024.1330482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 04/08/2024] [Indexed: 05/24/2024] Open
Abstract
Introduction Given the ensuing increase in bone and periodontal diseases and defects, de novo bone repair and/or regeneration strategies are constantly undergoing-development alongside advances in orthopedic, oro-dental and cranio-maxillo-facial technologies and improvements in bio-/nano-materials. Indeed, there is a remarkably growing need for new oro-dental functional biomaterials that can help recreate soft and hard tissues and restore function and aesthetics of teeth/ dentition and surrounding tissues. In bone tissue engineering, HydroxyApatite minerals (HAp), the most stable CaP/Calcium Phosphate bioceramic and a widely-used material as a bone graft substitute, have been extensively studied for regenerative medicine and dentistry applications, including clinical use. Yet, limitations and challenges owing principally to its bio-mechanical strength, exist and therefore, research and innovation efforts continue to pursue enhancing its bio-effects, particularly at the nano-scale. Methods Herein, we report on the physico-chemical properties of a novel nanoHydroxyApatite material obtained from the backbone of Salmon fish (patent-pending); an abundant and promising yet under-explored alternative HAp source. Briefly, our nanoS-HAp obtained via a modified and innovative alkaline hydrolysis-calcination process was characterized by X-ray diffraction, electron microscopy, spectroscopy, and a cell viability assay. Results and Discussion When compared to control HAp (synthetic, human, bovine or porcine), our nanoS-HAp demonstrated attractive characteristics, a promising biomaterial candidate for use in bone tissue engineering, and beyond.
Collapse
Affiliation(s)
- F. Muñoz
- Facultad de Odontología, Universidad Internacional de Cataluña, Barcelona, Spain
- Laboratorio BioMAT’X R&D&I (HAiDAR I+D+i LAB), Universidad de los Andes, Santiago, Chile
| | - Z. S. Haidar
- Laboratorio BioMAT’X R&D&I (HAiDAR I+D+i LAB), Universidad de los Andes, Santiago, Chile
- Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Santiago, Chile
- Programa de Doctorado en BioMedicina, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- Programa de Doctorado en Ciencias Odontológicas, Facultad de Odontología, Universidad de los Andes, Santiago, Chile
- Facultad de Odontología, Universidad de los Andes, Santiago, Chile
| | - A. Puigdollers
- Área de Ortodoncia, Facultat Internacional de Catalunya, Barcelona, Spain
| | - I. Guerra
- Facultad de Odontología, Universidad Internacional de Cataluña, Barcelona, Spain
| | - M. Cristina Padilla
- Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Santiago, Chile
- Programa de Doctorado en BioMedicina, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- Laboratorio de Investigación e Ingeniería de Biopolímeros (BiopREL), Universidad de los Andes, Santiago, Chile
- Escuela de Nutrición y Dietética, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - N. Ortega
- Laboratorio de Investigación e Ingeniería de Biopolímeros (BiopREL), Universidad de los Andes, Santiago, Chile
| | - M. J. García
- Facultad de Odontología, Universidad Internacional de Cataluña, Barcelona, Spain
| |
Collapse
|
2
|
Xiang JY, Kang L, Li ZM, Tseng SL, Wang LQ, Li TH, Li ZJ, Huang JZ, Yu NZ, Long X. Biological scaffold as potential platforms for stem cells: Current development and applications in wound healing. World J Stem Cells 2024; 16:334-352. [PMID: 38690516 PMCID: PMC11056631 DOI: 10.4252/wjsc.v16.i4.334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/20/2024] [Accepted: 03/12/2024] [Indexed: 04/25/2024] Open
Abstract
Wound repair is a complex challenge for both clinical practitioners and researchers. Conventional approaches for wound repair have several limitations. Stem cell-based therapy has emerged as a novel strategy to address this issue, exhibiting significant potential for enhancing wound healing rates, improving wound quality, and promoting skin regeneration. However, the use of stem cells in skin regeneration presents several challenges. Recently, stem cells and biomaterials have been identified as crucial components of the wound-healing process. Combination therapy involving the development of biocompatible scaffolds, accompanying cells, multiple biological factors, and structures resembling the natural extracellular matrix (ECM) has gained considerable attention. Biological scaffolds encompass a range of biomaterials that serve as platforms for seeding stem cells, providing them with an environment conducive to growth, similar to that of the ECM. These scaffolds facilitate the delivery and application of stem cells for tissue regeneration and wound healing. This article provides a comprehensive review of the current developments and applications of biological scaffolds for stem cells in wound healing, emphasizing their capacity to facilitate stem cell adhesion, proliferation, differentiation, and paracrine functions. Additionally, we identify the pivotal characteristics of the scaffolds that contribute to enhanced cellular activity.
Collapse
Affiliation(s)
- Jie-Yu Xiang
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Lin Kang
- Biomedical Engineering Facility, Institute of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100021, China
| | - Zi-Ming Li
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Song-Lu Tseng
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Li-Quan Wang
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Tian-Hao Li
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Zhu-Jun Li
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Jiu-Zuo Huang
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Nan-Ze Yu
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Xiao Long
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.
| |
Collapse
|
3
|
Li J, Wang Q, Han Y, Jiang L, Lu S, Wang B, Qian W, Zhu M, Huang H, Qian P. Development and application of nanomaterials, nanotechnology and nanomedicine for treating hematological malignancies. J Hematol Oncol 2023; 16:65. [PMID: 37353849 PMCID: PMC10290401 DOI: 10.1186/s13045-023-01460-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 05/30/2023] [Indexed: 06/25/2023] Open
Abstract
Hematologic malignancies (HMs) pose a serious threat to patients' health and life, and the five-year overall survival of HMs remains low. The lack of understanding of the pathogenesis and the complex clinical symptoms brings immense challenges to the diagnosis and treatment of HMs. Traditional therapeutic strategies for HMs include radiotherapy, chemotherapy, targeted therapy and hematopoietic stem cell transplantation. Although immunotherapy and cell therapy have made considerable progress in the last decade, nearly half of patients still relapse or suffer from drug resistance. Recently, studies have emerged that nanomaterials, nanotechnology and nanomedicine show great promise in cancer therapy by enhancing drug targeting, reducing toxicity and side effects and boosting the immune response to promote durable immunological memory. In this review, we summarized the strategies of recently developed nanomaterials, nanotechnology and nanomedicines against HMs and then proposed emerging strategies for the future designment of nanomedicines to treat HMs based on urgent clinical needs and technological progress.
Collapse
Affiliation(s)
- Jinxin Li
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - Qiwei Wang
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - Yingli Han
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - Lingli Jiang
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - Siqi Lu
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - Beini Wang
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - Wenchang Qian
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - Meng Zhu
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - He Huang
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China.
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China.
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Pengxu Qian
- Center for Stem Cell and Regenerative Medicine and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China.
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China.
| |
Collapse
|
4
|
Sinha A, Simnani FZ, Singh D, Nandi A, Choudhury A, Patel P, Jha E, chouhan RS, Kaushik NK, Mishra YK, Panda PK, Suar M, Verma SK. The translational paradigm of nanobiomaterials: Biological chemistry to modern applications. Mater Today Bio 2022; 17:100463. [PMID: 36310541 PMCID: PMC9615318 DOI: 10.1016/j.mtbio.2022.100463] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/11/2022] Open
Abstract
Recently nanotechnology has evolved as one of the most revolutionary technologies in the world. It has now become a multi-trillion-dollar business that covers the production of physical, chemical, and biological systems at scales ranging from atomic and molecular levels to a wide range of industrial applications, such as electronics, medicine, and cosmetics. Nanobiomaterials synthesis are promising approaches produced from various biological elements be it plants, bacteria, peptides, nucleic acids, etc. Owing to the better biocompatibility and biological approach of synthesis, they have gained immense attention in the biomedical field. Moreover, due to their scaled-down sized property, nanobiomaterials exhibit remarkable features which make them the potential candidate for different domains of tissue engineering, materials science, pharmacology, biosensors, etc. Miscellaneous characterization techniques have been utilized for the characterization of nanobiomaterials. Currently, the commercial transition of nanotechnology from the research level to the industrial level in the form of nano-scaffolds, implants, and biosensors is stimulating the whole biomedical field starting from bio-mimetic nacres to 3D printing, multiple nanofibers like silk fibers functionalizing as drug delivery systems and in cancer therapy. The contribution of single quantum dot nanoparticles in biological tagging typically in the discipline of genomics and proteomics is noteworthy. This review focuses on the diverse emerging applications of Nanobiomaterials and their mechanistic advancements owing to their physiochemical properties leading to the growth of industries on different biomedical measures. Alongside the implementation of such nanobiomaterials in several drug and gene delivery approaches, optical coding, photodynamic cancer therapy, and vapor sensing have been elaborately discussed in this review. Different parameters based on current challenges and future perspectives are also discussed here.
Collapse
Affiliation(s)
- Adrija Sinha
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
| | | | - Dibyangshee Singh
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
| | - Aditya Nandi
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
| | - Anmol Choudhury
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
| | - Paritosh Patel
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897, Seoul, South Korea
| | - Ealisha Jha
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
| | - Raghuraj Singh chouhan
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897, Seoul, South Korea
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alsion 2, 6400, Sønderborg, Denmark
| | - Pritam Kumar Panda
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
| | - Mrutyunjay Suar
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
| | - Suresh K. Verma
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
| |
Collapse
|
5
|
Diez‐Pascual AM, Rahdar A. Functional Nanomaterials in Biomedicine: Current Uses and Potential Applications. ChemMedChem 2022; 17:e202200142. [PMID: 35729066 PMCID: PMC9544115 DOI: 10.1002/cmdc.202200142] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/19/2022] [Indexed: 11/07/2022]
Abstract
Nanomaterials, that is, materials made up of individual units between 1 and 100 nanometers, have lately involved a lot of attention since they offer a lot of potential in many fields, including pharmacy and biomedicine, owed to their exceptional physicochemical properties arising from their high surface area and nanoscale size. Smart engineering of nanostructures through appropriate surface or bulk functionalization endows them with multifunctional capabilities, opening up new possibilities in the biomedical field such as biosensing, drug delivery, imaging, medical implants, cancer treatment and tissue engineering. This article highlights up-to-date research in nanomaterials functionalization for biomedical applications. A summary of the different types of nanomaterials and the surface functionalization strategies is provided. Besides, the use of nanomaterials in diagnostic imaging, drug/gene delivery, regenerative medicine, cancer treatment and medical implants is reviewed. Finally, conclusions and future perspectives are provided.
Collapse
Affiliation(s)
- Ana María Diez‐Pascual
- Universidad de AlcaláDepartamento de Química Analítica Química Física e Ingeniería QuímicaCarretera Madrid-Barcelona Km. 33.628871Alcalá de Henares, MadridSpain
| | - Abbas Rahdar
- Department of PhysicsUniversity of ZabolZabol98613-35856Iran
| |
Collapse
|
6
|
Roacho-Pérez JA, Garza-Treviño EN, Moncada-Saucedo NK, Carriquiry-Chequer PA, Valencia-Gómez LE, Matthews ER, Gómez-Flores V, Simental-Mendía M, Delgado-Gonzalez P, Delgado-Gallegos JL, Padilla-Rivas GR, Islas JF. Artificial Scaffolds in Cardiac Tissue Engineering. Life (Basel) 2022; 12:1117. [PMID: 35892919 PMCID: PMC9331725 DOI: 10.3390/life12081117] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/08/2022] [Accepted: 07/22/2022] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular diseases are a leading cause of death worldwide. Current treatments directed at heart repair have several disadvantages, such as a lack of donors for heart transplantation or non-bioactive inert materials for replacing damaged tissue. Because of the natural lack of regeneration of cardiomyocytes, new treatment strategies involve stimulating heart tissue regeneration. The basic three elements of cardiac tissue engineering (cells, growth factors, and scaffolds) are described in this review, with a highlight on the role of artificial scaffolds. Scaffolds for cardiac tissue engineering are tridimensional porous structures that imitate the extracellular heart matrix, with the ability to promote cell adhesion, migration, differentiation, and proliferation. In the heart, there is an important requirement to provide scaffold cellular attachment, but scaffolds also need to permit mechanical contractility and electrical conductivity. For researchers working in cardiac tissue engineering, there is an important need to choose an adequate artificial scaffold biofabrication technique, as well as the ideal biocompatible biodegradable biomaterial for scaffold construction. Finally, there are many suitable options for researchers to obtain scaffolds that promote cell-electrical interactions and tissue repair, reaching the goal of cardiac tissue engineering.
Collapse
Affiliation(s)
- Jorge A. Roacho-Pérez
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico; (J.A.R.-P.); (E.N.G.-T.); (P.A.C.-C.); (P.D.-G.); (J.L.D.-G.); (G.R.P.-R.)
| | - Elsa N. Garza-Treviño
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico; (J.A.R.-P.); (E.N.G.-T.); (P.A.C.-C.); (P.D.-G.); (J.L.D.-G.); (G.R.P.-R.)
| | - Nidia K. Moncada-Saucedo
- Servicio de Hematología, University Hospital “Dr. José Eleuterio González”, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico;
| | - Pablo A. Carriquiry-Chequer
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico; (J.A.R.-P.); (E.N.G.-T.); (P.A.C.-C.); (P.D.-G.); (J.L.D.-G.); (G.R.P.-R.)
| | - Laura E. Valencia-Gómez
- Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez 32310, Mexico; (L.E.V.-G.); (V.G.-F.)
| | - Elizabeth Renee Matthews
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA;
| | - Víctor Gómez-Flores
- Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez 32310, Mexico; (L.E.V.-G.); (V.G.-F.)
| | - Mario Simental-Mendía
- Orthopedic Trauma Service, University Hospital “Dr. José Eleuterio González”, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico;
| | - Paulina Delgado-Gonzalez
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico; (J.A.R.-P.); (E.N.G.-T.); (P.A.C.-C.); (P.D.-G.); (J.L.D.-G.); (G.R.P.-R.)
| | - Juan Luis Delgado-Gallegos
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico; (J.A.R.-P.); (E.N.G.-T.); (P.A.C.-C.); (P.D.-G.); (J.L.D.-G.); (G.R.P.-R.)
| | - Gerardo R. Padilla-Rivas
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico; (J.A.R.-P.); (E.N.G.-T.); (P.A.C.-C.); (P.D.-G.); (J.L.D.-G.); (G.R.P.-R.)
| | - Jose Francisco Islas
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico; (J.A.R.-P.); (E.N.G.-T.); (P.A.C.-C.); (P.D.-G.); (J.L.D.-G.); (G.R.P.-R.)
| |
Collapse
|
7
|
Díez-Pascual AM. Surface Engineering of Nanomaterials with Polymers, Biomolecules, and Small Ligands for Nanomedicine. MATERIALS (BASEL, SWITZERLAND) 2022; 15:3251. [PMID: 35591584 PMCID: PMC9104878 DOI: 10.3390/ma15093251] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 11/18/2022]
Abstract
Nanomedicine is a speedily growing area of medical research that is focused on developing nanomaterials for the prevention, diagnosis, and treatment of diseases. Nanomaterials with unique physicochemical properties have recently attracted a lot of attention since they offer a lot of potential in biomedical research. Novel generations of engineered nanostructures, also known as designed and functionalized nanomaterials, have opened up new possibilities in the applications of biomedical approaches such as biological imaging, biomolecular sensing, medical devices, drug delivery, and therapy. Polymers, natural biomolecules, or synthetic ligands can interact physically or chemically with nanomaterials to functionalize them for targeted uses. This paper reviews current research in nanotechnology, with a focus on nanomaterial functionalization for medical applications. Firstly, a brief overview of the different types of nanomaterials and the strategies for their surface functionalization is offered. Secondly, different types of functionalized nanomaterials are reviewed. Then, their potential cytotoxicity and cost-effectiveness are discussed. Finally, their use in diverse fields is examined in detail, including cancer treatment, tissue engineering, drug/gene delivery, and medical implants.
Collapse
Affiliation(s)
- Ana M Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona, Km. 33.6, 28805 Alcalá de Henares, Madrid, Spain
| |
Collapse
|
8
|
Liu X, Yu K, Cheng S, Ren T, Maitusong M, Liu F, Chen J, Qian Y, Xu D, Zhu G, Fang J, Cao N, Wang J. Ulvan mediated VE cadherin antibody and REDV peptide co-modification to improve endothelialization potential of bioprosthetic heart valves. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 128:112337. [PMID: 34474888 DOI: 10.1016/j.msec.2021.112337] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/29/2021] [Accepted: 07/22/2021] [Indexed: 12/20/2022]
Abstract
An aging population and a rapid increase in the incidence of degenerative valve diseases have led to greater use of bioprosthetic heart valves (BHVs). The durability of glutaraldehyde cross-linked bioprostheses currently available for clinical use is poor due to calcification, coagulation, and degradation. Decellularization can partially reduce calcification by removal of xenogenic cells, but can also lead to thrombosis, which can be addressed by further surface modification. The natural sulfated polysaccharide ulvan possesses antithrombotic and anti-inflammatory properties, and can behave as a heparinoid to immobilize proteins through their heparin binding sites. VE-cadherin antibody and the Arg-Glu-Asp-Val (REDV) peptide can facilitate selective endothelial cell attachment, adhesion and proliferation. In this study, we functionalized decellularized porcine pericardium (DPP) with ulvan, REDV, and VE-cadherin antibody (U-R-VE). Ulvan was covalently modified to act as a protective coating and spacer for VE-cadherin antibody, and to immobilize REDV. In in vitro tests, we found that functionalization significantly and selectively promoted adhesion and growth of endothelial cells while reducing platelet adhesion, inflammation, and in vitro calcification of DPPs. In an in vivo subdermal implantation model, U-R-VE modified DPP exhibited greater endothelialization potential and biocompatibility compared with unmodified pericardium. Thus, U-R-VE modification provides a promising solution to the problem of preparing BHVs with enhanced endothelialization potential.
Collapse
Affiliation(s)
- Xianbao Liu
- Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, PR China
| | - Kaixiang Yu
- Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, PR China
| | - Si Cheng
- Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, PR China
| | - Tanchen Ren
- Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, PR China
| | - Miribani Maitusong
- Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, PR China
| | - Feng Liu
- Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, PR China
| | - Jinyong Chen
- Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, PR China
| | - Yi Qian
- Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, PR China
| | - Dilin Xu
- Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, PR China
| | - Gangjie Zhu
- Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, PR China
| | - Juan Fang
- Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, PR China
| | - Naifang Cao
- Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, PR China
| | - Jian'an Wang
- Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, PR China.
| |
Collapse
|
9
|
Sharma B, Sharma S, Jain P. Leveraging advances in chemistry to design biodegradable polymeric implants using chitosan and other biomaterials. Int J Biol Macromol 2020; 169:414-427. [PMID: 33352152 DOI: 10.1016/j.ijbiomac.2020.12.112] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/31/2020] [Accepted: 12/15/2020] [Indexed: 01/28/2023]
Abstract
The metamorphosis of biodegradable polymers in biomedical applications is an auspicious myriad of indagation. The utmost challenge in clinical conditions includes trauma, organs failure, soft and hard tissues, infection, cancer and inflammation, congenital disorders which are still not medicated efficiently. To overcome this bone of contention, proliferation in the concatenation of biodegradable materials for clinical applications has emerged as a silver bullet owing to eco-friendly, nontoxicity, exorbitant mechanical properties, cost efficiency, and degradability. Several bioimplants are designed and fabricated in a way to reabsorb or degrade inside the body after performing the specific function rather than eliminating the bioimplants. The objective of this comprehensive is to unfurl the anecdote of emerging biological polymers derived implants including silk, lignin, soy, collagen, gelatin, chitosan, alginate, starch, etc. by explicating the selection, fabrication, properties, and applications. Into the bargain, emphasis on the significant characteristics of current discernment and purview of nanotechnology integrated biopolymeric implants has also been expounded. This robust contrivance shed light on recent inclinations and evolution in tissue regeneration and targeting organs followed by precedency and fly in the ointment concerning biodegradable implants evolved by employing fringe benefits provided by 3D printing technology for building tissues or organs construct for implantation.
Collapse
Affiliation(s)
- Bhasha Sharma
- Department of Chemistry, Netaji Subhas University of Technology, Dwarka Sec-2, Delhi, India.
| | - Shreya Sharma
- Department of Chemistry, Netaji Subhas University of Technology, Dwarka Sec-2, Delhi, India
| | - Purnima Jain
- Department of Chemistry, Netaji Subhas University of Technology, Dwarka Sec-2, Delhi, India
| |
Collapse
|
10
|
Hagen MW, Hinds MT. The Effects of Topographic Micropatterning on Endothelial Colony-Forming Cells. Tissue Eng Part A 2020; 27:270-281. [PMID: 32600119 DOI: 10.1089/ten.tea.2020.0066] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Artificial small-diameter vascular grafts remain an unmet need in modern medicine, due to the thrombosis and neointimal hyperplasia that plague currently available synthetic devices. Tissue engineering techniques, including in vitro endothelialization, could offer a solution to this problem. A potential minimally invasive source of patient autologous endothelium is endothelial colony-forming cells (ECFCs), endothelial-like outgrowth products of circulating progenitors. While ECFCs respond to shear stress similar to mature endothelial cells (ECs), their response to luminal topographic micropatterning (TMP), a biomaterial modification with the potential to flow-independently, enhance the attachment, migration, gene expression, and function of mature ECs, remains unstudied. In this study, case-matched carotid endothelial cells (CaECs) and blood-derived ECFCs are statically cultured on polyurethane substrates with micropatterned pitches (pitch = peak to peak distance) ranging from 3-to 14 μm. On all pattern pitches tested, both CaECs and ECFCs showed significant and robust alignment to the angle of the micropatterns. Using a novel cell-by-cell image analysis technique, it was found that actin fibers similarly and significantly aligned to the angle of micropatterned features on all pitches tested. Microtubules analyzed through the same novel approach showed significant alignment on most pitches examined, with a greater variation in fiber angle overall. Interestingly, only CaECs showed significant cellular elongation, and notably to a lower degree than previously seen either in vivo due to flow or in vitro due to spatial growth restriction micropatterning, but consistent with earlier studies of TMP. Neither cell type displayed any significant micropattern-driven changes in the expression of KLF-2 or the downstream adhesion molecules it regulates. These results demonstrate that TMP flow-independently affects ECFC morphology, but that alignment alone is insufficient to drive protective changes in EC and ECFC function.
Collapse
Affiliation(s)
- Matthew W Hagen
- Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon, USA.,Work was performed at Oregon Health and Science University, Portland, Oregon, USA
| | - Monica T Hinds
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, Oregon, USA.,Work was performed at Oregon Health and Science University, Portland, Oregon, USA
| |
Collapse
|
11
|
Ishihara K, Ito M, Fukazawa K, Inoue Y. Interface of Phospholipid Polymer Grafting Layers to Analyze Functions of Immobilized Oligopeptides Involved in Cell Adhesion. ACS Biomater Sci Eng 2020; 6:3984-3993. [PMID: 33463330 DOI: 10.1021/acsbiomaterials.0c00518] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The aim of this study was to design a material surface for use in the analysis of the behavior of biomolecules at the interface of direct cell contact. A superhydrophilic surface was prepared with poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC), which was grafted onto a substrate with controlled polymer chain density. An arginine-glycine-aspartic acid (RGD) peptide was immobilized at the surface of the polymer graft surface (PMPC-RGD surface). Initial adhesion of the cells to this substrate was observed. The PMPC-RGD surface could enable cell adhesion only through RGD peptide-integrin interactions. The density and movability of the RGD peptide at the terminal of the graft PMPC chain and the orientation of the RGD peptide affected the density of adherent cells. Thus, the PMPC graft surface may be a good candidate for a new platform with the ability to immobilize biomolecules to a defined position and enable accurate analysis of their effects on cells.
Collapse
|
12
|
El Khatib M, Mauro A, Wyrwa R, Di Mattia M, Turriani M, Di Giacinto O, Kretzschmar B, Seemann T, Valbonetti L, Berardinelli P, Schnabelrauch M, Barboni B, Russo V. Fabrication and Plasma Surface Activation of Aligned Electrospun PLGA Fiber Fleeces with Improved Adhesion and Infiltration of Amniotic Epithelial Stem Cells Maintaining their Teno-inductive Potential. Molecules 2020; 25:E3176. [PMID: 32664582 PMCID: PMC7396982 DOI: 10.3390/molecules25143176] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/06/2020] [Accepted: 07/09/2020] [Indexed: 02/06/2023] Open
Abstract
Electrospun PLGA microfibers with adequate intrinsic physical features (fiber alignment and diameter) have been shown to boost teno-differentiation and may represent a promising solution for tendon tissue engineering. However, the hydrophobic properties of PLGA may be adjusted through specific treatments to improve cell biodisponibility. In this study, electrospun PLGA with highly aligned microfibers were cold atmospheric plasma (CAP)-treated by varying the treatment exposure time (30, 60, and 90 s) and the working distance (1.3 and 1.7 cm) and characterized by their physicochemical, mechanical and bioactive properties on ovine amniotic epithelial cells (oAECs). CAP improved the hydrophilic properties of the treated materials due to the incorporation of new oxygen polar functionalities on the microfibers' surface especially when increasing treatment exposure time and lowering working distance. The mechanical properties, though, were affected by the treatment exposure time where the optimum performance was obtained after 60 s. Furthermore, CAP treatment did not alter oAECs' biocompatibility and improved cell adhesion and infiltration onto the microfibers especially those treated from a distance of 1.3 cm. Moreover, teno-inductive potential of highly aligned PLGA electrospun microfibers was maintained. Indeed, cells cultured onto the untreated and CAP treated microfibers differentiated towards the tenogenic lineage expressing tenomodulin, a mature tendon marker, in their cytoplasm. In conclusion, CAP treatment on PLGA microfibers conducted at 1.3 cm working distance represent the optimum conditions to activate PLGA surface by improving their hydrophilicity and cell bio-responsiveness. Since for tendon tissue engineering purposes, both high cell adhesion and mechanical parameters are crucial, PLGA treated for 60 s at 1.3 cm was identified as the optimal construct.
Collapse
Affiliation(s)
- Mohammad El Khatib
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (M.E.K.); (M.D.M.); (M.T.); (O.D.G.); (L.V.); (P.B.); (B.B.); (V.R.)
| | - Annunziata Mauro
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (M.E.K.); (M.D.M.); (M.T.); (O.D.G.); (L.V.); (P.B.); (B.B.); (V.R.)
| | - Ralf Wyrwa
- Department of Biomaterials, INNOVENT e. V., 07745 Jena, Germany; (R.W.); (M.S.)
| | - Miriam Di Mattia
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (M.E.K.); (M.D.M.); (M.T.); (O.D.G.); (L.V.); (P.B.); (B.B.); (V.R.)
| | - Maura Turriani
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (M.E.K.); (M.D.M.); (M.T.); (O.D.G.); (L.V.); (P.B.); (B.B.); (V.R.)
| | - Oriana Di Giacinto
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (M.E.K.); (M.D.M.); (M.T.); (O.D.G.); (L.V.); (P.B.); (B.B.); (V.R.)
| | - Björn Kretzschmar
- Department of Surface Engineering, INNOVENT e. V., 07745 Jena, Germany; (B.K.); (T.S.)
| | - Thomas Seemann
- Department of Surface Engineering, INNOVENT e. V., 07745 Jena, Germany; (B.K.); (T.S.)
| | - Luca Valbonetti
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (M.E.K.); (M.D.M.); (M.T.); (O.D.G.); (L.V.); (P.B.); (B.B.); (V.R.)
| | - Paolo Berardinelli
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (M.E.K.); (M.D.M.); (M.T.); (O.D.G.); (L.V.); (P.B.); (B.B.); (V.R.)
| | | | - Barbara Barboni
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (M.E.K.); (M.D.M.); (M.T.); (O.D.G.); (L.V.); (P.B.); (B.B.); (V.R.)
| | - Valentina Russo
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (M.E.K.); (M.D.M.); (M.T.); (O.D.G.); (L.V.); (P.B.); (B.B.); (V.R.)
| |
Collapse
|
13
|
Shende P, Gandhewar N. Current Trend and Pro-survival Approaches for Augmenting Stem Cell Viability. Curr Pharm Biotechnol 2020; 21:1154-1164. [PMID: 32297579 DOI: 10.2174/1389201021666200416130253] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/28/2020] [Accepted: 03/02/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Stem cells are of two types: embryonic and adult stem cells and they act as a repair system by replenishing body tissue. Stem cells differentiate into different types of cells, such as neural, hematopoietic, adipose, etc. and are used for the treatment of various conditions like myocardial infarction, spinal cord injury, Parkinson's disease and diabetes. METHODS This article focuses on recent research development that addresses the viability issues of stem cells. The efficiency of transplanted stem cells reduces due to conditions like hypoxia, inflammation, nutrient deprivation, immunogenicity, extracellular matrix loss on delivery and mechanical stress. RESULTS To increase the viability of stem cells, techniques like scaffolds of stem cells with hydrogel or alginate, pre-conditioning, different routes of administration and encapsulation, are implemented. CONCLUSION For the protection of stem cells against apoptosis, different pathways, namely Phosphoinositide 3-Kinase (PI3K/AKT), Hypoxia-Inducible Factor (HIF1), Mitogen-Activated Protein Kinases (MAPK) and Hippo, are discussed. DISCUSSION Activation of the PI3K/AKT pathway decreases the concentration of apoptotic factors, while the HIF pathway protects stem cells against the micro-environment of tissue (hypoxia).
Collapse
Affiliation(s)
- Pravin Shende
- Shobhaben Pratapbhai Patel School Pharmacy and Technology Management SVKM'S NMIMS, V.L Mehta Road, Vile Parle(W), Mumbai, India
| | - Nivedita Gandhewar
- Shobhaben Pratapbhai Patel School Pharmacy and Technology Management SVKM'S NMIMS, V.L Mehta Road, Vile Parle(W), Mumbai, India
| |
Collapse
|
14
|
Blanco-Elices C, España-Guerrero E, Mateu-Sanz M, Sánchez-Porras D, García-García ÓD, Sánchez-Quevedo MDC, Fernández-Valadés R, Alaminos M, Martín-Piedra MÁ, Garzón I. In Vitro Generation of Novel Functionalized Biomaterials for Use in Oral and Dental Regenerative Medicine Applications. Running Title: Fibrin-Agarose Functionalized Scaffolds. MATERIALS 2020; 13:ma13071692. [PMID: 32260417 PMCID: PMC7178710 DOI: 10.3390/ma13071692] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/28/2020] [Accepted: 04/01/2020] [Indexed: 12/26/2022]
Abstract
Recent advances in tissue engineering offer innovative clinical alternatives in dentistry and regenerative medicine. Tissue engineering combines human cells with compatible biomaterials to induce tissue regeneration. Shortening the fabrication time of biomaterials used in tissue engineering will contribute to treatment improvement, and biomaterial functionalization can be exploited to enhance scaffold properties. In this work, we have tested an alternative biofabrication method by directly including human oral mucosa tissue explants within the biomaterial for the generation of human bioengineered mouth and dental tissues for use in tissue engineering. To achieve this, acellular fibrin-agarose scaffolds (AFAS), non-functionalized fibrin-agarose oral mucosa stroma substitutes (n-FAOM), and novel functionalized fibrin-agarose oral mucosa stroma substitutes (F-FAOM) were developed and analyzed after 1, 2, and 3 weeks of in vitro development to determine extracellular matrix components as compared to native oral mucosa controls by using histochemistry and immunohistochemistry. Results demonstrate that functionalization speeds up the biofabrication method and contributes to improve the biomimetic characteristics of the scaffold in terms of extracellular matrix components and reduce the time required for in vitro tissue development.
Collapse
Affiliation(s)
- Cristina Blanco-Elices
- Department of Histology (Tissue Engineering Group), University of Granada, 18071 Granada, Spain; (C.B.-E.); (M.M.-S.); (D.S.-P.); (Ó.D.G.-G.); (M.d.C.S.-Q.); (R.F.-V.); (M.A.)
| | - Enrique España-Guerrero
- Programa de doctorado Medicina Clínica y Salud Pública, University of Granada, 18071 Granada, Spain;
| | - Miguel Mateu-Sanz
- Department of Histology (Tissue Engineering Group), University of Granada, 18071 Granada, Spain; (C.B.-E.); (M.M.-S.); (D.S.-P.); (Ó.D.G.-G.); (M.d.C.S.-Q.); (R.F.-V.); (M.A.)
- Department Materials Science and Metallurgy (Biomaterials, Biomechanics and Tissue Engineering Group), Technical University of Catalonia, 08019 Barcelona, Spain
| | - David Sánchez-Porras
- Department of Histology (Tissue Engineering Group), University of Granada, 18071 Granada, Spain; (C.B.-E.); (M.M.-S.); (D.S.-P.); (Ó.D.G.-G.); (M.d.C.S.-Q.); (R.F.-V.); (M.A.)
| | - Óscar Darío García-García
- Department of Histology (Tissue Engineering Group), University of Granada, 18071 Granada, Spain; (C.B.-E.); (M.M.-S.); (D.S.-P.); (Ó.D.G.-G.); (M.d.C.S.-Q.); (R.F.-V.); (M.A.)
| | - María del Carmen Sánchez-Quevedo
- Department of Histology (Tissue Engineering Group), University of Granada, 18071 Granada, Spain; (C.B.-E.); (M.M.-S.); (D.S.-P.); (Ó.D.G.-G.); (M.d.C.S.-Q.); (R.F.-V.); (M.A.)
| | - Ricardo Fernández-Valadés
- Department of Histology (Tissue Engineering Group), University of Granada, 18071 Granada, Spain; (C.B.-E.); (M.M.-S.); (D.S.-P.); (Ó.D.G.-G.); (M.d.C.S.-Q.); (R.F.-V.); (M.A.)
| | - Miguel Alaminos
- Department of Histology (Tissue Engineering Group), University of Granada, 18071 Granada, Spain; (C.B.-E.); (M.M.-S.); (D.S.-P.); (Ó.D.G.-G.); (M.d.C.S.-Q.); (R.F.-V.); (M.A.)
| | - Miguel Ángel Martín-Piedra
- Department of Histology (Tissue Engineering Group), University of Granada, 18071 Granada, Spain; (C.B.-E.); (M.M.-S.); (D.S.-P.); (Ó.D.G.-G.); (M.d.C.S.-Q.); (R.F.-V.); (M.A.)
- Correspondence:
| | - Ingrid Garzón
- Department of Histology, Faculty of Medicine, University of Granada, Avenida de la Investigación 11, E18016, 18071 Granada, Granada, Spain;
| |
Collapse
|
15
|
3D printing of biopolymer nanocomposites for tissue engineering: Nanomaterials, processing and structure-function relation. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.109340] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
16
|
Jana S. Endothelialization of cardiovascular devices. Acta Biomater 2019; 99:53-71. [PMID: 31454565 DOI: 10.1016/j.actbio.2019.08.042] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/19/2019] [Accepted: 08/22/2019] [Indexed: 01/10/2023]
Abstract
Blood-contacting surfaces of cardiovascular devices are not biocompatible for creating an endothelial layer on them. Numerous research studies have mainly sought to modify these surfaces through physical, chemical and biological means to ease early endothelial cell (EC) adhesion, migration and proliferation, and eventually to build an endothelial layer on the surfaces. The first priority for surface modification is inhibition of protein adsorption that leads to inhibition of platelet adhesion to the device surfaces, which may favor EC adhesion. Surface modification through surface texturing, if applicable, can bring some hopeful outcomes in this regard. Surface modifications through chemical and/or biological means may play a significant role in easy endothelialization of cardiovascular devices and inhibit smooth muscle cell proliferation. Cellular engineering of cells relevant to endothelialization can boost the positive outcomes obtained through surface engineering. This review briefly summarizes recent developments and research in early endothelialization of cardiovascular devices. STATEMENT OF SIGNIFICANCE: Endothelialization of cardiovascular implants, including heart valves, vascular stents and vascular grafts is crucial to solve many problems in our health care system. Numerous research efforts have been made to improve endothelialization on the surfaces of cardiovascular implants, mainly through surface modifications in three ways - physically, chemically and biologically. This review is intended to highlight comprehensive research studies to date on surface modifications aiming for early endothelialization on the blood-contacting surfaces of cardiovascular implants. It also discusses future perspectives to help guide endothelialization strategies and inspire further innovations.
Collapse
Affiliation(s)
- Soumen Jana
- Department of Bioengineering, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
17
|
Onak G, Karaman O. Accelerated mineralization on nanofibers via non-thermal atmospheric plasma assisted glutamic acid templated peptide conjugation. Regen Biomater 2019; 6:231-240. [PMID: 31404337 PMCID: PMC6683955 DOI: 10.1093/rb/rbz014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 02/14/2019] [Accepted: 03/11/2019] [Indexed: 12/25/2022] Open
Abstract
Surface modification by non-thermal atmospheric plasma (NTAP) treatment can produce significantly higher carboxylic groups on the nanofibers (NF) surface, which potentially can increase biomineralization of NF via promoting glutamic acid (GLU) templated peptide conjugation. Herein, electrospun poly(lactide-co-glycolide) (PLGA) scaffolds were treated with NTAP and conjugated with GLU peptide followed by incubation in simulated body fluids for mineralization. The effect of NTAP treatment and GLU peptide conjugation on mineralization, surface wettability and roughness were investigated. The results showed that NTAP treatment significantly increased GLU peptide conjugation which consequently enhanced mineralization and mechanical properties of NTAP treated and peptide conjugated NF (GLU-pNF) compared to neat PLGA NF, NTAP treated NF (pNF) and GLU peptide conjugated NF (GLU-NF). The effect of surface modification on human bone marrow derived mesenchymal stem cells adhesion, proliferation and morphology was evaluated by cell proliferation assay and fluorescent microscopy. Results demonstrated that cellular adhesion and proliferation were significantly higher on GLU-pNF compared to NF, pNF and GLU-NF. In summary, NTAP treatment could be a promising modification technique to induce biomimetic peptide conjugation and biomineralization for bone tissue engineering applications.
Collapse
Affiliation(s)
- Günnur Onak
- Tissue Engineering and Regenerative Medicine Laboratory, Department of Biomedical Engineering, İzmir Katip Çelebi University, İzmir, Turkey
| | - Ozan Karaman
- Tissue Engineering and Regenerative Medicine Laboratory, Department of Biomedical Engineering, İzmir Katip Çelebi University, İzmir, Turkey
- Bonegraft Biomaterials Co., Ege University Technopolis, Bornova, İzmir, Turkey
| |
Collapse
|
18
|
Abstract
Stem cell therapy is a promising alternative approach to the treatment of a number of incurable degenerative diseases. However, low cell retention and survival after transplantation limit the therapeutic efficacy of stem cells for clinical translational applications. The utilization of biomaterials has been progressively successful in controlling the fate of transplanted cells by imitating the cellular microenvironment for optimal tissue repair and regeneration. This review mainly focuses on the engineered microenvironments with synthetic biomaterials in modification of stem cell behaviors. Moreover, the possible advancements in translational therapy by using biomaterials with stem cells are prospected and the challenges of the current restriction in clinical applications are highlighted.
Collapse
|
19
|
Zhou X, Tao Y, Chen E, Wang J, Fang W, Zhao T, Liang C, Li F, Chen Q. Genipin-cross-linked type II collagen scaffold promotes the differentiation of adipose-derived stem cells into nucleus pulposus-like cells. J Biomed Mater Res A 2018; 106:1258-1268. [PMID: 29314724 DOI: 10.1002/jbm.a.36325] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 12/06/2017] [Accepted: 12/21/2017] [Indexed: 12/28/2022]
Affiliation(s)
- Xiaopeng Zhou
- Department of Orthopedics Surgery; 2nd Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road; Hangzhou Zhejiang 310009 People's Republic of China
- Department of Orthopedics, Research Institute of Zhejiang University; Hangzhou Zhejiang People's Republic of China
| | - Yiqing Tao
- Department of Orthopedics Surgery; 2nd Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road; Hangzhou Zhejiang 310009 People's Republic of China
- Department of Orthopedics, Research Institute of Zhejiang University; Hangzhou Zhejiang People's Republic of China
| | - Erman Chen
- Department of Orthopedics Surgery; 2nd Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road; Hangzhou Zhejiang 310009 People's Republic of China
- Department of Orthopedics, Research Institute of Zhejiang University; Hangzhou Zhejiang People's Republic of China
| | - Jingkai Wang
- Department of Orthopedics Surgery; 2nd Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road; Hangzhou Zhejiang 310009 People's Republic of China
- Department of Orthopedics, Research Institute of Zhejiang University; Hangzhou Zhejiang People's Republic of China
| | - Weijing Fang
- Department of Orthopedics Surgery; 2nd Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road; Hangzhou Zhejiang 310009 People's Republic of China
- Department of Orthopedics, Research Institute of Zhejiang University; Hangzhou Zhejiang People's Republic of China
| | - Tengfei Zhao
- Department of Orthopedics Surgery; 2nd Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road; Hangzhou Zhejiang 310009 People's Republic of China
- Department of Orthopedics, Research Institute of Zhejiang University; Hangzhou Zhejiang People's Republic of China
| | - Chengzhen Liang
- Department of Orthopedics Surgery; 2nd Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road; Hangzhou Zhejiang 310009 People's Republic of China
- Department of Orthopedics, Research Institute of Zhejiang University; Hangzhou Zhejiang People's Republic of China
| | - Fangcai Li
- Department of Orthopedics Surgery; 2nd Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road; Hangzhou Zhejiang 310009 People's Republic of China
- Department of Orthopedics, Research Institute of Zhejiang University; Hangzhou Zhejiang People's Republic of China
| | - Qixin Chen
- Department of Orthopedics Surgery; 2nd Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road; Hangzhou Zhejiang 310009 People's Republic of China
- Department of Orthopedics, Research Institute of Zhejiang University; Hangzhou Zhejiang People's Republic of China
| |
Collapse
|
20
|
Muslimov AR, Timin AS, Petrova AV, Epifanovskaya OS, Shakirova AI, Lepik KV, Gorshkov A, Il'inskaja EV, Vasin AV, Afanasyev BV, Fehse B, Sukhorukov GB. Mesenchymal Stem Cells Engineering: Microcapsules-Assisted Gene Transfection and Magnetic Cell Separation. ACS Biomater Sci Eng 2017; 3:2314-2324. [PMID: 33445290 DOI: 10.1021/acsbiomaterials.7b00482] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Stem cell engineering-the manipulation and functionalization of stem cells involving genetic modification-can significantly expand their applicability for cell therapy in humans. Toward this aim, reliable, standardized, and cost-effective methods for cell manipulation are required. Here we explore the potential of magnetic multilayer capsules to serve as a universal platform for nonviral gene transfer, stem cell magnetization, and magnetic cell separation to improve gene transfer efficiency. In particular, the following experiments were performed: (i) a study of the process of internalization of magnetic capsules into stem cells, including capsule co-localization with established markers of endo-lysosomal pathway; (ii) characterization and quantification of capsule uptake with confocal microscopy, electron microscopy, and flow cytometry; (iii) intracellular delivery of messenger RNA and separation of gene-modified cells by magnetic cell sorting (MACS); and (iv) analysis of the influence of capsules on cell proliferation potential. Importantly, based on the internalization of magnetic capsules, transfected cells became susceptible to external magnetic fields, which made it easy to enrich gene-modified cells using MACS (purity ∼95%), and also to influence their migration behavior. In summary, our results underline the high potential of magnetic capsules in stem cell functionalization, namely (i) to increase gene-transfer efficiency and (ii) to facilitate enrichment and targeting of transfected cells. Finally, we did not observe a negative impact of the capsules used on the proliferative capacity of stem cells, proving their high biocompatibility.
Collapse
Affiliation(s)
- Albert R Muslimov
- First Pavlov State Medical University of St. Petersburg, Lev Tolstoy str., 6/8, 197022 St. Petersburg, Russian Federation.,Research Institute of Influenza, Popova str., 15/17, 197376 Saint-Petersburg, Russian Federation.,RASA center in St. Petersburg, Peter The Great St. Petersburg Polytechnic University, Polytechnicheskaya, 29, 195251 St. Petersburg, Russian Federation
| | - Alexander S Timin
- First Pavlov State Medical University of St. Petersburg, Lev Tolstoy str., 6/8, 197022 St. Petersburg, Russian Federation.,RASA Center in Tomsk, Tomsk Polytechnic University, pros. Lenina, 30, 634050 Tomsk, Russian Federation
| | - Aleksandra V Petrova
- Research Institute of Influenza, Popova str., 15/17, 197376 Saint-Petersburg, Russian Federation.,Department of Molecular Biology, Peter The Great St. Petersburg Polytechnic University, Polytechnicheskaya, 29, 195251 St. Petersburg, Russian Federation
| | - Olga S Epifanovskaya
- First Pavlov State Medical University of St. Petersburg, Lev Tolstoy str., 6/8, 197022 St. Petersburg, Russian Federation
| | - Alena I Shakirova
- First Pavlov State Medical University of St. Petersburg, Lev Tolstoy str., 6/8, 197022 St. Petersburg, Russian Federation
| | - Kirill V Lepik
- First Pavlov State Medical University of St. Petersburg, Lev Tolstoy str., 6/8, 197022 St. Petersburg, Russian Federation.,RASA center in St. Petersburg, Peter The Great St. Petersburg Polytechnic University, Polytechnicheskaya, 29, 195251 St. Petersburg, Russian Federation
| | - Andrey Gorshkov
- Research Institute of Influenza, Popova str., 15/17, 197376 Saint-Petersburg, Russian Federation
| | - Eugenia V Il'inskaja
- Research Institute of Influenza, Popova str., 15/17, 197376 Saint-Petersburg, Russian Federation
| | - Andrey V Vasin
- Research Institute of Influenza, Popova str., 15/17, 197376 Saint-Petersburg, Russian Federation.,Department of Molecular Biology, Peter The Great St. Petersburg Polytechnic University, Polytechnicheskaya, 29, 195251 St. Petersburg, Russian Federation
| | - Boris V Afanasyev
- First Pavlov State Medical University of St. Petersburg, Lev Tolstoy str., 6/8, 197022 St. Petersburg, Russian Federation
| | - Boris Fehse
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, 20246, Martinistraße 52, 20251 Hamburg, Germany
| | - Gleb B Sukhorukov
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| |
Collapse
|
21
|
Macgregor M, Williams R, Downes J, Bachhuka A, Vasilev K. The Role of Controlled Surface Topography and Chemistry on Mouse Embryonic Stem Cell Attachment, Growth and Self-Renewal. MATERIALS (BASEL, SWITZERLAND) 2017; 10:E1081. [PMID: 28906470 PMCID: PMC5615735 DOI: 10.3390/ma10091081] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 09/12/2017] [Accepted: 09/12/2017] [Indexed: 12/17/2022]
Abstract
The success of stem cell therapies relies heavily on our ability to control their fate in vitro during expansion to ensure an appropriate supply. The biophysical properties of the cell culture environment have been recognised as a potent stimuli influencing cellular behaviour. In this work we used advanced plasma-based techniques to generate model culture substrates with controlled nanotopographical features of 16 nm, 38 nm and 68 nm in magnitude, and three differently tailored surface chemical functionalities. The effect of these two surface properties on the adhesion, spreading, and self-renewal of mouse embryonic stem cells (mESCs) were assessed. The results demonstrated that physical and chemical cues influenced the behaviour of these stem cells in in vitro culture in different ways. The size of the nanotopographical features impacted on the cell adhesion, spreading and proliferation, while the chemistry influenced the cell self-renewal and differentiation.
Collapse
Affiliation(s)
- Melanie Macgregor
- School of Engineering, Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia.
| | - Rachel Williams
- Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L7 8TX, UK.
| | - Joni Downes
- Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool L7 8TX, UK.
| | - Akash Bachhuka
- Institute for Photonics and Advanced Sensing, University of Adelaide, Adelaide, SA 5000, Australia.
| | - Krasimir Vasilev
- School of Engineering, Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia.
| |
Collapse
|
22
|
Golda-Cepa M, Kulig W, Cwiklik L, Kotarba A. Molecular Dynamics Insights into Water-Parylene C Interface: Relevance of Oxygen Plasma Treatment for Biocompatibility. ACS APPLIED MATERIALS & INTERFACES 2017; 9:16685-16693. [PMID: 28459527 DOI: 10.1021/acsami.7b03265] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Solid-water interfaces play a vital role in biomaterials science because they provide a natural playground for most biochemical reactions and physiological processes. In the study, fully atomistic molecular dynamics simulations were performed to investigate interactions between water molecules and several surfaces modeling for unmodified and modified parylene C surfaces. The introduction of -OH, -CHO, and -COOH to the surface and alterations in their coverage significantly influence the energetics of interactions between water molecules and the polymer surface. The theoretical studies were complemented with experimental measurements of contact angle, surface free energy, and imaging of osteoblast cells adhesion. Both MD simulations and experiments demonstrate that the optimal interface, in terms of biocompatibility, is obtained when 60% of native -Cl groups of parylene C surface is exchanged for -OH groups. By exploring idealized models of bare and functionalized parylene C, we obtained a unique insight into molecular interactions at the water-polymer interface. The calculated values of interaction energy components (electrostatic and dispersive) correspond well with the experimentally determined values of surface free energy components (polar and dispersive), revealing their optimal ratio for cells adhesion. The results are discussed in the context of controllable tuning and functionalization of implant polymeric coating toward improved biocompatibility.
Collapse
Affiliation(s)
- Monika Golda-Cepa
- Faculty of Chemistry, Jagiellonian University , Ingardena 3, 30-060 Krakow, Poland
| | - Waldemar Kulig
- Department of Physics, University of Helsinki , P.O. Box 64, FI-00014 Helsinki, Finland
- Department of Physics, Tampere University of Technology , P.O. Box 692, FI- 33101 Tampere, Finland
| | - Lukasz Cwiklik
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences , Dolejškova 3, Prague 18223, Czech Republic
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences , Flemingovo nám. 2, Prague 16610, Czech Republic
| | - Andrzej Kotarba
- Faculty of Chemistry, Jagiellonian University , Ingardena 3, 30-060 Krakow, Poland
| |
Collapse
|