1
|
Algae processing by plasma discharge technology: A review. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.102983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
2
|
Hao F, Li X, Wang J, Li R, Zou L, Wang K, Chen F, Shi F, Yang H, Wang W, Tian M. Separation of Bioproducts through the Integration of Cyanobacterial Metabolism and Membrane Filtration: Facilitating Cyanobacteria's Industrial Application. MEMBRANES 2022; 12:963. [PMID: 36295722 PMCID: PMC9611232 DOI: 10.3390/membranes12100963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/10/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
In this work, we propose the development of an efficient, economical, automated, and sustainable method for separating bioproducts from culture medium via the integration of a sucrose-secreting cyanobacteria production process and pressure-driven membrane filtration technology. Firstly, we constructed sucrose-secreting cyanobacteria with a sucrose yield of 600-700 mg/L sucrose after 7 days of salt stress, and the produced sucrose could be fully separated from the cyanobacteria cultures through an efficient and automated membrane filtration process. To determine whether this new method is also economical and sustainable, the relationship between membrane species, operating pressure, and the growth status of four cyanobacterial species was systematically investigated. The results revealed that all four cyanobacterial species could continue to grow after UF filtration. The field emission scanning electron microscopy and confocal laser scanning microscopy results indicate that the cyanobacteria did not cause severe destruction to the membrane surface structure. The good cell viability and intact membrane surface observed after filtration indicated that this innovative cyanobacteria-membrane system is economical and sustainable. This work pioneered the use of membrane separation to achieve the in situ separation of cyanobacterial culture and target products, laying the foundation for the industrialization of cyanobacterial bioproducts.
Collapse
Affiliation(s)
- Fei Hao
- School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710072, China
- Center of Special Environmental Biomechanics & Biomedical Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Xinyi Li
- School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710072, China
| | - Jiameng Wang
- School of Astronautics, Northwestern Polytechnical University, Xi’an 710072, China
| | - Ruoyue Li
- School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710072, China
| | - Liyan Zou
- School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710072, China
| | - Kai Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710072, China
| | - Fuqing Chen
- School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710072, China
| | - Feixiong Shi
- School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710072, China
| | - Hui Yang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710072, China
- Center of Special Environmental Biomechanics & Biomedical Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Wen Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710072, China
| | - Miao Tian
- School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710072, China
| |
Collapse
|
3
|
Agarwal P, Soni R, Kaur P, Madan A, Mishra R, Pandey J, Singh S, Singh G. Cyanobacteria as a Promising Alternative for Sustainable Environment: Synthesis of Biofuel and Biodegradable Plastics. Front Microbiol 2022; 13:939347. [PMID: 35903468 PMCID: PMC9325326 DOI: 10.3389/fmicb.2022.939347] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/09/2022] [Indexed: 11/13/2022] Open
Abstract
With the aim to alleviate the increasing plastic burden and carbon footprint on Earth, the role of certain microbes that are capable of capturing and sequestering excess carbon dioxide (CO2) generated by various anthropogenic means was studied. Cyanobacteria, which are photosynthetic prokaryotes, are promising alternative for carbon sequestration as well as biofuel and bioplastic production because of their minimal growth requirements, higher efficiency of photosynthesis and growth rates, presence of considerable amounts of lipids in thylakoid membranes, and cosmopolitan nature. These microbes could prove beneficial to future generations in achieving sustainable environmental goals. Their role in the production of polyhydroxyalkanoates (PHAs) as a source of intracellular energy and carbon sink is being utilized for bioplastic production. PHAs have emerged as well-suited alternatives for conventional plastics and are a parallel competitor to petrochemical-based plastics. Although a lot of studies have been conducted where plants and crops are used as sources of energy and bioplastics, cyanobacteria have been reported to have a more efficient photosynthetic process strongly responsible for increased production with limited land input along with an acceptable cost. The biodiesel production from cyanobacteria is an unconventional choice for a sustainable future as it curtails toxic sulfur release and checks the addition of aromatic hydrocarbons having efficient oxygen content, with promising combustion potential, thus making them a better choice. Here, we aim at reporting the application of cyanobacteria for biofuel production and their competent biotechnological potential, along with achievements and constraints in its pathway toward commercial benefits. This review article also highlights the role of various cyanobacterial species that are a source of green and clean energy along with their high potential in the production of biodegradable plastics.
Collapse
|
4
|
Dalvie NC, Leal J, Whittaker CA, Yang Y, Brady JR, Love KR, Love JC. Host-Informed Expression of CRISPR Guide RNA for Genomic Engineering in Komagataella phaffii. ACS Synth Biol 2020; 9:26-35. [PMID: 31825599 PMCID: PMC7814401 DOI: 10.1021/acssynbio.9b00372] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
There is growing interest in the use of nonmodel microorganisms as hosts for biopharmaceutical manufacturing. These hosts require genomic engineering to meet clinically relevant product qualities and titers, but the adaptation of tools for editing genomes, such as CRISPR-Cas9, has been slow for poorly characterized hosts. Specifically, a lack of biochemical characterization of RNA polymerase III transcription has hindered reliable expression of guide RNAs in new hosts. Here, we present a sequencing-based strategy for the design of host-specific cassettes for modular, reliable, expression of guide RNAs. Using this strategy, we achieved up to 95% gene editing efficiency in the methylotrophic yeast Komagataella phaffii. We applied this approach for the rapid, multiplexed engineering of a complex phenotype, achieving humanized product glycosylation in two sequential steps of engineering. Reliable extension of simple gene editing tools to nonmodel manufacturing hosts will enable rapid engineering of manufacturing strains tuned for specific product profiles and potentially decrease the costs and timelines for process development.
Collapse
Affiliation(s)
- Neil C. Dalvie
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 01239, United States
| | - Justin Leal
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 01239, United States
| | - Charles A. Whittaker
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 01239, United States
| | - Yuchen Yang
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 01239, United States
| | - Joseph R. Brady
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 01239, United States
| | - Kerry R. Love
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 01239, United States
| | - J. Christopher Love
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 01239, United States
| |
Collapse
|
5
|
Gupta JK, Rai P, Jain KK, Srivastava S. Overexpression of bicarbonate transporters in the marine cyanobacterium Synechococcus sp. PCC 7002 increases growth rate and glycogen accumulation. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:17. [PMID: 32015756 PMCID: PMC6988372 DOI: 10.1186/s13068-020-1656-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 01/13/2020] [Indexed: 05/19/2023]
Abstract
BACKGROUND Synechococcus sp. PCC 7002 is an attractive organism as a feedstock and for photoautotrophic production of biofuels and biochemicals due to its fast growth and ability to grow in marine/brackish medium. Previous studies suggest that the growth of this organism is limited by the HCO3 - transport across the cytoplasmic membrane. Tools for genetic engineering are well established for this cyanobacterium, which makes it possible to overexpress genes of interest. RESULTS In this work, we overexpressed two different native Na+-dependent carbon transporters viz., SbtA and BicA in Synechococcus sp. PCC 7002 cells under the influence of a strong light-inducible promoter and a strong RBS sequence. The overexpression of these transporters enhanced biomass by about 50%, increased intracellular glycogen about 50%, and increased extracellular carbohydrate up to threefold. Importantly, the biomass and glycogen productivity of the transformants with air bubbling was even higher than that of WT cells with 1% CO2 bubbling. The overexpression of these transporters was associated with an increased carotenoid content without altering the chl a content. CONCLUSIONS Our work shows the utility of increased carbon transport in improving the growth as well as product formation in a marine cyanobacterium and will serve to increase the utility of this organism as a potential cell factory.
Collapse
Affiliation(s)
- Jai Kumar Gupta
- Systems Biology for Biofuels Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), ICGEB Campus, Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Preeti Rai
- DBT-ICGEB Centre for Advanced Bioenergy Research, New Delhi, India
| | | | - Shireesh Srivastava
- Systems Biology for Biofuels Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), ICGEB Campus, Aruna Asaf Ali Marg, New Delhi, 110067 India
- DBT-ICGEB Centre for Advanced Bioenergy Research, New Delhi, India
| |
Collapse
|
6
|
Żymańczyk-Duda E, Głąb A, Górak M, Klimek-Ochab M, Brzezińska-Rodak M, Strub D, Śliżewska A. Reductive capabilities of different cyanobacterial strains towards acetophenone as a model substrate - Prospect of applications for chiral building blocks synthesis. Bioorg Chem 2019; 93:102810. [PMID: 30819508 DOI: 10.1016/j.bioorg.2019.02.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/13/2019] [Accepted: 02/16/2019] [Indexed: 10/27/2022]
Abstract
Bioreductive capabilities of four morphologically different strains of cyanobacteria have been assessed in this work. Arthrospira maxima, Leptolyngbya foveolarum, Nodularia sphaerocarpa and Synechococcus bigranulatus were applied as catalysts for the reduction of acetophenone to the corresponding chiral phenylethyl alcohol. The process was modified regarding substrate concentration, duration of pre-cultivation period, duration of biotransformation, light regime and glucose addition to the culture media. Obtained results clearly showed that cyanobacteria were active towards acetophenone what resulted in the substrate reduction to (S)-1-phenylethanol with high enantiomeric excess. The reaction efficiency increased with the biotransformation time, but the higher concentration of substrate limited the process yield. Also, all tested strains performed reaction with the highest efficacy under continuous light regime. The most active strains - N. sphaerocarpa and S. bigranulatus carried out the conversion of 1 mM acetophenone with high efficiency of respectively 97.6% and 96.2% after 13 days of biotransformation. A. maxima reached 45.8% of conversion after 13 days of biotransformation whereas L. foveolarum did not exceed 20%. The enantiomeric excesses were respectively 98.8%- A. maxima, 91.7%- L. foveolarum, 72.6%- S. bigranulatus and N. sphaerocarpa 16.2%.
Collapse
Affiliation(s)
| | - Agata Głąb
- Wroclaw University of Science and Technology, Poland
| | - Monika Górak
- Wroclaw University of Science and Technology, Poland
| | | | | | - Daniel Strub
- Wroclaw University of Science and Technology, Poland
| | | |
Collapse
|
7
|
Deriving Economic Value from Metabolites in Cyanobacteria. GRAND CHALLENGES IN ALGAE BIOTECHNOLOGY 2019. [DOI: 10.1007/978-3-030-25233-5_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
8
|
Johnson TJ, Katuwal S, Anderson GA, Gu L, Zhou R, Gibbons WR. Photobioreactor cultivation strategies for microalgae and cyanobacteria. Biotechnol Prog 2018. [DOI: 10.1002/btpr.2628] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Tylor J. Johnson
- Dept. of Biology and MicrobiologySouth Dakota State UniversityBrookings SD57007
- Dept. of MicrobiologyThe University of TennesseeKnoxville TN37996
| | - Sarmila Katuwal
- Agricultural and Biosystems Engineering Dept.South Dakota State UniversityBrookings SD57007
| | - Gary A. Anderson
- Agricultural and Biosystems Engineering Dept.South Dakota State UniversityBrookings SD57007
| | - Liping Gu
- Dept. of Biology and MicrobiologySouth Dakota State UniversityBrookings SD57007
| | - Ruanbao Zhou
- Dept. of Biology and MicrobiologySouth Dakota State UniversityBrookings SD57007
- BioSNTR, South Dakota State UniversityBrookings SD57007
| | - William R. Gibbons
- Dept. of Biology and MicrobiologySouth Dakota State UniversityBrookings SD57007
| |
Collapse
|
9
|
Ueno K, Sakai Y, Shono C, Sakamoto I, Tsukakoshi K, Hihara Y, Sode K, Ikebukuro K. Applying a riboregulator as a new chromosomal gene regulation tool for higher glycogen production in Synechocystis sp. PCC 6803. Appl Microbiol Biotechnol 2017; 101:8465-8474. [PMID: 29038975 DOI: 10.1007/s00253-017-8570-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 09/18/2017] [Accepted: 09/26/2017] [Indexed: 11/29/2022]
Abstract
Cyanobacteria are one of the most attractive hosts for biofuel production; however, genetic approaches to regulate specific chromosomal genes in cyanobacteria remain limited. With the aim of developing a novel method to regulate chromosomal gene expression in cyanobacteria, we focused on riboregulatory technology. Riboregulators are composed of two RNA fragments whose interaction leads to target gene regulation with high specificity. In this study, we inserted a riboregulator sequence upstream of the chromosomal gene encoding AbrB-like transcriptional regulator, cyAbrB2, to investigate the utility of this tool. The inserted riboregulator was able to regulate cyabrB2 gene expression, with a high ON-OFF ratio up to approximately 50-fold. The transcription levels of several genes for which cyAbrB2 acts as a transcriptional upregulator were also decreased. Further, the cyAbrB2 expression-repressed mutant showed high glycogen accumulation, equivalent to that in the cyabrB2 deletion mutant (ΔcyabrB2). Phenotypic similarities between the cyabrB2 expression-repressed mutant and the ΔcyabrB2 mutant suggest that the riboregulator can potentially be used as a new chromosomal gene regulation tool in cyanobacteria.
Collapse
Affiliation(s)
- Kinuko Ueno
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Yuta Sakai
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Chika Shono
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Ippei Sakamoto
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Kaori Tsukakoshi
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Yukako Hihara
- Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570, Japan
| | - Koji Sode
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Kazunori Ikebukuro
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan.
| |
Collapse
|
10
|
Ng I, Tan S, Kao P, Chang Y, Chang J. Recent Developments on Genetic Engineering of Microalgae for Biofuels and Bio‐Based Chemicals. Biotechnol J 2017; 12. [DOI: 10.1002/biot.201600644] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 07/24/2017] [Indexed: 12/15/2022]
Affiliation(s)
- I‐Son Ng
- Department of Chemical EngineeringNational Cheng Kung UniversityTainan70101Taiwan
- Research Center for Energy Technology and StrategyNational Cheng Kung UniversityTainan70101Taiwan
| | - Shih‐I Tan
- Department of Chemical EngineeringNational Cheng Kung UniversityTainan70101Taiwan
| | - Pei‐Hsun Kao
- Department of Chemical EngineeringNational Cheng Kung UniversityTainan70101Taiwan
| | - Yu‐Kaung Chang
- Graduate School of Biochemical EngineeringMing Chi University of TechnologyNew Taipei City24301Taiwan
| | - Jo‐Shu Chang
- Department of Chemical EngineeringNational Cheng Kung UniversityTainan70101Taiwan
- Research Center for Energy Technology and StrategyNational Cheng Kung UniversityTainan70101Taiwan
| |
Collapse
|
11
|
Building a bio-based industry in the Middle East through harnessing the potential of the Red Sea biodiversity. Appl Microbiol Biotechnol 2017; 101:4837-4851. [PMID: 28528426 PMCID: PMC5486811 DOI: 10.1007/s00253-017-8310-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 04/24/2017] [Accepted: 04/26/2017] [Indexed: 01/03/2023]
Abstract
The incentive for developing microbial cell factories for production of fuels and chemicals comes from the ability of microbes to deliver these valuable compounds at a reduced cost and with a smaller environmental impact compared to the analogous chemical synthesis. Another crucial advantage of microbes is their great biological diversity, which offers a much larger "catalog" of molecules than the one obtainable by chemical synthesis. Adaptation to different environments is one of the important drives behind microbial diversity. We argue that the Red Sea, which is a rather unique marine niche, represents a remarkable source of biodiversity that can be geared towards economical and sustainable bioproduction processes in the local area and can be competitive in the international bio-based economy. Recent bioprospecting studies, conducted by the King Abdullah University of Science and Technology, have established important leads on the Red Sea biological potential, with newly isolated strains of Bacilli and Cyanobacteria. We argue that these two groups of local organisms are currently most promising in terms of developing cell factories, due to their ability to operate in saline conditions, thus reducing the cost of desalination and sterilization. The ability of Cyanobacteria to perform photosynthesis can be fully exploited in this particular environment with one of the highest levels of irradiation on the planet. We highlight the importance of new experimental and in silico methodologies needed to overcome the hurdles of developing efficient cell factories from the Red Sea isolates.
Collapse
|
12
|
Swain SS, Paidesetty SK, Padhy RN. Antibacterial, antifungal and antimycobacterial compounds from cyanobacteria. Biomed Pharmacother 2017; 90:760-776. [PMID: 28419973 DOI: 10.1016/j.biopha.2017.04.030] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 04/02/2017] [Accepted: 04/10/2017] [Indexed: 11/18/2022] Open
Abstract
Infections from multidrug resistant (MDR) pathogenic bacteria, fungi and Mycobacterium tuberculosis remain progressively intractable. The search of effective antimicrobials from other possible non-conventional sources against MDR pathogenic bacteria, fungi and mycobacteria is call of the day. This review considers 121 cyanobacterial compounds or cyano-compounds with antimicrobial activities. Chemical structures of cyano-compounds were retrieved from ChemSpider and PubChem databases and were visualized by the software ChemDraw Ultra. Chemical information on cyano-compounds pertaining to Lipinski rules of five was assessed. The reviewed cyano-compounds belong to the following chemical classes (with examples): alkaloids (ambiguine isonitriles and 12-epi-hapalindole E isonitrile), aromatic compounds (benzoic acid and cyanobacterin), cyclic depsipeptides (cryptophycin 52 and lyngbyabellin A), cyclic peptides (calophycin and tenuecyclamides), cyclic undecapeptides (kawaguchipeptins and lyngbyazothrin A), cyclophane (carbamidocyclophane), extracellular pigment (nostocine A), fatty acids (alpha-dimorphecolic acid and majusculonic acid), linear peptides (muscoride A), lipopeptides (fischerellins and scytonemin A), nucleosides (tolytoxin and tubercidin), phenols (ambigols and 4-4'-hydroxybiphenyl), macrolides (scytophycin A and tolytoxin), polyketides (malyngolide and nostocyclyne), polyphenyl ethers (crossbyanol A), porphinoids (tolyporphin J) and terpenoids (noscomin and scytoscalarol). Cyanobacteria appear to be a diverse source of compounds with antimicrobial activity. Further attention is required to elucidate whether those could be applied as pharmaceuticals.
Collapse
Affiliation(s)
- Shasank S Swain
- Central Research Laboratory, Institute of Medical Sciences and Sum Hospital, Siksha 'O' Anusandhan University, Kalinga Nagar, Bhubaneswar 751003, Odisha, India
| | - Sudhir K Paidesetty
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan University, Kalinga Nagar, Bhubaneswar 751003, Odisha, India
| | - Rabindra N Padhy
- Central Research Laboratory, Institute of Medical Sciences and Sum Hospital, Siksha 'O' Anusandhan University, Kalinga Nagar, Bhubaneswar 751003, Odisha, India.
| |
Collapse
|
13
|
Fu W, Chaiboonchoe A, Khraiwesh B, Nelson DR, Al-Khairy D, Mystikou A, Alzahmi A, Salehi-Ashtiani K. Algal Cell Factories: Approaches, Applications, and Potentials. Mar Drugs 2016; 14:md14120225. [PMID: 27983586 PMCID: PMC5192462 DOI: 10.3390/md14120225] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/02/2016] [Accepted: 12/05/2016] [Indexed: 12/26/2022] Open
Abstract
With the advent of modern biotechnology, microorganisms from diverse lineages have been used to produce bio-based feedstocks and bioactive compounds. Many of these compounds are currently commodities of interest, in a variety of markets and their utility warrants investigation into improving their production through strain development. In this review, we address the issue of strain improvement in a group of organisms with strong potential to be productive “cell factories”: the photosynthetic microalgae. Microalgae are a diverse group of phytoplankton, involving polyphyletic lineage such as green algae and diatoms that are commonly used in the industry. The photosynthetic microalgae have been under intense investigation recently for their ability to produce commercial compounds using only light, CO2, and basic nutrients. However, their strain improvement is still a relatively recent area of work that is under development. Importantly, it is only through appropriate engineering methods that we may see the full biotechnological potential of microalgae come to fruition. Thus, in this review, we address past and present endeavors towards the aim of creating productive algal cell factories and describe possible advantageous future directions for the field.
Collapse
Affiliation(s)
- Weiqi Fu
- Division of Science and Math, New York University Abu Dhabi, P.O. Box 129188 Saadiyat Island, Abu Dhabi, UAE.
| | - Amphun Chaiboonchoe
- Division of Science and Math, New York University Abu Dhabi, P.O. Box 129188 Saadiyat Island, Abu Dhabi, UAE.
| | - Basel Khraiwesh
- Center for Genomics and Systems Biology (CGSB), New York University Abu Dhabi, P.O. Box 129188 Saadiyat Island, Abu Dhabi, UAE.
| | - David R Nelson
- Center for Genomics and Systems Biology (CGSB), New York University Abu Dhabi, P.O. Box 129188 Saadiyat Island, Abu Dhabi, UAE.
| | - Dina Al-Khairy
- Division of Science and Math, New York University Abu Dhabi, P.O. Box 129188 Saadiyat Island, Abu Dhabi, UAE.
| | - Alexandra Mystikou
- Division of Science and Math, New York University Abu Dhabi, P.O. Box 129188 Saadiyat Island, Abu Dhabi, UAE.
| | - Amnah Alzahmi
- Center for Genomics and Systems Biology (CGSB), New York University Abu Dhabi, P.O. Box 129188 Saadiyat Island, Abu Dhabi, UAE.
| | - Kourosh Salehi-Ashtiani
- Division of Science and Math, New York University Abu Dhabi, P.O. Box 129188 Saadiyat Island, Abu Dhabi, UAE.
- Center for Genomics and Systems Biology (CGSB), New York University Abu Dhabi, P.O. Box 129188 Saadiyat Island, Abu Dhabi, UAE.
| |
Collapse
|
14
|
Johnson TJ, Jahandideh A, Johnson MD, Fields KH, Richardson JW, Muthukumarappan K, Cao Y, Gu Z, Halfmann C, Zhou R, Gibbons WR. Producing next-generation biofuels from filamentous cyanobacteria: An economic feasibility analysis. ALGAL RES 2016. [DOI: 10.1016/j.algal.2016.10.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|