1
|
Lang Z, Yan S, Xiong Q, Chen G. WAVE-based intensified perfusion cell culture for fast process development. Biotechnol Lett 2023; 45:1117-1131. [PMID: 37382759 DOI: 10.1007/s10529-023-03405-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 05/01/2023] [Accepted: 06/07/2023] [Indexed: 06/30/2023]
Abstract
OBJECTIVE This study was to evaluate the feasibility of using a rocking type bioreactor system, specifically the WAVE 25, in an intensified perfusion culture (IPC) mode for monoclonal antibody (mAb) production in Chinese hamster ovary (CHO) cell line. METHODS A disposable perfusion bag with floating membrane was used in the IPC process. An automated filter switching system was employed to continuously clarify the harvested post-membrane culture fluid. The overall cell culture performance, product titer, and quality were compared to those of a typical IPC conducted in a bench-top glass bioreactor. RESULTS The results showed that the overall trends of cell culture performance, product titer (accumulated harvest volumetric titer) were similar to those of the typical IPC conducted in the glass bioreactor, while the purity related quality were slightly better than the typical run. Furthermore, with the automated filter switching system, the harvested post-membrane culture fluid could be continuously clarified, making it suitable for downstream continuous chromatography. CONCLUSION The study demonstrated the feasibility of using the WAVE-based rocking type bioreactor in the N stage IPC process, which increases the flexibility in adopting IPC process. The results suggest that the rocking type bioreactor system could be a viable alternative to traditional stirred tank bioreactors for perfusion culture in the biopharmaceutical industry.
Collapse
Affiliation(s)
- Zhe Lang
- Cell Culture Process Development (CCPD), WuXi Biologics, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai, 200131, China
| | - Shaofan Yan
- Cell Culture Process Development (CCPD), WuXi Biologics, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai, 200131, China
| | - Qingqing Xiong
- Cell Culture Process Development (CCPD), WuXi Biologics, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai, 200131, China
| | - Gong Chen
- Cell Culture Process Development (CCPD), WuXi Biologics, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai, 200131, China.
| |
Collapse
|
2
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2017-2018. MASS SPECTROMETRY REVIEWS 2023; 42:227-431. [PMID: 34719822 DOI: 10.1002/mas.21721] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
This review is the tenth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization mass spectrometry (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2018. Also included are papers that describe methods appropriate to glycan and glycoprotein analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, new methods, matrices, derivatization, MALDI imaging, fragmentation and the use of arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Most of the applications are presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. The reported work shows increasing use of combined new techniques such as ion mobility and highlights the impact that MALDI imaging is having across a range of diciplines. MALDI is still an ideal technique for carbohydrate analysis and advancements in the technique and the range of applications continue steady progress.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
| |
Collapse
|
3
|
Coulet M, Kepp O, Kroemer G, Basmaciogullari S. Metabolic Profiling of CHO Cells during the Production of Biotherapeutics. Cells 2022; 11:cells11121929. [PMID: 35741058 PMCID: PMC9221972 DOI: 10.3390/cells11121929] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/02/2022] [Accepted: 06/13/2022] [Indexed: 01/08/2023] Open
Abstract
As indicated by an ever-increasing number of FDA approvals, biotherapeutics constitute powerful tools for the treatment of various diseases, with monoclonal antibodies (mAbs) accounting for more than 50% of newly approved drugs between 2014 and 2018 (Walsh, 2018). The pharmaceutical industry has made great progress in developing reliable and efficient bioproduction processes to meet the demand for recombinant mAbs. Mammalian cell lines are preferred for the production of functional, complex recombinant proteins including mAbs, with Chinese hamster ovary (CHO) cells being used in most instances. Despite significant advances in cell growth control for biologics manufacturing, cellular responses to environmental changes need to be understood in order to further improve productivity. Metabolomics offers a promising approach for developing suitable strategies to unlock the full potential of cellular production. This review summarizes key findings on catabolism and anabolism for each phase of cell growth (exponential growth, the stationary phase and decline) with a focus on the principal metabolic pathways (glycolysis, the pentose phosphate pathway and the tricarboxylic acid cycle) and the families of biomolecules that impact these circuities (nucleotides, amino acids, lipids and energy-rich metabolites).
Collapse
Affiliation(s)
- Mathilde Coulet
- Sanofi R&D, 94400 Vitry-sur-Seine, France;
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, 94800 Villejuif, France;
| | - Oliver Kepp
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, 94800 Villejuif, France;
- Institut Universitaire de France, Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, 75006 Paris, France
| | - Guido Kroemer
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, 94800 Villejuif, France;
- Institut Universitaire de France, Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, 75006 Paris, France
- Department of Biology, Institut du Cancer Paris CARPEM, Hôpital Européen Georges Pompidou, AP-HP, 75015 Paris, France
- Correspondence: (G.K.); (S.B.)
| | | |
Collapse
|
4
|
Qin Y, Ma R, Li Y, Li Y, Chen G, Zhou W. Productivity and quality improvement for a symmetric bispecific antibody through the application of intensified perfusion cell culture. Antib Ther 2022; 5:111-120. [PMID: 35719210 PMCID: PMC9199187 DOI: 10.1093/abt/tbac009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 02/15/2022] [Accepted: 04/28/2022] [Indexed: 11/13/2022] Open
Abstract
Background Aggregation, fragmentation, and low yield are issues frequently found during the cell culture process of bispecific antibodies (bsAbs), whose inherent complexity likely plays a role in causing these issues. Methods In this study, we made a head-to-head comparison between fed-batch cell culture and intensified perfusion cell culture with a symmetric bsAb case. Results In comparison with the fed-batch culture, a 6.6-fold improvement in integrated viable cell density and a 10.9-fold improvement in volumetric productivity were achieved with the intensified perfusion mode. In addition, a significant decrease in aggregation and fragmentation was observed with the intensified perfusion cell culture. Furthermore, product homogeneity was improved, which was reflected by the increased percentage of capillary isoelectric focusing main group. The quality improvement with intensified perfusion cell culture can be attributed to the shortened product retention in the bioreactor. Conclusions These findings suggest that intensified perfusion cell culture could be a better choice than traditional fed-batch especially for complex molecules like bsAbs. As this is a single case report, future studies on other cases are needed to further confirm the general applicability of this strategy.
Collapse
Affiliation(s)
- Yongjun Qin
- Technology and Process Development, WuXi Biologics, Shanghai, 200131, China
| | - Rongmei Ma
- Technology and Process Development, WuXi Biologics, Shanghai, 200131, China
| | - Yang Li
- Technology and Process Development, WuXi Biologics, Shanghai, 200131, China
| | - Yifeng Li
- Technology and Process Development, WuXi Biologics, Shanghai, 200131, China
| | - Gong Chen
- Technology and Process Development, WuXi Biologics, Shanghai, 200131, China
| | - Weichang Zhou
- Biologics Development, WuXi Biologics, Shanghai, 200131, China
| |
Collapse
|
5
|
Integrating metabolome dynamics and process data to guide cell line selection in biopharmaceutical process development. Metab Eng 2022; 72:353-364. [DOI: 10.1016/j.ymben.2022.03.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 02/21/2022] [Accepted: 03/26/2022] [Indexed: 11/20/2022]
|
6
|
Enablers of continuous processing of biotherapeutic products. Trends Biotechnol 2022; 40:804-815. [PMID: 35034769 DOI: 10.1016/j.tibtech.2021.12.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 11/21/2022]
Abstract
The benefits of continuous processing over batch manufacturing are widely acknowledged across the biopharmaceutical industry, primary of which are higher productivity and greater consistency in product quality. Furthermore, the reduced equipment and facility footprint lead to significantly lower capital costs. Technology enablers have a major role in this migration from batch to continuous processing. In this review, we highlight the various enablers that are facilitating adoption of continuous upstream and downstream bioprocessing. This includes new bioreactors and cell retention devices for upstream operations, and on-column and continuous flow refolding, novel continuous chromatography, and single-pass filtration systems for downstream processes. We also elucidate the significant roles of process integration and control as well as of data analytics in these processes.
Collapse
|
7
|
Caso S, Aeby M, Jordan M, Guillot R, Bielser J. Effects of pyruvate on primary metabolism and product quality for a high‐density perfusion process. Biotechnol Bioeng 2022; 119:1053-1061. [DOI: 10.1002/bit.28033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/20/2021] [Accepted: 12/24/2021] [Indexed: 11/09/2022]
Affiliation(s)
- Stefania Caso
- Biotech Process Sciences, Merck KGaA Corsier‐sur‐Vevey Switzerland
| | - Mathieu Aeby
- Biotech Process Sciences, Merck KGaA Corsier‐sur‐Vevey Switzerland
| | - Martin Jordan
- Biotech Process Sciences, Merck KGaA Corsier‐sur‐Vevey Switzerland
| | - Raphael Guillot
- Biotech Process Sciences, Merck KGaA Corsier‐sur‐Vevey Switzerland
| | | |
Collapse
|
8
|
MacDonald MA, Nöbel M, Roche Recinos D, Martínez VS, Schulz BL, Howard CB, Baker K, Shave E, Lee YY, Marcellin E, Mahler S, Nielsen LK, Munro T. Perfusion culture of Chinese Hamster Ovary cells for bioprocessing applications. Crit Rev Biotechnol 2021; 42:1099-1115. [PMID: 34844499 DOI: 10.1080/07388551.2021.1998821] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Much of the biopharmaceutical industry's success over the past 30 years has relied on products derived from Chinese Hamster Ovary (CHO) cell lines. During this time, improvements in mammalian cell cultures have come from cell line development and process optimization suited for large-scale fed-batch processes. Originally developed for high cell densities and sensitive products, perfusion processes have a long history. Driven by high volumetric titers and a small footprint, perfusion-based bioprocess research has regained an interest from academia and industry. The recent pandemic has further highlighted the need for such intensified biomanufacturing options. In this review, we outline the technical history of research in this field as it applies to biologics production in CHO cells. We demonstrate a number of emerging trends in the literature and corroborate these with underlying drivers in the commercial space. From these trends, we speculate that the future of perfusion bioprocesses is bright and that the fields of media optimization, continuous processing, and cell line engineering hold the greatest potential. Aligning in its continuous setup with the demands for Industry 4.0, perfusion biomanufacturing is likely to be a hot topic in the years to come.
Collapse
Affiliation(s)
- Michael A MacDonald
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Brisbane, Australia.,Thermo Fisher Scientific, Woolloongabba, Brisbane, Australia
| | - Matthias Nöbel
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Brisbane, Australia.,Thermo Fisher Scientific, Woolloongabba, Brisbane, Australia
| | - Dinora Roche Recinos
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Brisbane, Australia.,CSL Limited, Parkville, Melbourne, Australia
| | - Verónica S Martínez
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Brisbane, Australia
| | - Benjamin L Schulz
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Brisbane, Australia.,School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Brisbane, Australia
| | - Christopher B Howard
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Brisbane, Australia
| | - Kym Baker
- Thermo Fisher Scientific, Woolloongabba, Brisbane, Australia
| | - Evan Shave
- Thermo Fisher Scientific, Woolloongabba, Brisbane, Australia
| | | | - Esteban Marcellin
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Brisbane, Australia.,Metabolomics Australia, The University of Queensland, St. Lucia, Brisbane, Australia
| | - Stephen Mahler
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Brisbane, Australia
| | - Lars Keld Nielsen
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Brisbane, Australia.,Metabolomics Australia, The University of Queensland, St. Lucia, Brisbane, Australia.,The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Trent Munro
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Brisbane, Australia.,National Biologics Facility, The University of Queensland, St. Lucia, Brisbane, Australia
| |
Collapse
|
9
|
Kuang B, Dhara VG, Hoang D, Jenkins J, Ladiwala P, Tan Y, Shaffer SA, Galbraith SC, Betenbaugh MJ, Yoon S. Identification of novel inhibitory metabolites and impact verification on growth and protein synthesis in mammalian cells. Metab Eng Commun 2021; 13:e00182. [PMID: 34522610 PMCID: PMC8427323 DOI: 10.1016/j.mec.2021.e00182] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 11/24/2022] Open
Abstract
Mammalian cells consume large amount of nutrients during growth and production. However, endogenous metabolic inefficiencies often prevent cells to fully utilize nutrients to support growth and protein production. Instead, significant fraction of fed nutrients is diverted into extracellular accumulation of waste by-products and metabolites, further inhibiting proliferation and protein synthesis. In this study, an LC-MS/MS based metabolomics pipeline was used to screen Chinese hamster ovary (CHO) extracellular metabolites. Six out of eight identified inhibitory metabolites, caused by the inefficient cell metabolism, were not previously studied in CHO cells: aconitic acid, 2-hydroxyisocaproic acid, methylsuccinic acid, cytidine monophosphate, trigonelline, and n-acetyl putrescine. When supplemented back into a fed-batch culture, significant reduction in cellular growth was observed in the presence of each metabolite and all the identified metabolites were shown to impact the glycosylation of a model secreted antibody, with seven of these also reducing CHO cellular productivity (titer) and all eight inhibiting the formation of mono-galactosylated biantennary (G1F) and biantennary galactosylated (G2F) N-glycans. These inhibitory metabolites further impact the metabolism of cells, leading to a significant reduction in CHO cellular growth and specific productivity in fed-batch culture (maximum reductions of 27.2% and 40.6% respectively). In-depth pathway analysis revealed that these metabolites are produced when cells utilize major energy sources such as glucose and select amino acids (tryptophan, arginine, isoleucine, and leucine) for growth, maintenance, and protein production. Furthermore, these novel inhibitory metabolites were observed to accumulate in multiple CHO cell lines (CHO–K1 and CHO-GS) as well as HEK293 cell line. This study provides a robust and holistic methodology to incorporate global metabolomic analysis into cell culture studies for elucidation and structural verification of novel metabolites that participate in key metabolic pathways to growth, production, and post-translational modification in biopharmaceutical production. Mammalian metabolic inefficiencies lead to accumulation of waste by-products. Untargeted and targeted metabolomics for identification of novel metabolites. Identified six CHO metabolic inhibitors negatively impact growth and titer production. Inhibitors were shown to accumulate across different mammalian cell lines. A holistic methodology incorporating metabolomics analysis into cell culture studies.
Collapse
Affiliation(s)
- Bingyu Kuang
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| | - Venkata Gayatri Dhara
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Duc Hoang
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| | - Jack Jenkins
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Pranay Ladiwala
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Yanglan Tan
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Shrewsbury, MA, 01545, USA
| | - Scott A Shaffer
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Shrewsbury, MA, 01545, USA
| | - Shaun C Galbraith
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| | - Michael J Betenbaugh
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Seongkyu Yoon
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| |
Collapse
|
10
|
Johnstone P, Mast E, Hughes E, Peng H. Development of a small-scale rotary lobe-pump cell culture model for examining cell damage in large-scale N-1 seed perfusion process. Biotechnol Prog 2020; 36:e3044. [PMID: 32594624 DOI: 10.1002/btpr.3044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 11/12/2022]
Abstract
Perfusion technology has been identified as a process improvement capable of eliminating some of the constraints in cell culture and allows for high cell densities and viabilities. However, when implementing this N-1 seed perfusion platform in large-scale manufacturing, unexpected cell damage was observed as early as Day 1. Given that the shear rate within recirculation hollow fibers was normalized and aligned correctly across bench, pilot, and manufacture scale, the primary mitigation was placed on the rotary lobe pump. Lowering the pump rate in manufacture scale successfully alleviated the cell damage. To understand the source of cell damage within the pump, a small-scale rotary lobe-pump robustness model was developed. Testing different pump flow rates and back pressures, it was concluded that high back pressure can cause cell damage. The back pressure within the system can cause back flow and high shear within small clearances inside the pump, which lead to the primary cell damage observed at a large scale. This shear level can be significantly higher than the shear in the hollow fiber. This pump robustness model can be utilized to aid the perfusion skid design, including pump operation efficiency and cell shear sensitivity. Methods to reduce the back pressure and cell shearing were determined to better predict manufacturing performance in the future.
Collapse
Affiliation(s)
| | - Elena Mast
- Manufacturing Sciences, Biogen, Durham, North Carolina, USA
| | - Erik Hughes
- Manufacturing Sciences, Biogen, Durham, North Carolina, USA
| | - Haofan Peng
- Manufacturing Sciences, Biogen, Durham, North Carolina, USA
| |
Collapse
|
11
|
Nikolay A, Bissinger T, Gränicher G, Wu Y, Genzel Y, Reichl U. Perfusion Control for High Cell Density Cultivation and Viral Vaccine Production. Methods Mol Biol 2020; 2095:141-168. [PMID: 31858467 DOI: 10.1007/978-1-0716-0191-4_9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The global demand for complex biopharmaceuticals like recombinant proteins, vaccines, or viral vectors is steadily rising. To further improve process productivity and to reduce production costs, process intensification can contribute significantly. The design and optimization of perfusion processes toward very high cell densities require careful selection of strategies for optimal perfusion rate control. In this chapter, various options are discussed to guarantee high cell-specific virus yields and to achieve virus concentrations up to 1010 virions/mL. This includes reactor volume exchange regimes and perfusion rate control based on process variables such as cell concentration and metabolite or by-product concentration. Strategies to achieve high cell densities by perfusion rate control and their experimental implementation are described in detail for pseudo-perfusion or small-scale perfusion bioreactor systems. Suspension cell lines such as MDCK, BHK-21, EB66®, and AGE1.CR.pIX® are used to exemplify production of influenza, yellow fever, Zika, and modified vaccinia Ankara virus.
Collapse
Affiliation(s)
- Alexander Nikolay
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany.
| | - Thomas Bissinger
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Gwendal Gränicher
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Yixiao Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yvonne Genzel
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Udo Reichl
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
- Bioprocess Engineering, Otto von Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
12
|
Wolf MKF, Müller A, Souquet J, Broly H, Morbidelli M. Process design and development of a mammalian cell perfusion culture in shake‐tube and benchtop bioreactors. Biotechnol Bioeng 2019; 116:1973-1985. [DOI: 10.1002/bit.26999] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/15/2019] [Accepted: 04/18/2019] [Indexed: 01/16/2023]
Affiliation(s)
- Moritz K. F. Wolf
- Department of Chemistry and Applied Biosciences, Institute of Chemical and BioengineeringETH ZurichZurich Switzerland
| | - Andrea Müller
- Department of Chemistry and Applied Biosciences, Institute of Chemical and BioengineeringETH ZurichZurich Switzerland
| | - Jonathan Souquet
- Biotech Process SciencesMerck BiopharmaCorsier‐sur‐Vevey Switzerland
| | - Hervé Broly
- Biotech Process SciencesMerck BiopharmaCorsier‐sur‐Vevey Switzerland
| | - Massimo Morbidelli
- Department of Chemistry and Applied Biosciences, Institute of Chemical and BioengineeringETH ZurichZurich Switzerland
| |
Collapse
|
13
|
Bertrand V, Karst DJ, Bachmann A, Cantalupo K, Soos M, Morbidelli M. Transcriptome and proteome analysis of steady-state in a perfusion CHO cell culture process. Biotechnol Bioeng 2019; 116:1959-1972. [PMID: 30997936 DOI: 10.1002/bit.26996] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 01/31/2019] [Accepted: 03/28/2019] [Indexed: 01/05/2023]
Abstract
Long-term continuous protein production can be reached by perfusion operation. Through the continuous removal of waste metabolites and supply of nutrients, steady-state (SS) conditions are achieved after a certain transient period, where the conditions inside the reactor are not only uniform in space but also constant in time. Such stable conditions may have beneficial influences on the reduction of product heterogeneities. In this study, we investigated the impact of perfusion cultivation on the intracellular physiological state of a CHO cell line producing a monoclonal antibody (mAb) by global transcriptomics and proteomics. Despite stable viable cell density was maintained right from the beginning of the cultivation time, productivity decrease, and a transition phase for metabolites and product quality was observed before reaching SS conditions. These were traced back to three sources of transient behaviors being hydrodynamic flow rates, intracellular dynamics of gene expression as well as metabolism and cell line instability, superimposing each other. However, 99.4% of all transcripts and proteins reached SS during the first week or were at SS from the beginning. These results demonstrate that the stable extracellular conditions of perfusion lead to SS also of the cellular level.
Collapse
Affiliation(s)
- Vania Bertrand
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland
| | - Daniel J Karst
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland
| | - Alessia Bachmann
- RBM S.p.A. Istituto di Ricerche Biomediche A.Marxer, Merck, Rome, Italy
| | - Katia Cantalupo
- RBM S.p.A. Istituto di Ricerche Biomediche A.Marxer, Merck, Rome, Italy
| | - Miroslav Soos
- Department of Chemical Engineering, University of Chemistry and Technology, Technicka 5, 166 28, Prague, Czech Republic
| | - Massimo Morbidelli
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
14
|
Becker M, Junghans L, Teleki A, Bechmann J, Takors R. Perfusion cultures require optimum respiratory ATP supply to maximize cell-specific and volumetric productivities. Biotechnol Bioeng 2019; 116:951-960. [PMID: 30659583 DOI: 10.1002/bit.26926] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 01/12/2019] [Accepted: 01/16/2019] [Indexed: 01/16/2023]
Abstract
Perfusion processes are an emerging alternative to common fed-batch processes in the growing biopharmaceutical industry. However, the challenge of maintaining high cell-specific productivities remains. In this study, glucose limitation was applied to two perfusion steady states and compared with a third steady state without any detectable limitation. The metabolic phenotype was enhanced under glucose limitation with a decrease of 30% in glucose uptake and 75% in lactate formation. Cell-specific productivities were substantially improved by 50%. Remarkably, the productivities showed a strong correlation to respiratory adenosine triphosphate (ATP) supply. As less reduced nicotinamide adenine dinucleotide (NADH) remained in the cytosol, the ATP generation from oxidative phosphorylation was increased by almost 30%. Consequently, the efficiency of carbon metabolism and the resulting respiratory ATP supply was crucial for maintaining the highly productive cellular state. This study highlights that glucose limitation can be used for process intensification in perfusion cultures as ATP generation via respiration is significantly increased, leading to elevated productivities.
Collapse
Affiliation(s)
- Max Becker
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart, Germany
| | - Lisa Junghans
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart, Germany
| | - Attila Teleki
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart, Germany
| | - Jan Bechmann
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Ralf Takors
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
15
|
|
16
|
Continuous integrated manufacturing of therapeutic proteins. Curr Opin Biotechnol 2018; 53:76-84. [DOI: 10.1016/j.copbio.2017.12.015] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 12/11/2017] [Accepted: 12/11/2017] [Indexed: 11/20/2022]
|
17
|
Weigt D, Sammour DA, Ulrich T, Munteanu B, Hopf C. Automated analysis of lipid drug-response markers by combined fast and high-resolution whole cell MALDI mass spectrometry biotyping. Sci Rep 2018; 8:11260. [PMID: 30050068 PMCID: PMC6062520 DOI: 10.1038/s41598-018-29677-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 07/13/2018] [Indexed: 12/20/2022] Open
Abstract
Recent advances in matrix-assisted laser desorption/ionization (MALDI) mass spectrometry have enabled whole cell-MALDI mass spectrometry biotyping of drug-treated cultured cells for rapid monitoring of known abundant pharmacodynamic protein markers such as polyacetylated histones. In contrast, generic and automated analytical workflows for discovery of such pharmacodynamic markers, in particular lipid markers, and their use in cellular tests of drug-like compounds are still lacking. Here, we introduce such a workflow and demonstrate its utility for cellular drug-response monitoring of BCR-ABL tyrosine kinase inhibitors in K562 leukemia cells: First, low-molecular mass features indicating drug responses are computationally extracted from groups of MALDI-TOF mass spectra. Then, the lipids/metabolites corresponding to these features are identified by MALDI-Fourier transformation mass spectrometry. To demonstrate utility of the method, we identify the potassium adduct of phosphatidylcholine PC(36:1) as well as heme B, a marker for erythroid differentiation, as markers for a label-free MALDI MS-based test of cellular responses to BCR-ABL inhibitors. Taken together, these results suggest that MALDI-TOF mass spectrometry of lipids and other low molecular mass metabolites could support cell-based drug profiling.
Collapse
Affiliation(s)
- David Weigt
- Center for biomedical Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Paul-Wittsack Str. 10, 68163, Mannheim, Germany
- HBIGS International Graduate School of Molecular and Cellular Biology, Heidelberg University, Im Neuenheimer Feld 501, 69120, Heidelberg, Germany
| | - Denis A Sammour
- Center for biomedical Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Paul-Wittsack Str. 10, 68163, Mannheim, Germany
| | - Timon Ulrich
- Center for biomedical Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Paul-Wittsack Str. 10, 68163, Mannheim, Germany
| | - Bogdan Munteanu
- Center for biomedical Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Paul-Wittsack Str. 10, 68163, Mannheim, Germany
| | - Carsten Hopf
- Center for biomedical Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Paul-Wittsack Str. 10, 68163, Mannheim, Germany.
- HBIGS International Graduate School of Molecular and Cellular Biology, Heidelberg University, Im Neuenheimer Feld 501, 69120, Heidelberg, Germany.
| |
Collapse
|
18
|
Perfusion mammalian cell culture for recombinant protein manufacturing – A critical review. Biotechnol Adv 2018; 36:1328-1340. [DOI: 10.1016/j.biotechadv.2018.04.011] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/26/2018] [Accepted: 04/30/2018] [Indexed: 01/04/2023]
|
19
|
Walther J, Lu J, Hollenbach M, Yu M, Hwang C, McLarty J, Brower K. Perfusion Cell Culture Decreases Process and Product Heterogeneity in a Head‐to‐Head Comparison With Fed‐Batch. Biotechnol J 2018; 14:e1700733. [DOI: 10.1002/biot.201700733] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/12/2018] [Indexed: 02/03/2023]
Affiliation(s)
- Jason Walther
- Bioprocess DevelopmentSanofi31 New York AvenueFraminghamMA 01701USA
| | - Jiuyi Lu
- Bioprocess DevelopmentSanofi31 New York AvenueFraminghamMA 01701USA
| | - Myles Hollenbach
- Bioprocess DevelopmentSanofi31 New York AvenueFraminghamMA 01701USA
| | - Marcella Yu
- Bioprocess DevelopmentSanofi31 New York AvenueFraminghamMA 01701USA
| | - Chris Hwang
- Bioprocess DevelopmentSanofi31 New York AvenueFraminghamMA 01701USA
| | - Jean McLarty
- Bioprocess DevelopmentSanofi31 New York AvenueFraminghamMA 01701USA
| | - Kevin Brower
- Bioprocess DevelopmentSanofi31 New York AvenueFraminghamMA 01701USA
| |
Collapse
|
20
|
Karst DJ, Steinhoff RF, Kopp MRG, Soos M, Zenobi R, Morbidelli M. Isotope labeling to determine the dynamics of metabolic response in CHO cell perfusion bioreactors using MALDI-TOF-MS. Biotechnol Prog 2017; 33:1630-1639. [PMID: 28840654 DOI: 10.1002/btpr.2539] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 06/22/2017] [Indexed: 01/09/2023]
Abstract
The steady-state operation of Chinese hamster ovary (CHO) cells in perfusion bioreactors requires the equilibration of reactor dynamics and cell metabolism. Accordingly, in this work we investigate the transient cellular response to changes in its environment and their interactions with the bioreactor hydrodynamics. This is done in a benchtop perfusion bioreactor using MALDI-TOF MS through isotope labeling of complex intracellular nucleotides (ATP, UTP) and nucleotide sugars (UDP-Hex, UDP-HexNAc). By switching to a 13 C6 glucose containing feed media during constant operation at 20 × 106 cells and a perfusion rate of 1 reactor volume per day, isotopic steady state was studied. A step change to the 13 C6 glucose medium in spin tubes allowed the determination of characteristic times for the intracellular turnover of unlabeled metabolites pools, τST (≤0.56 days), which were confirmed in the bioreactor. On the other hand, it is shown that the reactor residence time τR (1 day) and characteristic time for glucose uptake τGlc (0.33 days), representative of the bioreactor dynamics, delayed the consumption of 13 C6 glucose in the bioreactor and thus the intracellular 13 C enrichment. The proposed experimental approach allowed the decoupling of bioreactor hydrodynamics and intrinsic dynamics of cell metabolism in response to a change in the cell culture environment. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1630-1639, 2017.
Collapse
Affiliation(s)
- Daniel J Karst
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, 8093, Switzerland
| | - Robert F Steinhoff
- Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, 8093, Switzerland
| | - Marie R G Kopp
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, 8093, Switzerland
| | - Miroslav Soos
- Department of Chemical Engineering, University of Chemistry and Technology, Technicka 3, Prague, 166 28, Czech Republic
| | - Renato Zenobi
- Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, 8093, Switzerland
| | - Massimo Morbidelli
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, 8093, Switzerland
| |
Collapse
|
21
|
Steinebach F, Ulmer N, Wolf M, Decker L, Schneider V, Wälchli R, Karst D, Souquet J, Morbidelli M. Design and operation of a continuous integrated monoclonal antibody production process. Biotechnol Prog 2017; 33:1303-1313. [DOI: 10.1002/btpr.2522] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 07/03/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Fabian Steinebach
- Dept. of Chemistry and Applied Biosciences; Inst. for Chemical and Bioengineering; ETH Zurich Zurich 8093 Switzerland
| | - Nicole Ulmer
- Dept. of Chemistry and Applied Biosciences; Inst. for Chemical and Bioengineering; ETH Zurich Zurich 8093 Switzerland
| | - Moritz Wolf
- Dept. of Chemistry and Applied Biosciences; Inst. for Chemical and Bioengineering; ETH Zurich Zurich 8093 Switzerland
| | - Lara Decker
- Dept. of Chemistry and Applied Biosciences; Inst. for Chemical and Bioengineering; ETH Zurich Zurich 8093 Switzerland
| | - Veronika Schneider
- Dept. of Chemistry and Applied Biosciences; Inst. for Chemical and Bioengineering; ETH Zurich Zurich 8093 Switzerland
| | - Ruben Wälchli
- Dept. of Chemistry and Applied Biosciences; Inst. for Chemical and Bioengineering; ETH Zurich Zurich 8093 Switzerland
| | - Daniel Karst
- Dept. of Chemistry and Applied Biosciences; Inst. for Chemical and Bioengineering; ETH Zurich Zurich 8093 Switzerland
| | - Jonathan Souquet
- Biotech Process Science Technology & Innovation; Merck-Serono S.A., 1804 Corsier-sur-Vevey; Switzerland
| | - Massimo Morbidelli
- Dept. of Chemistry and Applied Biosciences; Inst. for Chemical and Bioengineering; ETH Zurich Zurich 8093 Switzerland
| |
Collapse
|