1
|
Hashikawa-Muto C, Yokoyama Y, Hamamoto R, Kobayashi K, Masuda Y, Nonaka K. Effect of pH, NaCl concentration, and mAb concentration of feed solution on the filterability of Planova™ 20N and Planova™ BioEX. Biotechnol Prog 2024; 40:e3420. [PMID: 38146091 DOI: 10.1002/btpr.3420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/21/2023] [Accepted: 11/30/2023] [Indexed: 12/27/2023]
Abstract
Virus filtration is one of the most important steps in ensuring viral safety during the purification of monoclonal antibodies (mAbs) and other biotherapeutics derived from mammalian cell cultures. Regarding the various virus retentive filters, including Planova filters, a great deal of data has been reported on the virus retention capability and its mechanism. Along with the virus retention capability, filterability is a key performance indicator for designing a robust and high-throughput virus filtration step. In order to obtain higher filterability, optimization of the feed solution conditions, and filter selection is essential; however, limited data are available regarding the filtration characteristics of Planova filters. Furthermore, for Planova 20N and Planova BioEX, the virus retention characteristics were reported to differ due to their respective membrane materials and layer structures. Whether these filters differ in their filtration characteristics is an interesting question, but no comparative evaluations have been reported. In this study, the filterability of the two filters was investigated and compared using 15 feed mAb solutions of a single mAb selected by design of experiments with different combinations of pH, NaCl concentration, and mAb concentration. The filterability of Planova 20N was affected not only by the feed solution viscosity, but also by the mAb aggregate content of the feed mAb solution and mAb-membrane electrostatic interactions. In contrast, the filterability of Planova BioEX decreased under some buffer conditions. These findings and the established design spaces of these filters provide valuable insights into the process optimization of virus filtration.
Collapse
Affiliation(s)
- Chie Hashikawa-Muto
- Biologics Technology Research Laboratories, Biologics Division, Daiichi Sankyo Co., Ltd., Chiyoda-machi, Oura-gun, Japan
| | - Yoshiro Yokoyama
- Technology Development Department, Bioprocess Division, Asahi Kasei Medical Co., Ltd., Nobeoka, Japan
| | - Ryo Hamamoto
- Technology Development Department, Bioprocess Division, Asahi Kasei Medical Co., Ltd., Nobeoka, Japan
| | - Kazuya Kobayashi
- Global Sales & Customer Services Department, Bioprocess Division, Asahi Kasei Medical Co., Ltd., Tokyo, Japan
| | - Yumiko Masuda
- Biologics Technology Research Laboratories, Biologics Division, Daiichi Sankyo Co., Ltd., Chiyoda-machi, Oura-gun, Japan
| | - Koichi Nonaka
- Biologics Technology Research Laboratories, Biologics Division, Daiichi Sankyo Co., Ltd., Chiyoda-machi, Oura-gun, Japan
| |
Collapse
|
2
|
Leisi R, Rostami I, Laughhunn A, Bieri J, Roth NJ, Widmer E, Ros C. Visualizing protein fouling and its impact on parvovirus retention within distinct filter membrane morphologies. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
3
|
Tanudjaja HJ, Ng AQQ, Chew JW. Mechanistic insights into the membrane fouling mechanism during ultrafiltration of high-concentration proteins via in-situ electrical impedance spectroscopy (EIS). J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2021.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
4
|
Billups M, Minervini M, Holstein M, Feroz H, Ranjan S, Hung J, Bao H, Li ZJ, Ghose S, Zydney AL. Role of membrane structure on the filtrate flux during monoclonal antibody filtration through virus retentive membranes. Biotechnol Prog 2022; 38:e3231. [PMID: 34994527 DOI: 10.1002/btpr.3231] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/15/2021] [Accepted: 01/02/2022] [Indexed: 02/02/2023]
Abstract
Virus removal filtration is a critical step in the manufacture of monoclonal antibody products, providing a robust size-based removal of both enveloped and non-enveloped viruses. Many monoclonal antibodies show very large reductions in filtrate flux during virus filtration, with the mechanisms governing this behavior and its dependence on the properties of the virus filter and antibody remaining largely unknown. Experiments were performed using the highly asymmetric Viresolve® Pro and the relatively homogeneous Pegasus™ SV4 virus filters using a highly purified monoclonal antibody. The filtrate flux for a 4 g/L antibody solution through the Viresolve® Pro decreased by about 10-fold when the filter was oriented with the skin side down but by more than 1000-fold when the asymmetric filter orientation was reversed and used with the skin side up. The very large flux decline observed with the skin side up could be eliminated by placing a large pore size prefilter directly on top of the virus filter; this improvement in filtrate flux was not seen when the prefilter was used inline or as a batch prefiltration step. The increase in flux due to the prefilter was not related to the removal of large protein aggregates or to an alteration in the extent of concentration polarization. Instead, the prefilter appears to transiently disrupt reversible associations of the antibodies caused by strong intermolecular attractions. These results provide important insights into the role of membrane morphology and antibody properties on the filtrate flux during virus filtration.
Collapse
Affiliation(s)
- Matthew Billups
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Mirko Minervini
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Melissa Holstein
- Bristol Myers Squibb Biologics Process Development, Global Product Development and Supply, Devens, Massachusetts, USA
| | - Hasin Feroz
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania, USA.,Bristol Myers Squibb Biologics Process Development, Global Product Development and Supply, Devens, Massachusetts, USA
| | - Swarnim Ranjan
- Bristol Myers Squibb Biologics Process Development, Global Product Development and Supply, Devens, Massachusetts, USA
| | - Jessica Hung
- Bristol Myers Squibb Biologics Process Development, Global Product Development and Supply, Devens, Massachusetts, USA
| | - Haiying Bao
- Bristol Myers Squibb Biologics Process Development, Global Product Development and Supply, Devens, Massachusetts, USA
| | - Zheng Jian Li
- Bristol Myers Squibb Biologics Process Development, Global Product Development and Supply, Devens, Massachusetts, USA
| | - Sanchayita Ghose
- Bristol Myers Squibb Biologics Process Development, Global Product Development and Supply, Devens, Massachusetts, USA
| | - Andrew L Zydney
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
5
|
Ide S. Filter made of cuprammonium regenerated cellulose for virus removal: a mini-review. CELLULOSE (LONDON, ENGLAND) 2021; 29:2779-2793. [PMID: 34840442 PMCID: PMC8609256 DOI: 10.1007/s10570-021-04319-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
In 1989, Asahi Kasei commercialized a porous hollow fiber membrane filter (Planova™) made of cuprammonium regenerated cellulose, making it possible for the first time in the world to "remove viruses from protein solutions by membrane filtration". Planova has demonstrated its usefulness in separating proteins and viruses. Filters that remove viruses from protein solutions, i.e., virus removal filters (VFs), have become one of the critical modern technologies to assure viral safety of biological products. It has also become an indispensable technology for the future. The performance characteristics of VFs can be summarized in two points: 1) the virus removal performance increases as the virus diameter increases, and 2) the recovery rate of proteins with molecular weights greater than 10,000 exceeds the practical level. This paper outlines the emergence of VF and its essential roles in the purification process of biological products, requirements for VF, phase separation studies for cuprammonium cellulose solution, comparison between Planova and other regenerated cellulose flat membranes made from other cellulose solutions, and the development of Planova. The superior properties of Planova can be attributed to its highly interconnected three-dimensional network structure. Furthermore, future trends in the VF field, the subject of this review, are discussed.
Collapse
Affiliation(s)
- Shoichi Ide
- Planova Production Department, Bioprocess Division, Asahi Kasei Medical Co. Ltd, Asahi-machi, Nobeoka, Miyazaki 882-0847 Japan
| |
Collapse
|
6
|
Lay HT, Yeow RJE, Ma Y, Zydney AL, Wang R, Chew JW. Internal membrane fouling by proteins during microfiltration. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119589] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
7
|
Magrì D, Navarro A, Bergami F, Percivalle E, Ferrari A, Lettieri T, Calzolai L, Piralla A, Baldanti F, Gioria S. Impact of Viral Decontamination Method on Cytokine Profile of COVID-19 Patients. Biomedicines 2021; 9:1287. [PMID: 34680404 PMCID: PMC8533265 DOI: 10.3390/biomedicines9101287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/14/2021] [Accepted: 09/17/2021] [Indexed: 11/17/2022] Open
Abstract
COVID-19 related morbidity and mortality have been often attributed to an exaggerated immune response. The role of cytokines and chemokines in COVID-19 and their contributions to illness severity are known, and thus their profiling from patient bronchoalveolar lavage (BAL) samples would help in understanding the disease progression. To date, limited studies have been performed on COVID-19 BAL samples, as the manipulation of such specimens (potentially containing live viruses) requires several laboratorial precautions, such as personnel training and special equipment, a requirement that not all laboratories can fulfil. Here, we assessed two fast and easily applicable methods (ultrafiltration and ultraviolet-C irradiation) for their impact on viral load removal or inactivation, respectively and on cytokine profiles preservation. Eight samples of BAL fluids from SARS-CoV2 patients with high viral load were tested. For both methods, complete removal was confirmed by lack of viral replication in Vero E6 cells and by RT-qPCR. Although both methods showed to remove completely the active SARS-CoV2 viral load, only UVC treatment has little or no quantitative effect on total cytokines/chemokines measurements, however cytokines profile and relative ratios are preserved or minimally altered when compared data obtained by the two different decontamination methods. Sample preparation and manipulation can greatly affect the analytical results; therefore, understanding if changes occurred after sample processing is of outmost importance for reliable data and can be useful to improve clinical practice.
Collapse
Affiliation(s)
- Davide Magrì
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (D.M.); (A.N.); (T.L.); (L.C.)
| | - Anna Navarro
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (D.M.); (A.N.); (T.L.); (L.C.)
| | - Federica Bergami
- Molecular Virology Unit, Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (F.B.); (E.P.); (A.F.); (A.P.); (F.B.)
| | - Elena Percivalle
- Molecular Virology Unit, Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (F.B.); (E.P.); (A.F.); (A.P.); (F.B.)
| | - Alessandro Ferrari
- Molecular Virology Unit, Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (F.B.); (E.P.); (A.F.); (A.P.); (F.B.)
| | - Teresa Lettieri
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (D.M.); (A.N.); (T.L.); (L.C.)
| | - Luigi Calzolai
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (D.M.); (A.N.); (T.L.); (L.C.)
| | - Antonio Piralla
- Molecular Virology Unit, Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (F.B.); (E.P.); (A.F.); (A.P.); (F.B.)
| | - Fausto Baldanti
- Molecular Virology Unit, Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (F.B.); (E.P.); (A.F.); (A.P.); (F.B.)
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Sabrina Gioria
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (D.M.); (A.N.); (T.L.); (L.C.)
| |
Collapse
|
8
|
Tanaka M, Morita S, Hayashi T. Role of interfacial water in determining the interactions of proteins and cells with hydrated materials. Colloids Surf B Biointerfaces 2020; 198:111449. [PMID: 33310639 DOI: 10.1016/j.colsurfb.2020.111449] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/09/2020] [Accepted: 11/01/2020] [Indexed: 01/27/2023]
Abstract
Water molecules play a crucial role in biointerfacial interactions, including protein adsorption and desorption. To understand the role of water in the interaction of proteins and cells at biological interfaces, it is important to compare particular states of hydration water with various physicochemical properties of hydrated biomaterials. In this review, we discuss the fundamental concepts for determining the interactions of proteins and cells with hydrated materials along with selected examples corresponding to our recent studies, including poly(2-methoxyethyl acrylate) (PMEA), PMEA derivatives, and other biomaterials. The states of water were analyzed by differential scanning calorimetry, in situ attenuated total reflection infrared spectroscopy, and surface force measurements. We found that intermediate water which is loosely bound to a biomaterial, is a useful indicator of the bioinertness of material surfaces. This finding on intermediate water provides novel insights and helps develop novel experimental models for understanding protein adsorption in a wide range of materials, such as those used in biomedical applications.
Collapse
Affiliation(s)
- Masaru Tanaka
- Institute for Materials Chemistry and Engineering, Kyushu University, CE41 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
| | - Shigeaki Morita
- Department of Engineering Science, Osaka Electro-Communication University, 18-8 Hatsucho, Neyagawa, 572-8530, Japan
| | - Tomohiro Hayashi
- Department of Materials Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8502, Japan; JST-PRESTO, 4-1-8 Hon-cho, Kawaguchi, Saitama, 332-0012, Japan
| |
Collapse
|
9
|
Visualizing effects of protein fouling on capture profiles in the Planova BioEX and 20N virus filters. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118271] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
10
|
Rudolph G, Virtanen T, Ferrando M, Güell C, Lipnizki F, Kallioinen M. A review of in situ real-time monitoring techniques for membrane fouling in the biotechnology, biorefinery and food sectors. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.117221] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|