1
|
Zahrl RJ, Prielhofer R, Burgard J, Mattanovich D, Gasser B. Synthetic activation of yeast stress response improves secretion of recombinant proteins. N Biotechnol 2023; 73:19-28. [PMID: 36603701 DOI: 10.1016/j.nbt.2023.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/22/2022] [Accepted: 01/01/2023] [Indexed: 01/03/2023]
Abstract
Yeasts, such as Pichia pastoris (syn Komagataella spp.), are particularly suitable expression systems for emerging classes of recombinant proteins. Among them, recombinant antibody fragments, such as single-chain variable fragments (scFv) and single-domain antibodies (VHH), are credible alternatives to monoclonal antibodies. The availability of powerful genetic engineering and synthetic biology tools has facilitated improvement of this cell factory to overcome certain limitations. However, cell engineering to improve secretion often remains a trial-and-error approach and improvements are often specific to the protein produced. Where multiple genetic interventions are needed to remove bottlenecks in the process of recombinant protein secretion, this leads to a high number of combinatorial possibilities for creation of new production strains. Therefore, our aim was to exploit whole transcriptional programs (stress response pathways) in order to simplify the strain engineering of new production strains. Indeed, the artificial activation of the general stress response transcription factor Msn4, as well as synthetic versions thereof, could replace the secretion enhancing effect of several cytosolic chaperones. Greater than 4-fold improvements in recombinant protein secretion were achieved by overexpression of MSN4 or synMSN4, either alone or in combination with Hac1 or ER chaperones. With this concept we were able to successfully engineer strains reaching titers of more than 2.5 g/L scFv and 8 g/L VHH in bioreactor cultivations. This increased secretion capacity of different industrially relevant model proteins indicates that MSN4 overexpression most likely represents a general concept to improve recombinant protein production in yeast.
Collapse
Affiliation(s)
- Richard J Zahrl
- ACIB GmbH, Muthgasse 11, 1190 Vienna, Austria; Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190 Vienna, Austria
| | - Roland Prielhofer
- ACIB GmbH, Muthgasse 11, 1190 Vienna, Austria; Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190 Vienna, Austria
| | - Jonas Burgard
- ACIB GmbH, Muthgasse 11, 1190 Vienna, Austria; Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190 Vienna, Austria
| | - Diethard Mattanovich
- ACIB GmbH, Muthgasse 11, 1190 Vienna, Austria; Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190 Vienna, Austria
| | - Brigitte Gasser
- ACIB GmbH, Muthgasse 11, 1190 Vienna, Austria; Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190 Vienna, Austria.
| |
Collapse
|
2
|
Kassoumi K, Kousoulou P, Sevastos D, Vamvakas SS, Papadimitriou K, Kapolos J, Koliadima A. Fermentation Efficiency of Genetically Modified Yeasts in Grapes Must. Foods 2022; 11:foods11030413. [PMID: 35159565 PMCID: PMC8834448 DOI: 10.3390/foods11030413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 12/10/2022] Open
Abstract
Winemaking is a stressful procedure for yeast cells. The presence of high levels of carbohydrates at the beginning of the fermentation and the subsequent increase of ethanol levels alongside with other environmental factors force the cell to undergo a continuous adaptation process. Ideally, yeast strains should be able to adapt to this changing environment fast and they must be able to ferment at low temperatures with the highest possible fermentation rates. Additionally, the balanced utilization of glucose and fructose—the two major hexoses in grapes—is also important as any residual fructose may confers unwanted sweetness. As proteins, Msn2/4 are known to play pivotal roles in cell stress response, the question that arise regards the differentially cell response driven by specific point mutations in these two proteins, and the subsequent effects on alcoholic fermentation. Four different mutants in which serine residues have been replaced by alanine are studied in this paper. Our results indicate that substitution at position 533 of Msn4 protein (W_M4_533) significantly increases the fermentation rate even at low temperatures (12 °C), by lowering the fermentation’s activation energy. Similar results but to a lesser extent were obtained by the S582A substitution in Msn2 protein. In addition, W_M4_533 seems to have a more balanced utilization of must hexoses. From the present work it is concluded that genetic modification Msn2/4 represents a promising procedure for shortening the fermentation time, even at low temperatures, which in many cases constitutes an important technological requirement.
Collapse
Affiliation(s)
- Konstantina Kassoumi
- Department of Chemistry, University of Patras, 26504 Patras, Greece; (K.K.); (P.K.); (D.S.)
| | - Penny Kousoulou
- Department of Chemistry, University of Patras, 26504 Patras, Greece; (K.K.); (P.K.); (D.S.)
| | - Dimitrios Sevastos
- Department of Chemistry, University of Patras, 26504 Patras, Greece; (K.K.); (P.K.); (D.S.)
| | | | - Konstantinos Papadimitriou
- Department of Food Science and Technology, University of the Peloponnese, 24100 Kalamata, Greece; (K.P.); (J.K.)
| | - John Kapolos
- Department of Food Science and Technology, University of the Peloponnese, 24100 Kalamata, Greece; (K.P.); (J.K.)
| | - Athanasia Koliadima
- Department of Chemistry, University of Patras, 26504 Patras, Greece; (K.K.); (P.K.); (D.S.)
- Correspondence:
| |
Collapse
|
3
|
Yaakoub H, Sanchez NS, Ongay-Larios L, Courdavault V, Calenda A, Bouchara JP, Coria R, Papon N. The high osmolarity glycerol (HOG) pathway in fungi †. Crit Rev Microbiol 2021; 48:657-695. [PMID: 34893006 DOI: 10.1080/1040841x.2021.2011834] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
While fungi are widely occupying nature, many species are responsible for devastating mycosis in humans. Such niche diversity explains how quick fungal adaptation is necessary to endow the capacity of withstanding fluctuating environments and to cope with host-imposed conditions. Among all the molecular mechanisms evolved by fungi, the most studied one is the activation of the phosphorelay signalling pathways, of which the high osmolarity glycerol (HOG) pathway constitutes one of the key molecular apparatus underpinning fungal adaptation and virulence. In this review, we summarize the seminal knowledge of the HOG pathway with its more recent developments. We specifically described the HOG-mediated stress adaptation, with a particular focus on osmotic and oxidative stress, and point out some lags in our understanding of its involvement in the virulence of pathogenic species including, the medically important fungi Candida albicans, Cryptococcus neoformans, and Aspergillus fumigatus, compared to the model yeast Saccharomyces cerevisiae. Finally, we also highlighted some possible applications of the HOG pathway modifications to improve the fungal-based production of natural products in the industry.
Collapse
Affiliation(s)
- Hajar Yaakoub
- Univ Angers, Univ Brest, GEIHP, SFR ICAT, Angers, France
| | - Norma Silvia Sanchez
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| | - Laura Ongay-Larios
- Unidad de Biología Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Vincent Courdavault
- EA2106 "Biomolécules et Biotechnologies Végétales", Université de Tours, Tours, France
| | | | | | - Roberto Coria
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| | - Nicolas Papon
- Univ Angers, Univ Brest, GEIHP, SFR ICAT, Angers, France
| |
Collapse
|
4
|
Effects of Lactobacillus plantarum on the ethanol tolerance of Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2021; 105:2597-2611. [PMID: 33646374 DOI: 10.1007/s00253-021-11198-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 02/05/2021] [Accepted: 02/24/2021] [Indexed: 10/22/2022]
Abstract
The bioethanol fermentation by Saccharomyces cerevisiae is often challenged by bacterial contamination, especially lactic acid bacteria (LAB). LAB can inhibit the growth S. cerevisiae by secreting organic acids and competing for nutrients and physical space. However, the range of favorable effects attributed to LAB during bioethanol fermentation, and their associated mechanisms of regulation, are not fully understood. This study was performed to clarify the effects of Lactobacillus plantarum, an important contaminative LAB in bioethanol fermentation, on the mechanism of ethanol tolerance in S. cerevisiae. The results showed that the presence of L. plantarum increased the ethanol tolerance of S. cerevisiae by promoting or inhibiting various metabolic processes in the yeast cells: The metabolism of trehalose, ergosterol, certain amino acids, proton pumps, stress response transcriptional activators, and heat shock proteins were all promoted; amounts of intracellular monounsaturated fatty acids and the accumulation of reactive oxygen species were inhibited. Furthermore, the maintenance of the acquired higher ethanol tolerance of S. cerevisiae was dependent on the coexistence of L. plantarum. These results suggested a complex relationship existed between S. cerevisiae and the contaminating LAB that might also play a beneficial role during fermentation by promoting the ethanol tolerance of yeast. The results from this study suggested that the extent of controlling bacterial contamination on bioethanol fermentation efficiency should be given careful consideration. KEY POINTS: • L. plantarum improved the ethanol tolerance of S. cerevisiae. • L. plantarum regulated the ethanol tolerance-related metabolism of yeast cells. • L. plantarum coexistence facilitated maintenance of ethanol tolerance in yeast cells.
Collapse
|
5
|
Factors affecting yeast ethanol tolerance and fermentation efficiency. World J Microbiol Biotechnol 2020; 36:114. [DOI: 10.1007/s11274-020-02881-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 06/27/2020] [Indexed: 01/01/2023]
|