1
|
Denbaum E, Altern SH, Vecchiarello N, Cramer SM. A batch screening technique for the calculation of chromatographic separability. J Chromatogr A 2024; 1732:465170. [PMID: 39098099 DOI: 10.1016/j.chroma.2024.465170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/03/2024] [Accepted: 07/14/2024] [Indexed: 08/06/2024]
Abstract
This paper employs a high-throughput parallel batch (microtiter plate) adsorption screen with sequential salt step increases to rapidly generate protein elution profiles for multiple resins at different pHs using a protein library. The chromatographic set used in this work includes single mode, multimodal anion-exchange (MMA), and multimodal cation-exchange (MMC) resins. The protein library consists of proteins with isoelectric points ranging from 5.1 to 11.4 with varying hydrophobicities as determined by their retention on hydrophobic interaction chromatography. The batch sequential experiments are carried out using one protein at a time with a wide set of resins at multiple pH conditions, thus enabling simple microtiter plate detection. A mathematical formulation is then used to determine the first moment of the distributions from each chromatogram (sequential step elution) generated in the parallel batch experiments. Batch data first moments (expressed in salt concentration) are then compared to results obtained from column linear salt gradient elution, and the techniques are shown to be consistent. In addition, first moment data are used to calculate one-resin separability scores, which are a measure of a resin's ability, at a specified pH, to separate the entire set of proteins in the library from one another. Again, the results from the batch and column experiments are shown to be comparable. The first moment data sets were then employed to calculate the two-resin separability scores, which are a measure of the ability of two resins to synergistically separate the entire set of proteins in the library. Importantly, these results based on the two-resin separability performances derived from the batch and column experiments were again shown to be consistent. This approach for rapidly screening large numbers of chromatographic resins and mobile phase conditions for their elution behavior may prove useful for enabling the rapid discovery of new chromatographic ligands and resins.
Collapse
Affiliation(s)
- Eric Denbaum
- Department of Biochemistry and Biophysics and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, United States
| | - Scott H Altern
- Department of Chemical and Biological Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, United States
| | - Nicholas Vecchiarello
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA, 22903, United States
| | - Steven M Cramer
- Department of Chemical and Biological Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, United States.
| |
Collapse
|
2
|
França RKA, Studart IC, Bezerra MRL, Pontes LQ, Barbosa AMA, Brigido MM, Furtado GP, Maranhão AQ. Progress on Phage Display Technology: Tailoring Antibodies for Cancer Immunotherapy. Viruses 2023; 15:1903. [PMID: 37766309 PMCID: PMC10536222 DOI: 10.3390/v15091903] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
The search for innovative anti-cancer drugs remains a challenge. Over the past three decades, antibodies have emerged as an essential asset in successful cancer therapy. The major obstacle in developing anti-cancer antibodies is the need for non-immunogenic antibodies against human antigens. This unique requirement highlights a disadvantage to using traditional hybridoma technology and thus demands alternative approaches, such as humanizing murine monoclonal antibodies. To overcome these hurdles, human monoclonal antibodies can be obtained directly from Phage Display libraries, a groundbreaking tool for antibody selection. These libraries consist of genetically engineered viruses, or phages, which can exhibit antibody fragments, such as scFv or Fab on their capsid. This innovation allows the in vitro selection of novel molecules directed towards cancer antigens. As foreseen when Phage Display was first described, nowadays, several Phage Display-derived antibodies have entered clinical settings or are undergoing clinical evaluation. This comprehensive review unveils the remarkable progress in this field and the possibilities of using clever strategies for phage selection and tailoring the refinement of antibodies aimed at increasingly specific targets. Moreover, the use of selected antibodies in cutting-edge formats is discussed, such as CAR (chimeric antigen receptor) in CAR T-cell therapy or ADC (antibody drug conjugate), amplifying the spectrum of potential therapeutic avenues.
Collapse
Affiliation(s)
- Renato Kaylan Alves França
- Molecular Immunology Laboratory, Department of Cellular Biology, Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, Brazil; (R.K.A.F.); (M.M.B.)
- Graduate Program in Molecular Pathology, University of Brasilia, Brasilia 70910-900, Brazil
| | - Igor Cabral Studart
- Oswaldo Cruz Foundation, Fiocruz Ceará, Eusébio 61773-270, Brazil; (I.C.S.); (M.R.L.B.); (L.Q.P.); (A.M.A.B.); (G.P.F.)
- Graduate Program in Biotechnology of Natural Resources, Federal University of Ceará, Fortaleza 60440-970, Brazil
| | - Marcus Rafael Lobo Bezerra
- Oswaldo Cruz Foundation, Fiocruz Ceará, Eusébio 61773-270, Brazil; (I.C.S.); (M.R.L.B.); (L.Q.P.); (A.M.A.B.); (G.P.F.)
- Graduate Program in Biotechnology of Natural Resources, Federal University of Ceará, Fortaleza 60440-970, Brazil
| | - Larissa Queiroz Pontes
- Oswaldo Cruz Foundation, Fiocruz Ceará, Eusébio 61773-270, Brazil; (I.C.S.); (M.R.L.B.); (L.Q.P.); (A.M.A.B.); (G.P.F.)
- Graduate Program in Biotechnology of Natural Resources, Federal University of Ceará, Fortaleza 60440-970, Brazil
| | - Antonio Marcos Aires Barbosa
- Oswaldo Cruz Foundation, Fiocruz Ceará, Eusébio 61773-270, Brazil; (I.C.S.); (M.R.L.B.); (L.Q.P.); (A.M.A.B.); (G.P.F.)
- Graduate Program in Applied Informatics, University of Fortaleza, Fortaleza 60811-905, Brazil
| | - Marcelo Macedo Brigido
- Molecular Immunology Laboratory, Department of Cellular Biology, Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, Brazil; (R.K.A.F.); (M.M.B.)
| | - Gilvan Pessoa Furtado
- Oswaldo Cruz Foundation, Fiocruz Ceará, Eusébio 61773-270, Brazil; (I.C.S.); (M.R.L.B.); (L.Q.P.); (A.M.A.B.); (G.P.F.)
- Graduate Program in Biotechnology of Natural Resources, Federal University of Ceará, Fortaleza 60440-970, Brazil
| | - Andréa Queiroz Maranhão
- Molecular Immunology Laboratory, Department of Cellular Biology, Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, Brazil; (R.K.A.F.); (M.M.B.)
| |
Collapse
|
3
|
Kilgore R, Chu W, Bhandari D, Fischler D, Carbonell RG, Crapanzano M, Menegatti S. Development of peptide affinity ligands for the purification of polyclonal and monoclonal Fabs from recombinant fluids. J Chromatogr A 2023; 1687:463701. [PMID: 36502645 DOI: 10.1016/j.chroma.2022.463701] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/21/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
Engineered multi-specific monoclonal antibodies (msAbs) and antibody fragments offer valuable therapeutic options against metabolic disorders, aggressive cancers, and viral infections. The advancement in molecular design and recombinant expression of these next-generation drugs, however, is not equaled by the progress in downstream bioprocess technology. The purification of msAbs and fragments requires affinity adsorbents with orthogonal biorecognition of different portions of the antibody structure, namely its Fc (fragment crystallizable) and Fab (fragment antigen-binding) regions or the CH1-3 and CL chains. Current adsorbents rely on protein ligands that, while featuring high binding capacity and selectivity, need harsh elution conditions and suffer from high cost, limited biochemical stability, and potential release of immunogenic fragments. Responding to these challenges, we undertook the de novo discovery of peptide ligands that target different regions of human Fab and enable product release under mild conditions. The ligands were discovered by screening a focused library of 12-mer peptides against a feedstock comprising human Fab and Chinese hamster ovary host cell proteins (CHO HCPs). The identified ligands were evaluated via binding studies as well as molecular docking simulations, returning excellent values of binding capacity (Qmax ∼ 20 mg of Fab per mL of resin) and dissociation constant (KD = 2.16·10-6 M). Selected ligand FRWNFHRNTFFP and commercial Protein L ligands were further characterized by measuring the dynamic binding capacity (DBC10%) at different residence times (RT) and performing the purification of polyclonal and monoclonal Fabs from CHO-K1 cell culture fluids. The peptide ligand featured DBC10% ∼ 6-16 mg/mL (RT of 2 min) and afforded values of yield (93-96%) and purity (89-96%) comparable to those provided by Protein L resins.
Collapse
Affiliation(s)
- Ryan Kilgore
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States
| | - Wenning Chu
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States
| | - Dipendra Bhandari
- LigaTrap Technologies, 1791 Varsity Dr., Suite 150, Raleigh, NC 27606, United States
| | - David Fischler
- LigaTrap Technologies, 1791 Varsity Dr., Suite 150, Raleigh, NC 27606, United States
| | - Ruben G Carbonell
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States; Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, NC 27695, United States
| | - Michael Crapanzano
- LigaTrap Technologies, 1791 Varsity Dr., Suite 150, Raleigh, NC 27606, United States
| | - Stefano Menegatti
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States; LigaTrap Technologies, 1791 Varsity Dr., Suite 150, Raleigh, NC 27606, United States; Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, NC 27695, United States.
| |
Collapse
|
4
|
Evaluation of Phage Display Biopanning Strategies for the Selection of Anti-Cell Surface Receptor Antibodies. Int J Mol Sci 2022; 23:ijms23158470. [PMID: 35955604 PMCID: PMC9369378 DOI: 10.3390/ijms23158470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/28/2022] [Accepted: 07/28/2022] [Indexed: 12/04/2022] Open
Abstract
Monoclonal antibodies (mAbs) are one of the most successful and versatile protein-based pharmaceutical products used to treat multiple pathological conditions. The remarkable specificity of mAbs and their affinity for biological targets has led to the implementation of mAbs in the therapeutic regime of oncogenic, chronic inflammatory, cardiovascular, and infectious diseases. Thus, the discovery of novel mAbs with defined functional activities is of crucial importance to expand our ability to address current and future clinical challenges. In vitro, antigen-driven affinity selection employing phage display biopanning is a commonly used technique to isolate mAbs. The success of biopanning is dependent on the quality and the presentation format of the antigen, which is critical when isolating mAbs against membrane protein targets. Here, we provide a comprehensive investigation of two established panning strategies, surface-tethering of a recombinant extracellular domain and cell-based biopanning, to examine the impact of antigen presentation on selection outcomes with regards to the isolation of positive mAbs with functional potential against a proof-of-concept type I cell surface receptor. Based on the higher sequence diversity of the resulting antibody repertoire, presentation of a type I membrane protein in soluble form was more advantageous over presentation in cell-based format. Our results will contribute to inform and guide future antibody discovery campaigns against cell surface proteins.
Collapse
|
5
|
De novo Discovery of Peptide-based Affinity Ligands for the Fab Fragment of Human Immunoglobulin G. J Chromatogr A 2022; 1669:462941. [DOI: 10.1016/j.chroma.2022.462941] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/04/2022] [Accepted: 03/05/2022] [Indexed: 12/16/2022]
|
6
|
Chen H, Chen JS, Paerhati P, Jakos T, Bai SY, Zhu JW, Yuan YS. Strategies and Applications of Antigen-Binding Fragment (Fab) Production in Escherichia coli. PHARMACEUTICAL FRONTS 2021. [DOI: 10.1055/s-0041-1735145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
AbstractWith the advancement of genetic engineering, monoclonal antibodies (mAbs) have made far-reaching progress in the treatment of various human diseases. However, due to the high cost of production, the increasing demands for antibody-based therapies have not been fully met. Currently, mAb-derived alternatives, such as antigen-binding fragments (Fab), single-chain variable fragments, bispecifics, nanobodies, and conjugated mAbs have emerged as promising new therapeutic modalities. They can be readily prepared in bacterial systems with well-established fermentation technology and ease of manipulation, leading to the reduction of overall cost. This review aims to shed light on the strategies to improve the expression, purification, and yield of Fab fragments in Escherichia coli expression systems, as well as current advances in the applications of Fab fragments.
Collapse
Affiliation(s)
- Hui Chen
- Engineering Research Center of Cell & Therapeutic Antibody, Shanghai Jiao Tong University College of Pharmacy, Ministry of Education, Shanghai, People's Republic of China
| | - Jun-Sheng Chen
- Engineering Research Center of Cell & Therapeutic Antibody, Shanghai Jiao Tong University College of Pharmacy, Ministry of Education, Shanghai, People's Republic of China
| | - Pameila Paerhati
- Engineering Research Center of Cell & Therapeutic Antibody, Shanghai Jiao Tong University College of Pharmacy, Ministry of Education, Shanghai, People's Republic of China
| | - Tanja Jakos
- Engineering Research Center of Cell & Therapeutic Antibody, Shanghai Jiao Tong University College of Pharmacy, Ministry of Education, Shanghai, People's Republic of China
| | - Si-Yi Bai
- Engineering Research Center of Cell & Therapeutic Antibody, Shanghai Jiao Tong University College of Pharmacy, Ministry of Education, Shanghai, People's Republic of China
| | - Jian-Wei Zhu
- Engineering Research Center of Cell & Therapeutic Antibody, Shanghai Jiao Tong University College of Pharmacy, Ministry of Education, Shanghai, People's Republic of China
| | - Yun-Sheng Yuan
- Engineering Research Center of Cell & Therapeutic Antibody, Shanghai Jiao Tong University College of Pharmacy, Ministry of Education, Shanghai, People's Republic of China
| |
Collapse
|
7
|
Schimek C, Kubek M, Scheich D, Fink M, Brocard C, Striedner G, Cserjan-Puschmann M, Hahn R. Three-dimensional chromatography for purification and characterization of antibody fragments and related impurities from Escherichia coli crude extracts. J Chromatogr A 2020; 1638:461702. [PMID: 33229006 DOI: 10.1016/j.chroma.2020.461702] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/05/2020] [Accepted: 11/09/2020] [Indexed: 10/23/2022]
Abstract
Antibody fragments (Fab) are often produced by recombinant methods in Escherichia coli as no glycosylation is needed. Besides the correctly expressed Fab molecule, a multitude of host cell impurities and product related impurities are present in the crude sample. The identification and characterization of the product-related impurities, such as modified Fab-molecules or free light chain, are of utmost importance. The objective of this work was to design a purification strategy to isolate and characterize Fab and related impurities. A three-dimensional chromatography method was established, consisting of two affinity steps (Protein G and Protein L) and subsequent cation exchange chromatography, followed by mass spectrometry analysis of the purified samples. The procedure was automated by collecting the eluted target species in loops and directly loading the samples onto the high-resolution cation exchange chromatography column. As an example, four different Fab molecules are characterized. All four samples contained mainly the correct Fab, while only one showed extensive N-terminal pyroglutamate formation of the Fab. In another case, we found a light chain variant with uncleaved amino acids from the lead molecule, which was not used for the formation of whole Fab as only correct Fab was found in that sample. Impurities with lower molecular weights, which were bound on the Protein L column, were observed in all samples, and identified as fragments of the light chain. In conclusion, we have devised a platform for characterizing Fab and Fab-related impurities, which significantly facilitated strain selection and optimization of cultivation conditions.
Collapse
Affiliation(s)
- Clemens Schimek
- Christian Doppler Laboratory for production of next-level biopharmaceuticals in E. coli, Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Matthias Kubek
- Christian Doppler Laboratory for production of next-level biopharmaceuticals in E. coli, Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - David Scheich
- Christian Doppler Laboratory for production of next-level biopharmaceuticals in E. coli, Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Mathias Fink
- Christian Doppler Laboratory for production of next-level biopharmaceuticals in E. coli, Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Cécile Brocard
- Biopharma Austria Process Science, Boehringer Ingelheim RCV GmbH & Co KG, Dr.-Boehringer-Gasse 5-11, A-1120 Wien
| | - Gerald Striedner
- Christian Doppler Laboratory for production of next-level biopharmaceuticals in E. coli, Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Monika Cserjan-Puschmann
- Christian Doppler Laboratory for production of next-level biopharmaceuticals in E. coli, Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Rainer Hahn
- Christian Doppler Laboratory for production of next-level biopharmaceuticals in E. coli, Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria.
| |
Collapse
|
8
|
Chu W, Prodromou R, Day KN, Schneible JD, Bacon KB, Bowen JD, Kilgore RE, Catella CM, Moore BD, Mabe MD, Alashoor K, Xu Y, Xiao Y, Menegatti S. Peptides and pseudopeptide ligands: a powerful toolbox for the affinity purification of current and next-generation biotherapeutics. J Chromatogr A 2020; 1635:461632. [PMID: 33333349 DOI: 10.1016/j.chroma.2020.461632] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 02/08/2023]
Abstract
Following the consolidation of therapeutic proteins in the fight against cancer, autoimmune, and neurodegenerative diseases, recent advancements in biochemistry and biotechnology have introduced a host of next-generation biotherapeutics, such as CRISPR-Cas nucleases, stem and car-T cells, and viral vectors for gene therapy. With these drugs entering the clinical pipeline, a new challenge lies ahead: how to manufacture large quantities of high-purity biotherapeutics that meet the growing demand by clinics and biotech companies worldwide. The protein ligands employed by the industry are inadequate to confront this challenge: while featuring high binding affinity and selectivity, these ligands require laborious engineering and expensive manufacturing, are prone to biochemical degradation, and pose safety concerns related to their bacterial origin. Peptides and pseudopeptides make excellent candidates to form a new cohort of ligands for the purification of next-generation biotherapeutics. Peptide-based ligands feature excellent target biorecognition, low or no toxicity and immunogenicity, and can be manufactured affordably at large scale. This work presents a comprehensive and systematic review of the literature on peptide-based ligands and their use in the affinity purification of established and upcoming biological drugs. A comparative analysis is first presented on peptide engineering principles, the development of ligands targeting different biomolecular targets, and the promises and challenges connected to the industrial implementation of peptide ligands. The reviewed literature is organized in (i) conventional (α-)peptides targeting antibodies and other therapeutic proteins, gene therapy products, and therapeutic cells; (ii) cyclic peptides and pseudo-peptides for protein purification and capture of viral and bacterial pathogens; and (iii) the forefront of peptide mimetics, such as β-/γ-peptides, peptoids, foldamers, and stimuli-responsive peptides for advanced processing of biologics.
Collapse
Affiliation(s)
- Wenning Chu
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way room 2-009, Raleigh, NC 27606
| | - Raphael Prodromou
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way room 2-009, Raleigh, NC 27606
| | - Kevin N Day
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way room 2-009, Raleigh, NC 27606
| | - John D Schneible
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way room 2-009, Raleigh, NC 27606
| | - Kaitlyn B Bacon
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way room 2-009, Raleigh, NC 27606
| | - John D Bowen
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way room 2-009, Raleigh, NC 27606
| | - Ryan E Kilgore
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way room 2-009, Raleigh, NC 27606
| | - Carly M Catella
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way room 2-009, Raleigh, NC 27606
| | - Brandyn D Moore
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way room 2-009, Raleigh, NC 27606
| | - Matthew D Mabe
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way room 2-009, Raleigh, NC 27606
| | - Kawthar Alashoor
- Department of Biochemistry and Biophysics, University of Rochester, Rochester, NY 14642
| | - Yiman Xu
- College of Material Science and Engineering, Donghua University, 201620 Shanghai, People's Republic of China
| | - Yuanxin Xiao
- College of Textile, Donghua University, Songjiang District, Shanghai, 201620, People's Republic of China
| | - Stefano Menegatti
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way room 2-009, Raleigh, NC 27606.
| |
Collapse
|
9
|
Mullerpatan A, Kane E, Ghosh R, Nascimento A, Andersen H, Cramer S, Karande P. Single-step purification of a small non-mAb biologic by peptide-ELP-based affinity precipitation. Biotechnol Bioeng 2020; 117:3775-3784. [PMID: 32813285 DOI: 10.1002/bit.27539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 12/12/2022]
Abstract
Affinity precipitation using stimulus-responsive biopolymers such as elastin-like polypeptides (ELPs) have been successfully employed for the purification of monoclonal antibodies. In the current work, we extend these studies to the development of an ELP-peptide fusion for the affinity precipitation of the therapeutically relevant small non-mAb biologic, AdP. A 12-mer affinity peptide ligand (P10) was identified by a primary phage biopanning followed by a secondary in-solution fluorescence polarization screen. Peptide P10 and AdP interacted with a KD of 19.5 µM. A fusion of P10 with ELP was then shown to be successful in selectively capturing the biologic from a crude mixture. While pH shifts alone were not sufficient for product elution, the use of pH in concert with fluid-phase modifiers such as NaCl, arginine, or ethylene glycol was effective. In particular, the use of pH 8.5 and an arginine concentration of 500 mM enabled >80% product recovery. The overall process performance evaluated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and reversed-phase ultra-performance liquid chromatography analyses indicated successful single-step purification of the biologic from an Escherichia coli lysate resulting in ∼90% purity and >80% recovery. These results demonstrate that phage display can be readily employed to identify a peptide ligand capable of successfully carrying out the purification of a non-antibody biological product using ELP-based affinity precipitation.
Collapse
Affiliation(s)
- Akshat Mullerpatan
- The Howard P. Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York.,Center for Biotechnology and Interdisciplinary Studies (CBIS), Rensselaer Polytechnic Institute, Troy, New York
| | - Erin Kane
- The Howard P. Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York.,Center for Biotechnology and Interdisciplinary Studies (CBIS), Rensselaer Polytechnic Institute, Troy, New York
| | - Ronit Ghosh
- The Howard P. Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York.,Center for Biotechnology and Interdisciplinary Studies (CBIS), Rensselaer Polytechnic Institute, Troy, New York
| | - André Nascimento
- Center for Biotechnology and Interdisciplinary Studies (CBIS), Rensselaer Polytechnic Institute, Troy, New York.,iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Henrik Andersen
- Biologics Development, Global Product Development and Supply, Bristol Myers Squibb Company, Devens, Massachusetts
| | - Steven Cramer
- The Howard P. Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York.,Center for Biotechnology and Interdisciplinary Studies (CBIS), Rensselaer Polytechnic Institute, Troy, New York
| | - Pankaj Karande
- The Howard P. Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York.,Center for Biotechnology and Interdisciplinary Studies (CBIS), Rensselaer Polytechnic Institute, Troy, New York
| |
Collapse
|
10
|
Gou X, Wu J, Huang M, Weng Y, Yang T, Chen T, Li G, Fang K. microRNA-128 mediates CB1 expression and regulates NF-KB/p-JNK axis to influence the occurrence of diabetic bladder disease. J Transl Med 2020; 18:284. [PMID: 32678046 PMCID: PMC7367232 DOI: 10.1186/s12967-020-02406-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/05/2020] [Indexed: 12/03/2022] Open
Abstract
Background Diabetic bladder disease is common complications of diabetes, its symptoms are diverse, can be due to different stages. In this study we investigate the mechanism of miR-128 targeting CB1 expression to mediate the occurrence of diabetic bladder disease. Methods Bioinformatics analysis predicts related regulatory factors of miR-128 in diabetic bladder disease. Models of diabetic bladder lesions were constructed in male SD rats by intraperitoneal injection of streptozotocin at 65 mg/kg body weight. The expression of miR-128 and CB1 mRNA in bladder tissues of each group was detected by RT-qPCR, and CB1, NF-KB, p-JNK and Bcl2 protein expression was detected by Western Blotting. We tested the function of the bladder by urodynamics, detected the pathological characteristics of the bladder tissue by HE staining, and verified the targeting relationship between miR-128 and CB1 through the prediction of the biological website, dual luciferase reporter gene assay and RIP. Results miR-128 was highly expressed in the bladder tissue of diabetic rats. Inhibition of miR-128 could improve the occurrence of diabetic bladder lesions in rats. miR-128 could target the inhibition of CB1 expression, and high expression of CB1 could antagonize miR-128 against diabetic bladder. In the diabetic bladder, miR-128 can regulate the expression of NF-KB and p-JNK through CB1 and affect the level of apoptosis. miR-128 regulates NF-KB/p-JNK through CB1, thus affecting the occurrence of diabetic bladder disease. Conclusion The high expression of miR-128 can down-regulate the expression of CB1, promote the activation of NF-KB and p-JNK, increase the level of apoptosis and promote the occurrence of diabetic bladder disease.
Collapse
Affiliation(s)
- Xin Gou
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, No. 374, Dianmian Dadao, Kunming, Yunnan, 650101, People's Republic of China
| | - Jing Wu
- Department of Biochemistry and Molecular Biology, The Primary Medicine School of Kunming Medical University, Kunming, 650101, People's Republic of China
| | - Mingqing Huang
- Department of Urology, The 2nd Hospital of Kunming Medical University, Kunming, 650101, People's Republic of China
| | - Yuting Weng
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, No. 374, Dianmian Dadao, Kunming, Yunnan, 650101, People's Republic of China
| | - Tongxin Yang
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, No. 374, Dianmian Dadao, Kunming, Yunnan, 650101, People's Republic of China
| | - Tao Chen
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, No. 374, Dianmian Dadao, Kunming, Yunnan, 650101, People's Republic of China
| | - Guiqing Li
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, No. 374, Dianmian Dadao, Kunming, Yunnan, 650101, People's Republic of China
| | - Kewei Fang
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, No. 374, Dianmian Dadao, Kunming, Yunnan, 650101, People's Republic of China.
| |
Collapse
|
11
|
Mullerpatan A, Chandra D, Kane E, Karande P, Cramer S. Purification of proteins using peptide-ELP based affinity precipitation. J Biotechnol 2020; 309:59-67. [DOI: 10.1016/j.jbiotec.2019.12.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 12/13/2019] [Accepted: 12/18/2019] [Indexed: 02/06/2023]
|