1
|
Ye C, Zhao W, Liu D, Yang R, Cui Z, Zou D, Li D, Wei X, Xiong H, Niu C. Screening, identification, engineering, and characterization of Bacillus-derived α-amylase for effective tobacco starch degradation. Int J Biol Macromol 2024; 282:137364. [PMID: 39515712 DOI: 10.1016/j.ijbiomac.2024.137364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/19/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
In this study, two high-performing α-amylase-producing strains, CK3-5 and A8-1 were successfully isolated and characterized, which were taxonomically confirmed as Bacillus velezensis through whole-genome sequencing and bioinformatics. Bioinformatic sequence analysis and molecular docking revealed the catalytic triad (Asp173-Glu208-Asp274) essential for α-amylase function. Through metabolic engineering, the recombinant strain BAX-5/PT17amy(A8-1)SP002 was developed, which exhibited the highest α-amylase activity of 1440 U/mL upon fermentation optimization, marking a 9.2-fold enhancement over the wild-type strain A8-1, and it successfully degraded 6 % of the starch in the tobacco leaves within 48 h, while the content of 13 harmful substances, including acetamide, pyridine, and acetonitrile, was reduced by 8.6 % to 25.2 %. This study reveals a novel α-amylase gene from B. velezensis and establishes an efficient expression system in B. amyloliquefaciens, offering valuable insights for industrial α-amylase production.
Collapse
Affiliation(s)
- Changwen Ye
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China; China Tobacco Standardization Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Wanxia Zhao
- China Tobacco Standardization Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Dandan Liu
- China Tobacco Standardization Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Rongchao Yang
- China Tobacco Standardization Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Zhongyue Cui
- China Tobacco Standardization Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Dian Zou
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Dong Li
- China Tobacco Standardization Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Xuetuan Wei
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hanguo Xiong
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China.
| | - Chenqi Niu
- China Tobacco Standardization Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China.
| |
Collapse
|
2
|
Ben Hadj Hmida B, Ben Mabrouk S, Fendri A, Hmida-Sayari A, Sayari A. Optimization of newly isolated Bacillus cereus α-amylase production using orange peels and crab shells and application in wastewater treatment. 3 Biotech 2024; 14:119. [PMID: 38524238 PMCID: PMC10959860 DOI: 10.1007/s13205-024-03962-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/22/2024] [Indexed: 03/26/2024] Open
Abstract
A newly isolated amylolytic strain was identified as Bacillus cereus spH1 based on 16S and 16-23S gene sequencing (Accession numbers OP811441.1 and OP819558, respectively), optimization strategies, using one variable at time (OVAT) and Plackett-Burman design, were employed to improve the alpha-amylase (α-amylase) production. Condition inferred revealed that the optimal physical parameters for maximum enzyme production were 30 °C, pH 7.5, and 12 h of incubation, using tryptone, malt extract, orange (Citrus sinensis) peels, crab (Portunus segnis) shells, calcium, and sodium chloride (NaCl) as culture medium. The full factorial design (FFD) model was observed to possess a predicted R2 and adjusted R2 values of 0.9788 and 0.9862, respectively, and it can effectively predict the response variables (p = 0). Following such efforts, α-amylase activity was increased 141.6-folds, ranging from 0.06 to 8.5 U/mL. The ideal temperature and pH for the crude enzyme activity were 65 °C and 7.5, respectively. The enzyme exhibited significant stability, with residual activity over 90% at 55 °C. The maltose was the only product generated during the starch hydrolysis. Moreover, the Bacillus cereus spH1 strain and its α-amylase were used in the treatment of effluents from the pasta industry. Germination index percentages of 143% and 139% were achieved when using the treated effluent with α-amylase and the strain, respectively. This work proposes the valorization of agro-industrial residues to improve enzyme production and to develop a green and sustainable approach that holds great promise for environmental and economic challenges.
Collapse
Affiliation(s)
- Bouthaina Ben Hadj Hmida
- Laboratoire de Biochimie et de Génie Enzymatique des Lipases (LBGEL), ENIS, University of Sfax, Route Soukra, 3038 Sfax, Tunisia
| | - Sameh Ben Mabrouk
- Laboratoire de Biochimie et de Génie Enzymatique des Lipases (LBGEL), ENIS, University of Sfax, Route Soukra, 3038 Sfax, Tunisia
| | - Ahmed Fendri
- Laboratoire de Biochimie et de Génie Enzymatique des Lipases (LBGEL), ENIS, University of Sfax, Route Soukra, 3038 Sfax, Tunisia
| | - Aïda Hmida-Sayari
- Laboratoire de Biotechnologie Microbienne et d’Ingénierie des Enzymes (LBMIE), Centre de Biotechnologie de Sfax (CBS), University of Sfax, Route Sidi Mansour, 3018 Sfax, Tunisia
| | - Adel Sayari
- Laboratoire de Biochimie et de Génie Enzymatique des Lipases (LBGEL), ENIS, University of Sfax, Route Soukra, 3038 Sfax, Tunisia
- Department of Biological Sciences, College of Science, University of Jeddah, 23890 Jeddah, Saudi Arabia
| |
Collapse
|
3
|
Zhang L, Zhong L, Wang J, Zhao Y, Zhang Y, Zheng Y, Dong W, Ye X, Huang Y, Li Z, Cui Z. Efficient hydrolysis of raw starch by a maltohexaose-forming α-amylase from Corallococcus sp. EGB. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112361] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
4
|
Enez B. Purification and Characterization of Thermostable α-Amylase from Soil Bacterium Bacillus sp. Protein Pept Lett 2021; 28:1372-1378. [PMID: 34711150 DOI: 10.2174/0929866528666211027113113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/09/2021] [Accepted: 09/03/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Amylases are used in several industrial and biotechnological sectors, including those producing textiles, detergents, paper and bakery products. OBJECTIVE This study aimed to purify an industrially important α-amylase from Bacillus sp. For this purpose, a single and rapid α-amylase purification was performed using the starch affinity method. METHODS Characterization of the purified enzyme was determined by investigating temperature, pH stability, detergents, and metal ions. RESULTS The purification coefficient of 29.8-fold with a yield of 9.2% was found. The molecular weight of the purified α-amylase was determined to be 53 kDa by SDS-PAGE, and thermostability was confirmed with 100% activity at 30ºC and 40ºC after 1 h. The purified enzyme was stable over a wide range of pH values, with optimum activity at pH 6.0, 7.0 and 8.0 after 2 h. The study also investigated the effects of the metal ions and detergents on the purified amylase and found that Mg2+ and Ca2+ ions were the activators of the enzyme, while Zn2+, Co2+ and Na+ ions decreased the activity. Furthermore, Hg2+ indicated complete inhibition of amylase activity. The detergents Triton X-100 and Tween 20 increased the α-amylase activity, while sodium dodecyl sulfate inhibited the activity. CONCLUSION The purified α-amylase obtained from Bacillus sp. is considered to be environmentally friendly, can be processed in a short time, and has a low cost.
Collapse
Affiliation(s)
- Barış Enez
- Veterinary Health Department, Vocational School of Food, Agriculture and Livestock, Bingöl University, Bingöl. Turkey
| |
Collapse
|
5
|
Bacillus velezensis Identification and Recombinant Expression, Purification, and Characterization of Its Alpha-Amylase. FERMENTATION 2021. [DOI: 10.3390/fermentation7040227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Amylases account for about 30% of the global market of industrial enzymes, and the current amylases cannot fully meet industrial needs. This study aimed to identify a high α-amylase producing bacterium WangLB, to clone its α-amylase coding gene, and to characterize the α-amylase. Results showed that WangLB belonged to Bacillus velezensis whose α-amylase gene was 1980 bp coding 659 amino acids designated as BvAmylase. BvAmylase was a hydrophilic stable protein with a signal peptide and a theoretical pI of 5.49. The relative molecular weight of BvAmylase was 72.35 kDa, and was verified by SDS-PAGE. Its modeled structure displayed that it was a monomer composed of three domains. Its optimum temperature and pH were 70 °C and pH 6.0, respectively. It also showed high activity in a wide range of temperatures (40–75 °C) and a relatively narrow pH (5.0–7.0). It was a Ca2+-independent enzyme, whose α-amylase activity was increased by Co2+, Tween 20, and Triton X-100, and severely decreased by SDS. The Km and the Vmax of BvAmylase were 3.43 ± 0.53 and 434.19 ± 28.57 U/mg. In conclusion, the α-amylase producing bacterium WangLB was identified, and one of its α-amylases was characterized, which will be a candidate enzyme for industrial applications.
Collapse
|
6
|
Ben Hlima H, Karray A, Dammak M, Elleuch F, Michaud P, Fendri I, Abdelkafi S. Production and structure prediction of amylases from Chlorella vulgaris. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:51046-51059. [PMID: 33973124 DOI: 10.1007/s11356-021-14357-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/06/2021] [Indexed: 06/12/2023]
Abstract
Amylases are enzymes required for starch degradation and are naturally produced by many microorganisms. These enzymes are used in several fields such as food processing, beverage, and medicine as well as in the formulation of enzymatic detergents proving their significance in modern biotechnology. In this study, a three-stage growth mode was applied to enhance starch production and amylase detection from Chlorella vulgaris. Stress conditions applied in the second stage of cultivation led to an accumulation of proteins (75% DW) and starch (21% DW) and a decrease in biomass. Amylase activities were detected and they showed high production levels especially on day 3 (35 U/ml) and day 5 (22.5 U/ml) of the second and third stages, respectively. The bioinformatic tools used to seek amylase protein sequences from TSA database of C. vulgaris revealed 7 putative genes encoding for 4 α-amylases, 2 β-amylases, and 1 isoamylase. An in silico investigation showed that these proteins are different in their lengths as well as in their cellular localizations and oligomeric states though they share common features like CSRs of GH13 family or active site of GH14 family. In brief, this study allowed for the production and in silico characterization of amylases from C. vulgaris.
Collapse
Affiliation(s)
- Hajer Ben Hlima
- Laboratoire de Génie Enzymatique et de Microbiologie, Equipe de Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, 3038, Sfax, Tunisia
| | - Aida Karray
- Laboratoire de Biochimie et de Génie Enzymatique des Lipases, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, 3018, Sfax, Tunisia
| | - Mouna Dammak
- Laboratoire de Génie Enzymatique et de Microbiologie, Equipe de Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, 3038, Sfax, Tunisia
| | - Fatma Elleuch
- Laboratoire de Génie Enzymatique et de Microbiologie, Equipe de Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, 3038, Sfax, Tunisia
| | - Philippe Michaud
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000, Clermont-Ferrand, France
| | - Imen Fendri
- Laboratoire de Biotechnologie des Plantes Appliquée à l'Amélioration des Plantes Faculté des Sciences de Sfax, Université de Sfax, Sfax, Tunisia
| | - Slim Abdelkafi
- Laboratoire de Génie Enzymatique et de Microbiologie, Equipe de Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, 3038, Sfax, Tunisia.
| |
Collapse
|
7
|
Kikani BA, Singh SP. Amylases from thermophilic bacteria: structure and function relationship. Crit Rev Biotechnol 2021; 42:325-341. [PMID: 34420464 DOI: 10.1080/07388551.2021.1940089] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Amylases hydrolyze starch to diverse products including dextrins and progressively smaller polymers of glucose units. Thermally stable amylases account for nearly 25% of the enzyme market. This review highlights the structural attributes of the α-amylases from thermophilic bacteria. Heterologous expression of amylases in suitable hosts is discussed in detail. Further, specific value maximization approaches, such as protein engineering and immobilization of the amylases are discussed in order to improve its suitability for varied applications on a commercial scale. The review also takes into account of the immobilization of the amylases on nanomaterials to increase the stability and reusability of the enzymes. The function-based metagenomics would provide opportunities for searching amylases with novel characteristics. The review is expected to explore novel amylases for future potential applications.
Collapse
Affiliation(s)
- Bhavtosh A Kikani
- UGC-CAS Department of Biosciences, Saurashtra University, Rajkot, India.,P.D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, Changa, India
| | - Satya P Singh
- UGC-CAS Department of Biosciences, Saurashtra University, Rajkot, India
| |
Collapse
|
8
|
Microbial amylolytic enzymes in foods: Technological importance of the Bacillus genus. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
Salem K, Jabalera Y, Puentes-Pardo JD, Vilchez-Garcia J, Sayari A, Hmida-Sayari A, Jimenez-Lopez C, Perduca M. Enzyme Storage and Recycling: Nanoassemblies of α-Amylase and Xylanase Immobilized on Biomimetic Magnetic Nanoparticles. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2021; 9:4054-4063. [PMID: 35070520 PMCID: PMC8765010 DOI: 10.1021/acssuschemeng.0c08300] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/05/2021] [Indexed: 05/03/2023]
Abstract
Immobilization of enzymes has been extensively required in a wide variety of industrial applications as a way to ensure functionality and the potential of enzyme recycling after use. In particular, enzyme immobilization on magnetic nanoparticles (MNPs) could offer reusability by means of magnetic recovery and concentration, along with increased stability and robust activity of the enzyme under different physicochemical conditions. In the present work, microbial α-amylase (AmyKS) and xylanase (XAn11) were both immobilized on different types of MNPs [MamC-mediated biomimetic MNPs (BMNPs) and inorganic MNPs] by using two different strategies (electrostatic interaction and covalent bond). AmyKS immobilization was successful using electrostatic interaction with BMNPs. Instead, the best strategy to immobilize XAn11 was using MNPs through the hetero-crosslinker 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide (NHS). The immobilization protocols were optimized by varying glutaraldehyde (GA) concentration, enzyme quantity, and reaction time. Under optimal conditions, 92% of AmyKS and 87% of XAn11 were immobilized on BMNPs and MNPs-E/N, respectively (here referred as AmyKS-BMNPs and XAn11-MNPs nanoassemblies). The results show that the immobilization of the enzymes did not extensively alter their functionality and increased enzyme stability compared to that of the free enzyme upon storage at 4 and 20 °C. Interestingly, the immobilized amylase and xylanase were reused for 15 and 8 cycles, respectively, without significant loss of activity upon magnetic recovery of the nanoassemblies. The results suggest the great potential of these nanoassemblies in bioindustry applications.
Collapse
Affiliation(s)
- Karima Salem
- Centre
de Biotechnologie de Sfax (CBS), Université
de Sfax, Route de Sidi Mansour Km 6, BP “1177”, 3018 Sfax, Tunisie
| | - Ylenia Jabalera
- Departamento
de Microbiologia, Universidad de Granada, Campus de Fuentenueva s/n, 18071 Granada, Spain
| | - Jose David Puentes-Pardo
- Departamento
de Microbiologia, Universidad de Granada, Campus de Fuentenueva s/n, 18071 Granada, Spain
| | - Jesus Vilchez-Garcia
- Departamento
de Microbiologia, Universidad de Granada, Campus de Fuentenueva s/n, 18071 Granada, Spain
| | - Adel Sayari
- ENIS,
Université de Sfax, BP “1173”, 3038 Sfax, Tunisie
| | - Aïda Hmida-Sayari
- Centre
de Biotechnologie de Sfax (CBS), Université
de Sfax, Route de Sidi Mansour Km 6, BP “1177”, 3018 Sfax, Tunisie
| | - Concepcion Jimenez-Lopez
- Departamento
de Microbiologia, Universidad de Granada, Campus de Fuentenueva s/n, 18071 Granada, Spain
- . Phone: +34
958249833
| | - Massimiliano Perduca
- Department
of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
- . Phone: +39 0458027984
| |
Collapse
|
10
|
Sadeghian Motahar SF, Ariaeenejad S, Salami M, Emam-Djomeh Z, Sheykh Abdollahzadeh Mamaghani A. Improving the quality of gluten-free bread by a novel acidic thermostable α-amylase from metagenomics data. Food Chem 2021; 352:129307. [PMID: 33691209 DOI: 10.1016/j.foodchem.2021.129307] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 12/11/2022]
Abstract
Development of gluten-free products is important due to their role in gluten related disorders and health improvement. α-Amylase enzymes have shown to have a positive effect on wheat bread quality. This study aimed to screen in-silico a novel acidic-thermostable α-amylase (PersiAmy2) from the sheep rumen metagenome to increase the quality of gluten-free bread. The PersiAmy2 was cloned, expressed, purified and characterized. The enzyme was highly stable at a wide range of pH, temperature and storage conditions. The PersiAmy2 had excellent activity in the presence of ions, inhibitors, and surfactants. Utilization of the acidic thermostable PersiAmy2 in gluten-free bread resulted in a softer crumb, higher specific volume, porosity, moisture content and caused a darker crust color. The rheological measurement showed a solid-elastic behavior in batters. Also the addition of this enzyme reduced the firmness. From the results of this study it can be concluded that the PersiAmy2 can be used to improve the quality of gluten-free bread.
Collapse
Affiliation(s)
- Seyedeh Fatemeh Sadeghian Motahar
- Department of Food Science and Engineering, University College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran
| | - Shohreh Ariaeenejad
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran.
| | - Maryam Salami
- Department of Food Science and Engineering, University College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran.
| | - Zahra Emam-Djomeh
- Department of Food Science and Engineering, University College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran
| | - Atefeh Sheykh Abdollahzadeh Mamaghani
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| |
Collapse
|
11
|
A novel metagenome-derived thermostable and poultry feed compatible α-amylase with enhanced biodegradation properties. Int J Biol Macromol 2020; 164:2124-2133. [DOI: 10.1016/j.ijbiomac.2020.08.064] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 12/28/2022]
|
12
|
Sweeney RP, Danby PM, Geissner A, Karimi R, Brask J, Withers SG. Development of an active site titration reagent for α-amylases. Chem Sci 2020; 12:683-687. [PMID: 34163800 PMCID: PMC8178983 DOI: 10.1039/d0sc05380e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 11/03/2020] [Indexed: 01/12/2023] Open
Abstract
α-Amylases are among the most widely used classes of enzymes in industry and considerable effort has gone into optimising their activities. Efforts to find better amylase mutants, such as through high-throughput screening, would be greatly aided by access to precise and robust active site titrating agents for quantitation of active mutants in crude cell lysates. While active site titration reagents designed for retaining β-glycosidases quantify these enzymes down to nanomolar levels, convenient titrants for α-glycosidases are not available. We designed such a reagent by incorporating a highly reactive fluorogenic leaving group onto unsaturated cyclitol ethers, which have been recently shown to act as slow substrates for retaining glycosidases that operate via a covalent 'glycosyl'-enzyme intermediate. By appending this warhead onto the appropriate oligosaccharide, we developed efficient active site titration reagents for α-amylases that effect quantitation down to low nanomolar levels.
Collapse
Affiliation(s)
- Ryan P Sweeney
- Department of Chemistry, The University of British Columbia 2036 Main Mall Vancouver BC V6T 1Z1 Canada
| | - Phillip M Danby
- Department of Chemistry, The University of British Columbia 2036 Main Mall Vancouver BC V6T 1Z1 Canada
| | - Andreas Geissner
- Department of Chemistry, The University of British Columbia 2036 Main Mall Vancouver BC V6T 1Z1 Canada
| | - Ryan Karimi
- Department of Chemistry, The University of British Columbia 2036 Main Mall Vancouver BC V6T 1Z1 Canada
| | - Jesper Brask
- Novozymes Krogshoejvej 36 2880 Bagsvaerd Denmark
| | - Stephen G Withers
- Department of Chemistry, The University of British Columbia 2036 Main Mall Vancouver BC V6T 1Z1 Canada
| |
Collapse
|