1
|
Kim YJ, Min J. Advances in nanobiosensors during the COVID-19 pandemic and future perspectives for the post-COVID era. NANO CONVERGENCE 2024; 11:3. [PMID: 38206526 PMCID: PMC10784265 DOI: 10.1186/s40580-023-00410-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/07/2023] [Indexed: 01/12/2024]
Abstract
The unprecedented threat of the highly contagious virus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes exponentially increased infections of coronavirus disease 2019 (COVID-19), highlights the weak spots of the current diagnostic toolbox. In the midst of catastrophe, nanobiosensors offer a new opportunity as an alternative tool to fill a gap among molecular tests, rapid antigen tests, and serological tests. Nanobiosensors surpass the potential of antigen tests because of their enhanced sensitivity, thus enabling us to see antigens as stable and easy-to-access targets. During the first three years of the COVID-19 pandemic, a substantial number of studies have reported nanobiosensors for the detection of SARS-CoV-2 antigens. The number of articles on nanobiosensors and SARS-CoV-2 exceeds the amount of nanobiosensor research on detecting previous infectious diseases, from influenza to SARS-CoV and MERS-CoV. This unprecedented publishing pace also implies the significance of SARS-CoV-2 and the present pandemic. In this review, 158 studies reporting nanobiosensors for detecting SARS-CoV-2 antigens are collected to discuss the current challenges of nanobiosensors using the criteria of point-of-care (POC) diagnostics along with COVID-specific issues. These advances and lessons during the pandemic pave the way for preparing for the post-COVID era and potential upcoming infectious diseases.
Collapse
Affiliation(s)
- Young Jun Kim
- School of Integrative Engineering, Chung-Ang University, Heukseok-Dong, Dongjak-Gu, Seoul, 06974, Republic of Korea
| | - Junhong Min
- School of Integrative Engineering, Chung-Ang University, Heukseok-Dong, Dongjak-Gu, Seoul, 06974, Republic of Korea.
| |
Collapse
|
2
|
Liu J, Mao J, Hou M, Hu Z, Sun G, Zhang S. A Rapid SARS-CoV-2 Nucleocapsid Protein Profiling Assay with High Sensitivity Comparable to Nucleic Acid Detection. Anal Chem 2022; 94:14627-14634. [PMID: 36226357 PMCID: PMC9578372 DOI: 10.1021/acs.analchem.2c02670] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 10/06/2022] [Indexed: 12/27/2022]
Abstract
Existing nucleic acid and antigen profiling methods for COVID-19 diagnosis fail to simultaneously meet the demands in sensitivity and detection speed, hampering them from being a comprehensive way for epidemic prevention and control. Thus, effective screening of COVID-19 requires a simple, fast, and sensitive method. Here, we report a rapid assay for ultrasensitive and highly specific profiling of COVID-19 associated antigen. The assay is based on a binding-induced DNA assembly on a nanoparticle scaffold that acts by fluorescence translation. By binding two aptamers to a target protein, the protein brings the DNA regions into close proximity, forming closed-loop conformation and resulting in the formation of the fluorescence translator. Using this assay, saliva nucleocapsid protein (N protein) has been profiled quantitatively by converting the N protein molecule information into a fluorescence signal. The fluorescence intensity is enhanced with increasing N protein concentration caused by the metal enhanced fluorescence using a simple, specific, and fast profiling assay within 3 min. On this basis, the assay enables a high recognition ratio and a limit of detection down to 150 fg mL-1. It is 1-2 orders of magnitude lower than existing commercial antigen ELISA kits, which is comparative to or superior than the PCR based nucleic acid testing. Owing to its rapidity, ultrasensitivity, as well as easy operation, it holds great promise as a tool for screening of COVID-19 and other epidemics such as monkey pox.
Collapse
Affiliation(s)
- Jie Liu
- Department
of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Jinpeng Mao
- Department
of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Mengyu Hou
- Beijing
Friendship Hospital, Capital Medical University, Beijing 100050, P. R. China
| | - Zhian Hu
- Department
of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Gongwei Sun
- Department
of Chemistry, Tsinghua University, Beijing 100084, P. R. China
- Beijing
TASI Technology CO., LTD, Beijing 100085, P. R. China
| | - Sichun Zhang
- Department
of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
3
|
Dzuvor CKO, Tettey EL, Danquah MK. Aptamers as promising nanotheranostic tools in the COVID-19 pandemic era. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1785. [PMID: 35238490 PMCID: PMC9111085 DOI: 10.1002/wnan.1785] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/02/2022] [Accepted: 02/07/2022] [Indexed: 12/13/2022]
Abstract
The emergence of SARS-COV-2, the causative agent of new coronavirus disease (COVID-19) has become a pandemic threat. Early and precise detection of the virus is vital for effective diagnosis and treatment. Various testing kits and assays, including nucleic acid detection methods, antigen tests, serological tests, and enzyme-linked immunosorbent assay (ELISA), have been implemented or are being explored to detect the virus and/or characterize cellular and antibody responses to the infection. However, these approaches have inherent drawbacks such as nonspecificity, high cost, are characterized by long turnaround times for test results, and can be labor-intensive. Also, the circulating SARS-COV-2 variant of concerns, reduced antibody sensitivity and/or neutralization, and possible antibody-dependent enhancement (ADE) have warranted the search for alternative potent therapeutics. Aptamers, which are single-stranded oligonucleotides, generated artificially by SELEX (Evolution of Ligands by Exponential Enrichment) may offer the capacity to generate high-affinity neutralizers and/or bioprobes for monitoring relevant SARS-COV-2 and COVID-19 biomarkers. This article reviews and discusses the prospects of implementing aptamers for rapid point-of-care detection and treatment of SARS-COV-2. We highlight other SARS-COV-2 targets (N protein, spike protein stem-helix), SELEX augmented with competition assays and in silico technologies for rapid discovery and isolation of theranostic aptamers against COVID-19 and future pandemics. It further provides an overview on site-specific bioconjugation approaches, customizable molecular scaffolding strategies, and nanotechnology platforms to engineer these aptamers into ultrapotent blockers, multivalent therapeutics, and vaccines to boost both humoral and cellular immunity against the virus. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Diagnostic Tools > Biosensing Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Therapeutic Approaches and Drug Discovery > Nanomedicine for Respiratory Disease.
Collapse
Affiliation(s)
- Christian K. O. Dzuvor
- Bioengineering Laboratory, Department of Chemical and Biological EngineeringMonash UniversityClaytonVictoriaAustralia
| | | | - Michael K. Danquah
- Department of Chemical EngineeringUniversity of TennesseeChattanoogaTennesseeUSA
| |
Collapse
|
4
|
Khan WH, Khan N, Mishra A, Gupta S, Bansode V, Mehta D, Bhambure R, Ansari MA, Das S, Rathore AS. Dimerization of SARS-CoV-2 nucleocapsid protein affects sensitivity of ELISA based diagnostics of COVID-19. Int J Biol Macromol 2022; 200:428-437. [PMID: 35051498 PMCID: PMC8762837 DOI: 10.1016/j.ijbiomac.2022.01.094] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/13/2022] [Accepted: 01/13/2022] [Indexed: 12/27/2022]
Abstract
Nucleocapsid protein (N protein) is the primary antigen of the virus for development of sensitive diagnostic assays of COVID-19. In this paper, we demonstrate the significant impact of dimerization of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) N-protein on sensitivity of enzyme-linked immunosorbent assay (ELISA) based diagnostics. The expressed purified protein from E. coli is composed of dimeric and monomeric forms, which have been further characterized using biophysical and immunological techniques. Indirect ELISA indicated elevated susceptibility of the dimeric form of the nucleocapsid protein for identification of protein-specific monoclonal antibody as compared to the monomeric form. This finding also confirmed with the modelled structure of monomeric and dimeric nucleocapsid protein via HHPred software and its solvent accessible surface area, which indicates higher stability and antigenicity of the dimeric type as compared to the monomeric form. The sensitivity and specificity of the ELISA at 95% CI are 99.0% (94.5-99.9) and 95.0% (83.0-99.4), respectively, for the highest purified dimeric form of the N protein. As a result, using the highest purified dimeric form will improve the sensitivity of the current nucleocapsid-dependent ELISA for COVID-19 diagnosis, and manufacturers should monitor and maintain the monomer-dimer composition for accurate and robust diagnostics.
Collapse
Affiliation(s)
- Wajihul Hasan Khan
- Department of Chemical Engineering, Indian Institute of Technology, Hauz Khas, New Delhi 110016, India
| | - Nida Khan
- Department of Chemical Engineering, Indian Institute of Technology, Hauz Khas, New Delhi 110016, India
| | - Avinash Mishra
- Department of Chemical Engineering, Indian Institute of Technology, Hauz Khas, New Delhi 110016, India
| | - Surbhi Gupta
- Department of Chemical Engineering, Indian Institute of Technology, Hauz Khas, New Delhi 110016, India
| | - Vikrant Bansode
- Department of Chemical Engineering, Indian Institute of Technology, Hauz Khas, New Delhi 110016, India
| | - Deepa Mehta
- Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Rd, Pune, Maharashtra 411008, India
| | - Rahul Bhambure
- Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Rd, Pune, Maharashtra 411008, India
| | - M. Ahmad Ansari
- Department of Microbiology, The University College of Medical Sciences (UCMS) and Guru Teg Bahadur Hospital (GTB), Dilshad Garden, Delhi 110095, India
| | - Shukla Das
- Department of Microbiology, The University College of Medical Sciences (UCMS) and Guru Teg Bahadur Hospital (GTB), Dilshad Garden, Delhi 110095, India
| | - Anurag S. Rathore
- Department of Chemical Engineering, Indian Institute of Technology, Hauz Khas, New Delhi 110016, India,Corresponding author at: DBT Centre of Excellence for Biopharmaceutical Technology, Department of Chemical Engineering, Indian Institute of Technology, Delhi Hauz Khas, New Delhi 110016, India
| |
Collapse
|
5
|
Zhang GQ, Gao Z, Zhang J, Ou H, Gao H, Kwok RTK, Ding D, Tang BZ. A wearable AIEgen-based lateral flow test strip for rapid detection of SARS-CoV-2 RBD protein and N protein. CELL REPORTS. PHYSICAL SCIENCE 2022; 3:100740. [PMID: 35072123 PMCID: PMC8761541 DOI: 10.1016/j.xcrp.2022.100740] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/16/2021] [Accepted: 01/05/2022] [Indexed: 05/16/2023]
Abstract
Accurate and rapid detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is significant for early tracing, isolation, and treatment of infected individuals, which will efficiently prevent large-scale transmission of coronavirus disease 2019 (COVID-19). Here, two kinds of test strips for receptor binding domain (RBD) and N antigens of SARS-CoV-2 are established with high sensitivity and specificity, in which AIE luminogens (AIEgens) are utilized as reporters. Because of the high brightness and resistance to quenching in aqueous solution, the limit of detection can be as low as 6.9 ng/mL for RBD protein and 7.2 ng/mL for N protein. As an antigen collector, an N95 mask equipped with a test strip with an excellent enrichment effect would efficiently simplify the sampling procedures. Compared with a test strip based on Au nanoparticles or fluorescein isothiocyanate (FITC), the AIEgen-based test strip shows high anti-interference capacity in complex biosamples. Therefore, an AIEgen-based test strip assay could be built as a promising platform for emergency use during the pandemic.
Collapse
Affiliation(s)
- Guo-Qiang Zhang
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Zhiyuan Gao
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jingtian Zhang
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Hanlin Ou
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Heqi Gao
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Ryan T K Kwok
- Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Dan Ding
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Ben Zhong Tang
- Shenzhen Institute of Molecular Aggregate Science and Engineering, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Boulevard, Longgang District, Shenzhen, Guangdong 518172, China
| |
Collapse
|
6
|
Wang S, Shu J, Lyu A, Huang X, Zeng W, Jin T, Cui H. Label-Free Immunoassay for Sensitive and Rapid Detection of the SARS-CoV-2 Antigen Based on Functionalized Magnetic Nanobeads with Chemiluminescence and Immunoactivity. Anal Chem 2021; 93:14238-14246. [PMID: 34636246 PMCID: PMC8524964 DOI: 10.1021/acs.analchem.1c03208] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/04/2021] [Indexed: 11/29/2022]
Abstract
Direct detection of SARS-CoV-2 in biological specimens is often challenging due to the low abundance of viral components and lack of enough sensitivity. Herein, we developed a new type of chemiluminescent functionalized magnetic nanomaterial for sensitive detection of the SARS-CoV-2 antigen. First, HAuCl4 was reduced by N-(aminobutyl)-N-(ethylisoluminol) (ABEI) in the presence of amino magnetic beads (MB-NH2) to generate ABEI-AuNPs, which were directly assembled on the surface of MB-NH2. Then, Co2+ was modified onto the surface to form MB@ABEI-Au/Co2+ (MAA/Co2+). MAA/Co2+ exhibited good chemiluminescence (CL) and magnetic properties. It was also found that it was easy for the antibody to be connected with MAA/Co2+. Accordingly, MAA/Co2+ was used as a sensing interface to construct a label-free immunoassay for rapid detection of the N protein in SARS-CoV-2. The immunoassay showed a linear range from 0.1 pg/mL to 10 ng/mL and a low detection limit of 69 fg/mL, which was superior to previously reported methods for N protein detection. It also demonstrated good selectivity by virtue of magnetic separation, which effectively removed a sample matrix after immunoreactions. It was successfully applied for the detection of the N protein in spiked human serum and saliva samples. Furthermore, the immunoassay was integrated with an automatic CL analyzer with magnetic separation to detect the N protein in patient serums and rehabilitation patient serums with satisfactory results. Thus, the CL immunoassay without a complicated labeling procedure is sensitive, selective, fast, simple, and cost-effective, which may be used to combat the COVID-19 pandemic. Finally, the CL quenching mechanism of the N protein in the immunoassay was also explored.
Collapse
Affiliation(s)
- Shanshan Wang
- CAS
Key Laboratory of Soft Matter Chemistry, Collaborative Innovation
Center of Chemistry for Energy Materials, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Jiangnan Shu
- CAS
Key Laboratory of Soft Matter Chemistry, Collaborative Innovation
Center of Chemistry for Energy Materials, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Aihua Lyu
- CAS
Key Laboratory of Soft Matter Chemistry, Collaborative Innovation
Center of Chemistry for Energy Materials, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Xiaoxue Huang
- Laboratory
of structural immunology, CAS Key Laboratory of innate immunity and
chronic diseases, CAS Center for Excellence in Molecular Cell Science,
Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, P. R. China
| | - Weihong Zeng
- Laboratory
of structural immunology, CAS Key Laboratory of innate immunity and
chronic diseases, CAS Center for Excellence in Molecular Cell Science,
Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, P. R. China
| | - Tengchuan Jin
- Laboratory
of structural immunology, CAS Key Laboratory of innate immunity and
chronic diseases, CAS Center for Excellence in Molecular Cell Science,
Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, P. R. China
| | - Hua Cui
- CAS
Key Laboratory of Soft Matter Chemistry, Collaborative Innovation
Center of Chemistry for Energy Materials, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
7
|
Chi Y, Wang Q, Chen G, Zheng S. The Long-Term Presence of SARS-CoV-2 on Cold-Chain Food Packaging Surfaces Indicates a New COVID-19 Winter Outbreak: A Mini Review. Front Public Health 2021; 9:650493. [PMID: 34095057 PMCID: PMC8173080 DOI: 10.3389/fpubh.2021.650493] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/15/2021] [Indexed: 01/14/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) is a highly infectious virus that is transmitted primarily through droplets or by coming in close contact with an infected person. In 2020, there was a global outbreak of COVID-19, resulting in an unprecedented global burden of disease, health care costs, and had a significant economic impact. Recently, SARS-CoV-2 was detected on the outer packaging of imported cold chain items in China and has led to virus transmission events, causing great concern. This paper analyses the factors of SARS-CoV-2 survival and transmission in different places and environments, especially the characteristics of low temperatures and object surfaces. It was found that SARS-CoV-2 could survive on surfaces of cold and moist objects in the cold chain for more than 3 weeks, potentially causing COVID-19 transmission. We believe that the low-temperature environment in winter may accelerate the spread of the outbreak and new outbreaks may occur. Overall, SARS-CoV-2 transmission that is susceptible to low winter temperatures is critical for predicting winter pandemics, allowing for the appropriate action to be taken in advance.
Collapse
Affiliation(s)
- Yuhua Chi
- General Practice Teaching and Research Section, Weifang Medical University, Weifang, China
- Department of General Practice, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Qingxiu Wang
- Department of Infection Management, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Guosheng Chen
- College of General Practice, Weifang Medical University, Weifang, China
| | - Shiliang Zheng
- General Practice Teaching and Research Section, Weifang Medical University, Weifang, China
- Department of General Practice, Affiliated Hospital of Weifang Medical University, Weifang, China
| |
Collapse
|