1
|
Sharma R, Harrison STL, Tai SL. Advances in Bioreactor Systems for the Production of Biologicals in Mammalian Cells. CHEMBIOENG REVIEWS 2021. [DOI: 10.1002/cben.202100022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Rajesh Sharma
- University of Cape Town Centre for Bioprocess Engineering Research (CeBER) Department of Chemical Engineering Faculty of Engineering and the Built Environment Private Bag 7701 Rondebosch South Africa
| | - Susan T. L. Harrison
- University of Cape Town Centre for Bioprocess Engineering Research (CeBER) Department of Chemical Engineering Faculty of Engineering and the Built Environment Private Bag 7701 Rondebosch South Africa
| | - Siew Leng Tai
- University of Cape Town Centre for Bioprocess Engineering Research (CeBER) Department of Chemical Engineering Faculty of Engineering and the Built Environment Private Bag 7701 Rondebosch South Africa
| |
Collapse
|
2
|
Paul K, Hartmann T, Posch C, Behrens D, Herwig C. Investigation of cell line specific responses to pH inhomogeneity and consequences for process design. Eng Life Sci 2020; 20:412-421. [PMID: 32944016 PMCID: PMC7481767 DOI: 10.1002/elsc.202000034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/15/2020] [Accepted: 06/25/2020] [Indexed: 12/13/2022] Open
Abstract
With increasing bioreactor volumes, the mixing time of the reactor increases as well, which creates an inhomogeneous environment for the cells. This can result in impaired process performance in large-scale production reactors. Particularly the addition of base through the reactor headspace can be problematic, since it creates an area, where cells are repeatedly exposed to an increased pH. The aim of this study is to simulate this large-scale phenomenon at lab-scale and investigate its impact. Two different cell lines were exposed to pH amplitudes of a maximal magnitude of 0.05 units (pH of 6.95). Both cell lines showed similar responses, like decreased viable cell counts, but unaffected lactate levels. However, cell line B showed an initially increased specific productivity in response to the introduced amplitudes, whereas cell line A showed a consistently lower specific productivity. Furthermore, the time point at which base addition is started influences the impact, which pH amplitudes have on process performance. When pH control was started earlier in the process, maximal viable cell counts decreased and the lactate metabolic shift was less pronounced. These results show that the potential negative impact of pH amplitudes can be minimized by strategic process design.
Collapse
Affiliation(s)
- Katrin Paul
- Institute of ChemicalEnvironmental and Bioscience EngineeringTU WienViennaAustria
- Christian Doppler Laboratory for Mechanistic and Physiological Methods for Improved BioprocessesTU WienViennaAustria
| | - Thomas Hartmann
- Institute of ChemicalEnvironmental and Bioscience EngineeringTU WienViennaAustria
- Christian Doppler Laboratory for Mechanistic and Physiological Methods for Improved BioprocessesTU WienViennaAustria
| | | | | | - Christoph Herwig
- Institute of ChemicalEnvironmental and Bioscience EngineeringTU WienViennaAustria
- Christian Doppler Laboratory for Mechanistic and Physiological Methods for Improved BioprocessesTU WienViennaAustria
| |
Collapse
|
3
|
Paul K, Böttinger K, Mitic BM, Scherfler G, Posch C, Behrens D, Huber CG, Herwig C. Development, characterization, and application of a 2-Compartment system to investigate the impact of pH inhomogeneities in large-scale CHO-based processes. Eng Life Sci 2020; 20:368-378. [PMID: 32774209 PMCID: PMC7401239 DOI: 10.1002/elsc.202000009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/08/2020] [Accepted: 04/29/2020] [Indexed: 01/05/2023] Open
Abstract
Large-scale bioreactors for the production of monoclonal antibodies reach volumes of up to 25 000 L. With increasing bioreactor size, mixing is however affected negatively, resulting in the formation of gradients throughout the reactor. These gradients can adversely affect process performance at large scale. Since mammalian cells are sensitive to changes in pH, this study investigated the effects of pH gradients on process performance. A 2-Compartment System was established for this purpose to expose only a fraction of the cell population to pH excursions and thereby mimicking a large-scale bioreactor. Cells were exposed to repeated pH amplitudes of 0.4 units (pH 7.3), which resulted in decreased viable cell counts, as well as the inhibition of the lactate metabolic shift. These effects were furthermore accompanied by increased absolute lactate levels. Continuous assessment of molecular attributes of the expressed target protein revealed that subunit assembly or N-glycosylation patterns were only slightly influenced by the pH excursions. The exposure of more cells to the same pH amplitudes further impaired process performance, indicating this is an important factor, which influences the impact of pH inhomogeneity. This knowledge can aid in the design of pH control strategies to minimize the effects of pH inhomogeneity in large-scale bioreactors.
Collapse
Affiliation(s)
- Katrin Paul
- Institute of ChemicalEnvironmental and Bioscience EngineeringTU WienViennaAustria
- Christian Doppler Laboratory for Mechanistic and Physiological Methods for Improved BioprocessesTU WienViennaAustria
| | - Katharina Böttinger
- Department of BiosciencesBioanalytical Research LabsUniversity of SalzburgSalzburgAustria
- Christian Doppler Laboratory for Innovative Tools for Biosimilar CharacterizationUniversity of SalzburgSalzburgAustria
| | - Bernd M. Mitic
- Institute of ChemicalEnvironmental and Bioscience EngineeringTU WienViennaAustria
- Christian Doppler Laboratory for Mechanistic and Physiological Methods for Improved BioprocessesTU WienViennaAustria
| | - Georg Scherfler
- Institute of ChemicalEnvironmental and Bioscience EngineeringTU WienViennaAustria
- Christian Doppler Laboratory for Mechanistic and Physiological Methods for Improved BioprocessesTU WienViennaAustria
| | | | | | - Christian G. Huber
- Department of BiosciencesBioanalytical Research LabsUniversity of SalzburgSalzburgAustria
- Christian Doppler Laboratory for Innovative Tools for Biosimilar CharacterizationUniversity of SalzburgSalzburgAustria
| | - Christoph Herwig
- Institute of ChemicalEnvironmental and Bioscience EngineeringTU WienViennaAustria
- Christian Doppler Laboratory for Mechanistic and Physiological Methods for Improved BioprocessesTU WienViennaAustria
| |
Collapse
|
4
|
García-Fernández C, López-Fernández A, Borrós S, Lecina M, Vives J. Strategies for large-scale expansion of clinical-grade human multipotent mesenchymal stromal cells. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107601] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
5
|
Kelley B, Kiss R, Laird M. A Different Perspective: How Much Innovation Is Really Needed for Monoclonal Antibody Production Using Mammalian Cell Technology? ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2019; 165:443-462. [PMID: 29721583 DOI: 10.1007/10_2018_59] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
As biopharmaceutical companies have optimized cell line and production culture process development, titers of recombinant antibodies have risen steadily to 3-8 g/L for fed-batch mammalian cultures at production scales of 10 kL or larger. Most new antibody products are produced from Chinese Hamster Ovary (CHO) cell lines, and there are relatively few alternative production hosts under active evaluation. Many companies have adopted a strategy of using the same production cell line for early clinical phases as well as commercial production, which reduces the risk of product comparability issues during the development lifecycle. Product quality and consistency expectations rest on the platform knowledge of the CHO host cell line and processes used for the production of many licensed antibodies. The lack of impact of low-level product variants common to this platform on product safety and efficacy also builds on the established commercial history of recombinant antibodies, which dates back to 1997.Efforts to increase titers further will likely yield diminishing returns. Very few products would benefit significantly from a titer greater than 8 g/L; in many cases, a downstream processing bottleneck would preclude full recovery from production-scale bioreactors for high titer processes. The benefits of a process platform based on standard fed-batch production culture include predictable scale-up, process transfer, and production within a company's manufacturing network or at a contract manufacturing organization. Furthermore, the confidence in an established platform provides key support towards regulatory flexibility (e.g., design space) for license applications following a quality-by-design strategy.These factors suggest that novel technologies for antibody production may not provide a substantial return on investment. What, then, should be the focus of future process development efforts for companies that choose to launch antibody products using their current platform? This review proposes key focus areas in an effort to continually improve process consistency, assure acceptable product quality, and establish appropriate process parameter limits to enable flexible manufacturing options.
Collapse
Affiliation(s)
- Brian Kelley
- Vir Biotechnology, Inc., San Francisco, CA, USA.
| | - Robert Kiss
- Sutro Biopharma, Inc., San Francisco, CA, USA
| | - Michael Laird
- Genentech (A Member of the Roche Group), San Francisco, CA, USA
| |
Collapse
|
6
|
Kshirsagar R, Ryll T. Innovation in Cell Banking, Expansion, and Production Culture. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2019; 165:51-74. [PMID: 29637222 DOI: 10.1007/10_2016_56] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cell culture-based production processes enable the development and commercial supply of recombinant protein products. Such processes consist of the following elements: thaw and initiation of culture, seed expansion, and production culture. A robust cell source storage system in the form of a cell bank is developed and cells are thawed to initiate the cell culture process. Seed culture expansion generates sufficient cell mass to initiate the production culture. The production culture provides an environment where the cells can synthesize the product and is optimized to deliver the highest possible product concentration with acceptable product quality. This chapter describes the significant innovations made in these process elements and the resulting improvements in the overall efficiency, robustness, and safety of the processes and products.
Collapse
Affiliation(s)
- Rashmi Kshirsagar
- Technical Development, Biogen, 225 Binney Street, Cambridge, MA, 02142, USA
| | - Thomas Ryll
- Technical Operations, ImmunoGen, Inc., 830 Winter Street, Waltham, MA, 02451, USA.
| |
Collapse
|
7
|
Production and Purification of Therapeutic Enzymes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1148:1-24. [DOI: 10.1007/978-981-13-7709-9_1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
8
|
Hunter M, Yuan P, Vavilala D, Fox M. Optimization of Protein Expression in Mammalian Cells. ACTA ACUST UNITED AC 2018; 95:e77. [DOI: 10.1002/cpps.77] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
9
|
Freund NW, Croughan MS. A Simple Method to Reduce both Lactic Acid and Ammonium Production in Industrial Animal Cell Culture. Int J Mol Sci 2018; 19:ijms19020385. [PMID: 29382079 PMCID: PMC5855607 DOI: 10.3390/ijms19020385] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 01/16/2018] [Accepted: 01/23/2018] [Indexed: 12/30/2022] Open
Abstract
Fed-batch animal cell culture is the most common method for commercial production of recombinant proteins. However, higher cell densities in these platforms are still limited due to factors such as excessive ammonium production, lactic acid production, nutrient limitation, and/or hyperosmotic stress related to nutrient feeds and base additions to control pH. To partly overcome these factors, we investigated a simple method to reduce both ammonium and lactic acid production—termed Lactate Supplementation and Adaptation (LSA) technology—through the use of CHO cells adapted to a lactate-supplemented medium. Using this simple method, we achieved a reduction of nearly 100% in lactic acid production with a simultaneous 50% reduction in ammonium production in batch shaker flasks cultures. In subsequent fed-batch bioreactor cultures, lactic acid production and base addition were both reduced eight-fold. Viable cell densities of 35 million cells per mL and integral viable cell days of 273 million cell-days per mL were achieved, both among the highest currently reported for a fed-batch animal cell culture. Investigating the benefits of LSA technology in animal cell culture is worthy of further consideration and may lead to process conditions more favorable for advanced industrial applications.
Collapse
Affiliation(s)
| | - Matthew S Croughan
- Amgen Bioprocessing Center, Keck Graduate Institute, Claremont, CA 91711, USA.
| |
Collapse
|
10
|
Kent JA, Bommaraju TV, Barnicki SD, Kyung YS, Zhang GG. Industrial Production of Therapeutic Proteins: Cell Lines, Cell Culture, and Purification. HANDBOOK OF INDUSTRIAL CHEMISTRY AND BIOTECHNOLOGY 2017. [PMCID: PMC7121293 DOI: 10.1007/978-3-319-52287-6_29] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
A central pillar of the biotechnology and pharmaceutical industries continues to be the development of biological drug products manufactured from engineered mammalian cell lines. Since the hugely successful launch of human tissue plasminogen activator in 1987 and erythropoietin in 1988, the biopharmaceutical market has grown immensely. In 2014, biotherapeutics made up a significant portion of global drug sales as 7 of the top 10 and 21 of top 50 selling pharmaceuticals in the world were biologics with over US$100 billion in global sales (Table 1, [1]).
Collapse
|
11
|
Monteil DT, Juvet V, Paz J, Moniatte M, Baldi L, Hacker DL, Wurm FM. A comparison of orbitally-shaken and stirred-tank bioreactors: pH modulation and bioreactor type affect CHO cell growth and protein glycosylation. Biotechnol Prog 2016; 32:1174-1180. [PMID: 27453130 DOI: 10.1002/btpr.2328] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 07/01/2016] [Indexed: 01/21/2023]
Abstract
Orbitally shaken bioreactors (OSRs) support the suspension cultivation of animal cells at volumetric scales up to 200 L and are a potential alternative to stirred-tank bioreactors (STRs) due to their rapid and homogeneous mixing and high oxygen transfer rate. In this study, a Chinese hamster ovary cell line producing a recombinant antibody was cultivated in a 5 L OSR and a 3 L STR, both operated with or without pH control. Effects of bioreactor type and pH control on cell growth and metabolism and on recombinant protein production and glycosylation were determined. In pH-controlled bioreactors, the glucose consumption and lactate production rates were higher relative to cultures grown in bioreactors without pH control. The cell density and viability were higher in the OSRs than in the STRs, either with or without pH control. Volumetric recombinant antibody yields were not affected by the process conditions, and a glycan analysis of the antibody by mass spectrometry did not reveal major process-dependent differences in the galactosylation index. The results demonstrated that OSRs are suitable for recombinant protein production from suspension-adapted animal cells. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1174-1180, 2016.
Collapse
Affiliation(s)
- Dominique T Monteil
- Laboratory of Cellular Biotechnology (LBTC), École Polytechnique Fédérale De Lausanne (EPFL), Lausanne, CH-1015, Switzerland
| | - Valentin Juvet
- Laboratory of Cellular Biotechnology (LBTC), École Polytechnique Fédérale De Lausanne (EPFL), Lausanne, CH-1015, Switzerland
| | - Jonathan Paz
- Proteomics Core Facility (PCF), École Polytechnique Fédérale De Lausanne (EPFL), Lausanne, CH-1015, Switzerland
| | - Marc Moniatte
- Proteomics Core Facility (PCF), École Polytechnique Fédérale De Lausanne (EPFL), Lausanne, CH-1015, Switzerland
| | - Lucia Baldi
- Laboratory of Cellular Biotechnology (LBTC), École Polytechnique Fédérale De Lausanne (EPFL), Lausanne, CH-1015, Switzerland
| | - David L Hacker
- Laboratory of Cellular Biotechnology (LBTC), École Polytechnique Fédérale De Lausanne (EPFL), Lausanne, CH-1015, Switzerland.,Protein Expression Core Facility (PECF), École Polytechnique Fédérale De Lausanne (EPFL), Lausanne, CH-1015, Switzerland
| | - Florian M Wurm
- Laboratory of Cellular Biotechnology (LBTC), École Polytechnique Fédérale De Lausanne (EPFL), Lausanne, CH-1015, Switzerland.
| |
Collapse
|
12
|
The present state of the art in expression, production and characterization of monoclonal antibodies. Mol Divers 2015; 20:255-70. [DOI: 10.1007/s11030-015-9625-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 07/21/2015] [Indexed: 02/01/2023]
|
13
|
Kaiser SC, Kraume M, Eibl D, Eibl R. Single-Use Bioreactors for Animal and Human Cells. CELL ENGINEERING 2015. [DOI: 10.1007/978-3-319-10320-4_14] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
14
|
|
15
|
Schwamb S, Puskeiler R, Wiedemann P. Monitoring of Cell Culture. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/978-3-319-10320-4_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
16
|
Hammond M, Marghitoiu L, Lee H, Perez L, Rogers G, Nashed-Samuel Y, Nunn H, Kline S. A cytotoxic leachable compound from single-use bioprocess equipment that causes poor cell growth performance. Biotechnol Prog 2014; 30:332-7. [PMID: 24497314 DOI: 10.1002/btpr.1869] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 01/16/2014] [Indexed: 11/08/2022]
Abstract
A current trend in the production of biopharmaceuticals is the replacement of fixed stainless steel fluid-handling units with disposable plastic bags. Such single-use systems (SUS) offer numerous advantages, but also introduce a new set of materials into the production process and consequently expose biomanufacturers to a new set of risks related to those materials, not to mention reliance on an entirely new supply chain. In the course of developing and conducting a cell-growth-based test for suitability of disposable plastic components destined for use in cell culture operations, we discovered that the cytotoxic compound bis(2,4-di-tert-butylphenyl)phosphate (bDtBPP) leaches out of certain bags and into cell culture media in concentrations that are deleterious to cell growth. Specifically, media held in certain bags for several days at 37°C was found to contain bDtBPP, and use of those held-media samples in cell growth experiments provides data that overlap neatly with cell growth experiments using media spiked directly with bDtBPP, proving that bDtBPP leaching is responsible for the reduced growth attributable to those SUS bags. Overall, this issue represents a risk to the production of biopharmaceuticals in SUS, a risk that must be managed by diligent collaboration among companies along the entire supply chain for SUS components.
Collapse
Affiliation(s)
- Matthew Hammond
- Process and Product Development, Amgen Inc., Thousand Oaks, CA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Monteil DT, Tontodonati G, Ghimire S, Baldi L, Hacker DL, Bürki CA, Wurm FM. Disposable 600-mL orbitally shaken bioreactor for mammalian cell cultivation in suspension. Biochem Eng J 2013. [DOI: 10.1016/j.bej.2013.04.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Mammalian cell culture capacity for biopharmaceutical manufacturing. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2013. [PMID: 23748352 DOI: 10.1007/10_2013_215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
: With worldwide sales of biopharmaceuticals increasing each year and continuing growth on the horizon, the manufacture of mammalian biopharmaceuticals has become a major global enterprise. We describe the current and future industry wide supply of manufacturing capacity with regard to capacity type, distribution, and geographic location. Bioreactor capacity and the use of single-use products for biomanufacturing are also profiled. An analysis of the use of this capacity is performed, including a discussion of current trends that will influence capacity growth, availability, and utilization in the coming years.
Collapse
|
19
|
Kuo YC, Tan CC, Ku JT, Hsu WC, Su SC, Lu CA, Huang LF. Improving pharmaceutical protein production in Oryza sativa. Int J Mol Sci 2013; 14:8719-39. [PMID: 23615467 PMCID: PMC3676753 DOI: 10.3390/ijms14058719] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 04/14/2013] [Accepted: 04/15/2013] [Indexed: 01/01/2023] Open
Abstract
Application of plant expression systems in the production of recombinant proteins has several advantages, such as low maintenance cost, absence of human pathogens, and possession of complex post-translational glycosylation capabilities. Plants have been successfully used to produce recombinant cytokines, vaccines, antibodies, and other proteins, and rice (Oryza sativa) is a potential plant used as recombinant protein expression system. After successful transformation, transgenic rice cells can be either regenerated into whole plants or grown as cell cultures that can be upscaled into bioreactors. This review summarizes recent advances in the production of different recombinant protein produced in rice and describes their production methods as well as methods to improve protein yield and quality. Glycosylation and its impact in plant development and protein production are discussed, and several methods of improving yield and quality that have not been incorporated in rice expression systems are also proposed. Finally, different bioreactor options are explored and their advantages are analyzed.
Collapse
Affiliation(s)
- Yu-Chieh Kuo
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, 135 Yuan-Tung Road, Taoyuan 32003, Taiwan; E-Mails: (Y.-C.K.); (C.-C.T.); (J.-T.K.); (W.-C.H.); (S.-C.S.)
| | - Chia-Chun Tan
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, 135 Yuan-Tung Road, Taoyuan 32003, Taiwan; E-Mails: (Y.-C.K.); (C.-C.T.); (J.-T.K.); (W.-C.H.); (S.-C.S.)
- Department of Life Sciences, National Central University, 300, Jhongda Rd., Taoyuan 32001, Taiwan; E-Mail:
| | - Jung-Ting Ku
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, 135 Yuan-Tung Road, Taoyuan 32003, Taiwan; E-Mails: (Y.-C.K.); (C.-C.T.); (J.-T.K.); (W.-C.H.); (S.-C.S.)
| | - Wei-Cho Hsu
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, 135 Yuan-Tung Road, Taoyuan 32003, Taiwan; E-Mails: (Y.-C.K.); (C.-C.T.); (J.-T.K.); (W.-C.H.); (S.-C.S.)
| | - Sung-Chieh Su
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, 135 Yuan-Tung Road, Taoyuan 32003, Taiwan; E-Mails: (Y.-C.K.); (C.-C.T.); (J.-T.K.); (W.-C.H.); (S.-C.S.)
| | - Chung-An Lu
- Department of Life Sciences, National Central University, 300, Jhongda Rd., Taoyuan 32001, Taiwan; E-Mail:
| | - Li-Fen Huang
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, 135 Yuan-Tung Road, Taoyuan 32003, Taiwan; E-Mails: (Y.-C.K.); (C.-C.T.); (J.-T.K.); (W.-C.H.); (S.-C.S.)
| |
Collapse
|
20
|
Kwon J, Yang Y, Cheon S, Nam H, Jin G, Kim D. Bioreactor engineering using disposable technology for enhanced production of hCTLA4Ig in transgenic rice cell cultures. Biotechnol Bioeng 2013; 110:2412-24. [DOI: 10.1002/bit.24916] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Revised: 03/14/2013] [Accepted: 03/19/2013] [Indexed: 01/12/2023]
Affiliation(s)
- Jun‐Young Kwon
- Department of Biological EngineeringInha UniversityIncheon402‐751Korea
| | - Yong‐Suk Yang
- Department of Biological EngineeringInha UniversityIncheon402‐751Korea
| | - Su‐Hwan Cheon
- Department of Biological EngineeringInha UniversityIncheon402‐751Korea
| | - Hyung‐Jin Nam
- Department of Biological EngineeringInha UniversityIncheon402‐751Korea
| | - Gi‐Hong Jin
- Department of Biological EngineeringInha UniversityIncheon402‐751Korea
| | - Dong‐Il Kim
- Department of Biological EngineeringInha UniversityIncheon402‐751Korea
| |
Collapse
|
21
|
Pohlscheidt M, Jacobs M, Wolf S, Thiele J, Jockwer A, Gabelsberger J, Jenzsch M, Tebbe H, Burg J. Optimizing capacity utilization by large scale 3000 L perfusion in seed train bioreactors. Biotechnol Prog 2013; 29:222-9. [DOI: 10.1002/btpr.1672] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 11/20/2012] [Indexed: 11/07/2022]
|
22
|
Abu-Absi S, Xu S, Graham H, Dalal N, Boyer M, Dave K. Cell Culture Process Operations for Recombinant Protein Production. MAMMALIAN CELL CULTURES FOR BIOLOGICS MANUFACTURING 2013; 139:35-68. [DOI: 10.1007/10_2013_252] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
23
|
Shukla AA, Gottschalk U. Single-use disposable technologies for biopharmaceutical manufacturing. Trends Biotechnol 2012. [PMID: 23178074 DOI: 10.1016/j.tibtech.2012.10.004] [Citation(s) in RCA: 141] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The manufacture of protein biopharmaceuticals is conducted under current good manufacturing practice (cGMP) and involves multiple unit operations for upstream production and downstream purification. Until recently, production facilities relied on the use of relatively inflexible, hard-piped equipment including large stainless steel bioreactors and tanks to hold product intermediates and buffers. However, there is an increasing trend towards the adoption of single-use technologies across the manufacturing process. Technical advances have now made an end-to-end single-use manufacturing facility possible, but several aspects of single-use technology require further improvement and are continually evolving. This article provides a perspective on the current state-of-the-art in single-use technologies and highlights trends that will improve performance and increase the market penetration of disposable manufacturing in the future.
Collapse
|
24
|
Butler M, Meneses-Acosta A. Recent advances in technology supporting biopharmaceutical production from mammalian cells. Appl Microbiol Biotechnol 2012; 96:885-94. [PMID: 23053101 PMCID: PMC7080107 DOI: 10.1007/s00253-012-4451-z] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 09/17/2012] [Accepted: 09/18/2012] [Indexed: 11/28/2022]
Abstract
The demand for production of glycoproteins from mammalian cell culture continues with an increased number of approvals as biopharmaceuticals for the treatment of unmet medical needs. This is particularly the case for humanized monoclonal antibodies which are the largest and fastest growing class of therapeutic pharmaceuticals. This demand has fostered efforts to improve the efficiency of production as well as to address the quality of the final product. Chinese hamster ovary cells are the predominant hosts for stable transfection and high efficiency production on a large scale. Specific productivity of recombinant glycoproteins from these cells can be expected to be above 50 pg/cell/day giving rise to culture systems with titers of around 5 g/L if appropriate fed-batch systems are employed. Cell engineering can delay the onset of programmed cell death to ensure prolonged maintenance of productive viable cells. The clinical efficacy and quality of the final product can be improved by strategic metabolic engineering. The best example of this is the targeted production of afucosylated antibodies with enhanced antibody-dependent cell cytotoxicity, an important function for use in cancer therapies. The development of culture media from non-animal sources continues and is important to ensure products of consistent quality and without the potential danger of contamination. Process efficiencies may also be improved by employing disposable bioreactors with the associated minimization of downtime. Finally, advances in downstream processing are needed to handle the increased supply of product from the bioreactor but maintaining the high purity demanded of these biopharmaceuticals.
Collapse
Affiliation(s)
- M Butler
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada.
| | | |
Collapse
|
25
|
Kshirsagar R, McElearney K, Gilbert A, Sinacore M, Ryll T. Controlling trisulfide modification in recombinant monoclonal antibody produced in fed-batch cell culture. Biotechnol Bioeng 2012; 109:2523-32. [PMID: 22473825 DOI: 10.1002/bit.24511] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 02/03/2012] [Accepted: 03/19/2012] [Indexed: 12/18/2022]
Abstract
Molecular heterogeneity was detected in a recombinant monoclonal antibody (IgG1 mAb) due to the presence of a trisulfide linkage generated by the post-translational insertion of a sulfur atom into disulfide bonds at the heavy-heavy and heavy-light junctions. This molecular heterogeneity had no observable effect on antibody function. Nevertheless, to minimize the heterogeneity of the IgG1 mAb from run-to-run, an understanding of the impact of cell culture process conditions on trisulfide versus disulfide linkage formation was desirable. To investigate variables that might impact trisulfide formation, cell culture parameters were varied in bench-scale bioreactor studies. Trisulfide analysis of the samples from these runs revealed that the trisulfide content in the bond between heavy and light chains varied considerably from <1% to 39%. Optimizing the culture duration and feeding strategy resulted in more consistent trisulfide levels. Cysteine concentration in the feed medium had a direct correlation with the trisulfide level in the product. Systematic studies revealed that cysteine in the feed and the bioreactor media was contributing hydrogen sulfide which reacted with the IgG1 mAb in the supernatant leading to the insertion of sulfur atom and formation of a trisulfide bond. Cysteine feed strategies were developed to control the trisulfide modification in the recombinant monoclonal antibody.
Collapse
Affiliation(s)
- Rashmi Kshirsagar
- Cell Culture Development, Biogen Idec, 14 Cambridge Center, Cambridge, Massachusetts 02142, USA.
| | | | | | | | | |
Collapse
|