1
|
Keatinge-Clay A, Miyazawa T. Refactoring the pikromycin synthase for the modular biosynthesis of macrolide antibiotics in E. coli. RESEARCH SQUARE 2025:rs.3.rs-5640596. [PMID: 39866879 PMCID: PMC11760250 DOI: 10.21203/rs.3.rs-5640596/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
While engineering modular polyketide synthases (PKSs) using the recently updated module boundary has yielded libraries of triketide-pentaketides, this strategy has not yet been applied to the combinatorial biosynthesis of macrolactones or macrolide antibiotics. We developed a 2-plasmid system for the construction and expression of PKSs and employed it to obtain a refactored pikromycin synthase in E. coli that produces 85 mg of narbonolide per liter of culture. The replacement, insertion, deletion, and mutagenesis of modules enabled access to hexaketide, heptaketide, and octaketide derivatives. Supplying enzymes for desosamine biosynthesis and transfer enabled production of narbomycin, pikromycin, YC-17, methymycin, and 6 derivatives thereof. Knocking out pathways competing with desosamine biosynthesis and supplying the editing thioesterase PikAV boosted the titer of narbomycin 55-fold to 37 mgL-1. The replacement of the 3rd pikromycin module with its 5th yielded a new macrolide antibiotic and demonstrates how libraries of macrolide antibiotics can be readily accessed.
Collapse
|
2
|
Striving for sustainable biosynthesis: discovery, diversification, and production of antimicrobial drugs in Escherichia coli. Biochem Soc Trans 2022; 50:1315-1328. [PMID: 36196987 DOI: 10.1042/bst20220218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/07/2022] [Accepted: 09/12/2022] [Indexed: 11/17/2022]
Abstract
New antimicrobials need to be discovered to fight the advance of multidrug-resistant pathogens. A promising approach is the screening for antimicrobial agents naturally produced by living organisms. As an alternative to studying the native producer, it is possible to use genetically tractable microbes as heterologous hosts to aid the discovery process, facilitate product diversification through genetic engineering, and ultimately enable environmentally friendly production. In this mini-review, we summarize the literature from 2017 to 2022 on the application of Escherichia coli and E. coli-based platforms as versatile and powerful systems for the discovery, characterization, and sustainable production of antimicrobials. We highlight recent developments in high-throughput screening methods and genetic engineering approaches that build on the strengths of E. coli as an expression host and that led to the production of antimicrobial compounds. In the last section, we briefly discuss new techniques that have not been applied to discover or engineer antimicrobials yet, but that may be useful for this application in the future.
Collapse
|
3
|
Hamrick GS, Londergan CH, Charkoudian LK. Heterologous Expression, Purification, and Characterization of Type II Polyketide Synthase Acyl Carrier Proteins. Methods Mol Biol 2022; 2489:239-267. [PMID: 35524054 PMCID: PMC9373356 DOI: 10.1007/978-1-0716-2273-5_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The enzymes that comprise type II polyketide synthases (PKSs) are powerful biocatalysts that, once well-understood and strategically applied, could enable cost-effective and sustainable access to a range of pharmaceutically relevant molecules. Progress toward this goal hinges on gaining ample access to materials for in vitro characterizations and structural analysis of the components of these synthases. A central component of PKSs is the acyl carrier protein (ACP), which serves as a hub during the biosynthesis of type II polyketides. Herein, we share methods for accessing type II PKS ACPs via heterologous expression in E. coli . We also share how the installation of reactive and site-specific spectroscopic probes can be leveraged to study the conformational dynamics and interactions of type II PKS ACPs.
Collapse
|
4
|
Yang D, Park SY, Park YS, Eun H, Lee SY. Metabolic Engineering of Escherichia coli for Natural Product Biosynthesis. Trends Biotechnol 2020; 38:745-765. [DOI: 10.1016/j.tibtech.2019.11.007] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/16/2019] [Accepted: 11/18/2019] [Indexed: 12/27/2022]
|
5
|
Park JW, Yoon YJ. Recent advances in the discovery and combinatorial biosynthesis of microbial 14-membered macrolides and macrolactones. J Ind Microbiol Biotechnol 2018; 46:445-458. [PMID: 30415291 DOI: 10.1007/s10295-018-2095-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 10/19/2018] [Indexed: 01/05/2023]
Abstract
Macrolides, especially 14-membered macrolides, are a valuable group of antibiotics that originate from various microorganisms. In addition to their antibacterial activity, newly discovered 14-membered macrolides exhibit other therapeutic potentials, such as anti-proliferative and anti-protistal activities. Combinatorial biosynthetic approaches will allow us to create structurally diversified macrolide analogs, which are especially important during the emerging post-antibiotic era. This review focuses on recent advances in the discovery of new 14-membered macrolides (also including macrolactones) from microorganisms and the current status of combinatorial biosynthetic approaches, including polyketide synthase (PKS) and post-PKS tailoring pathways, and metabolic engineering for improved production together with heterologous production of 14-membered macrolides.
Collapse
Affiliation(s)
- Je Won Park
- School of Biosystem and Biomedical Science, Korea University, Seoul, 02841, Republic of Korea
| | - Yeo Joon Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Republic of Korea.
| |
Collapse
|
6
|
Park SY, Yang D, Ha SH, Lee SY. Metabolic Engineering of Microorganisms for the Production of Natural Compounds. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/adbi.201700190] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Seon Young Park
- Metabolic and Biomolecular Engineering National Research Laboratory; Department of Chemical and Biomolecular Engineering (BK21 Plus Program); Institute for the BioCentury; Korea Advanced Institute of Science and Technology (KAIST); Daejeon 34141 Republic of Korea
| | - Dongsoo Yang
- Metabolic and Biomolecular Engineering National Research Laboratory; Department of Chemical and Biomolecular Engineering (BK21 Plus Program); Institute for the BioCentury; Korea Advanced Institute of Science and Technology (KAIST); Daejeon 34141 Republic of Korea
| | - Shin Hee Ha
- Metabolic and Biomolecular Engineering National Research Laboratory; Department of Chemical and Biomolecular Engineering (BK21 Plus Program); Institute for the BioCentury; Korea Advanced Institute of Science and Technology (KAIST); Daejeon 34141 Republic of Korea
| | - Sang Yup Lee
- Metabolic and Biomolecular Engineering National Research Laboratory; Department of Chemical and Biomolecular Engineering (BK21 Plus Program); Institute for the BioCentury; Korea Advanced Institute of Science and Technology (KAIST); Daejeon 34141 Republic of Korea
- BioProcess Engineering Research Center; KAIST; Daejeon 34141 Republic of Korea
- BioInformatics Research Center; KAIST; Daejeon 34141 Republic of Korea
| |
Collapse
|
7
|
Zhang MM, Wang Y, Ang EL, Zhao H. Engineering microbial hosts for production of bacterial natural products. Nat Prod Rep 2016; 33:963-87. [PMID: 27072804 PMCID: PMC4963277 DOI: 10.1039/c6np00017g] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Covering up to end 2015Microbial fermentation provides an attractive alternative to chemical synthesis for the production of structurally complex natural products. In most cases, however, production titers are low and need to be improved for compound characterization and/or commercial production. Owing to advances in functional genomics and genetic engineering technologies, microbial hosts can be engineered to overproduce a desired natural product, greatly accelerating the traditionally time-consuming strain improvement process. This review covers recent developments and challenges in the engineering of native and heterologous microbial hosts for the production of bacterial natural products, focusing on the genetic tools and strategies for strain improvement. Special emphasis is placed on bioactive secondary metabolites from actinomycetes. The considerations for the choice of host systems will also be discussed in this review.
Collapse
Affiliation(s)
- Mingzi M Zhang
- Metabolic Engineering Research Laboratory, Science and Engineering Institutes, Agency for Science, Technology and Research, Singapore
| | | | | | | |
Collapse
|
8
|
Luo Y, Li BZ, Liu D, Zhang L, Chen Y, Jia B, Zeng BX, Zhao H, Yuan YJ. Engineered biosynthesis of natural products in heterologous hosts. Chem Soc Rev 2015; 44:5265-90. [PMID: 25960127 PMCID: PMC4510016 DOI: 10.1039/c5cs00025d] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Natural products produced by microorganisms and plants are a major resource of antibacterial and anticancer drugs as well as industrially useful compounds. However, the native producers often suffer from low productivity and titers. Here we summarize the recent applications of heterologous biosynthesis for the production of several important classes of natural products such as terpenoids, flavonoids, alkaloids, and polyketides. In addition, we will discuss the new tools and strategies at multi-scale levels including gene, pathway, genome and community levels for highly efficient heterologous biosynthesis of natural products.
Collapse
Affiliation(s)
- Yunzi Luo
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Li J, Jaitzig J, Lu P, Süssmuth RD, Neubauer P. Scale-up bioprocess development for production of the antibiotic valinomycin in Escherichia coli based on consistent fed-batch cultivations. Microb Cell Fact 2015; 14:83. [PMID: 26063334 PMCID: PMC4464625 DOI: 10.1186/s12934-015-0272-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 05/08/2015] [Indexed: 02/05/2023] Open
Abstract
Background Heterologous production of natural products in Escherichia coli has emerged as an attractive strategy to obtain molecules of interest. Although technically feasible most of them are still constrained to laboratory scale production. Therefore, it is necessary to develop reasonable scale-up strategies for bioprocesses aiming at the overproduction of targeted natural products under industrial scale conditions. To this end, we used the production of the antibiotic valinomycin in E. coli as a model system for scalable bioprocess development based on consistent fed-batch cultivations. Results In this work, the glucose limited fed-batch strategy based on pure mineral salt medium was used throughout all scales for valinomycin production. The optimal glucose feed rate was initially detected by the use of a biocatalytically controlled glucose release (EnBase® technology) in parallel cultivations in 24-well plates with continuous monitoring of pH and dissolved oxygen. These results were confirmed in shake flasks, where the accumulation of valinomycin was highest when the specific growth rate decreased below 0.1 h−1. This correlation was also observed for high cell density fed-batch cultivations in a lab-scale bioreactor. The bioreactor fermentation produced valinomycin with titers of more than 2 mg L−1 based on the feeding of a concentrated glucose solution. Valinomycin production was not affected by oscillating conditions (i.e. glucose and oxygen) in a scale-down two-compartment reactor, which could mimic similar situations in industrial bioreactors, suggesting that the process is very robust and a scaling of the process to a larger industrial scale appears a realistic scenario. Conclusions Valinomycin production was scaled up from mL volumes to 10 L with consistent use of the fed-batch technology. This work presents a robust and reliable approach for scalable bioprocess development and represents an example for the consistent development of a process for a heterologously expressed natural product towards the industrial scale.
Collapse
Affiliation(s)
- Jian Li
- Chair of Bioprocess Engineering, Department of Biotechnology, Technische Universität Berlin, Ackerstraße 76, ACK24, 13355, Berlin, Germany. .,Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA.
| | - Jennifer Jaitzig
- Chair of Bioprocess Engineering, Department of Biotechnology, Technische Universität Berlin, Ackerstraße 76, ACK24, 13355, Berlin, Germany.
| | - Ping Lu
- Chair of Bioprocess Engineering, Department of Biotechnology, Technische Universität Berlin, Ackerstraße 76, ACK24, 13355, Berlin, Germany.
| | - Roderich D Süssmuth
- Department of Chemistry, Technische Universität Berlin, Straße des 17. Juni 124, 10623, Berlin, Germany.
| | - Peter Neubauer
- Chair of Bioprocess Engineering, Department of Biotechnology, Technische Universität Berlin, Ackerstraße 76, ACK24, 13355, Berlin, Germany.
| |
Collapse
|
10
|
Singh V, Mani I, Chaudhary DK. Metabolic Engineering of Microorganisms for Biosynthesis of Antibiotics. SYSTEMS AND SYNTHETIC BIOLOGY 2015. [DOI: 10.1007/978-94-017-9514-2_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Li J, Neubauer P. Escherichia coli as a cell factory for heterologous production of nonribosomal peptides and polyketides. N Biotechnol 2014; 31:579-85. [PMID: 24704144 DOI: 10.1016/j.nbt.2014.03.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 03/21/2014] [Accepted: 03/24/2014] [Indexed: 12/18/2022]
Abstract
Nonribosomal peptides (NRPs) and polyketides (PKs) are two classes of natural products with numerous bioactivities such as antiviral, antimicrobial and anticancer activity. However, pharmaceutical applications of these products are often impeded because many native producers are difficult to cultivate or show a low productivity. Over the last decade, with the development of synthetic biology and metabolic engineering, more and more bioactive natural products including NRPs and PKs have been heterologously produced using easy-to-handle surrogate microbes. In this process, the full biosynthetic pathway for the production of a target compound is first identified and isolated from the native producer, and then reconstituted in a well-characterized and easily culturable heterologous producer like Escherichia coli. Thereafter, the productivity could be rationally improved through multiple strategies from strain to bioprocess optimization. This review summarizes the endeavors and progresses made in the heterologous production of NRPs, PKs and NRP/PK hybrids using E. coli as a robust whole-cell factory in recent years.
Collapse
Affiliation(s)
- Jian Li
- Chair of Bioprocess Engineering, Department of Biotechnology, Technische Universität Berlin, Ackerstraße76, ACK24, D-13355 Berlin, Germany.
| | - Peter Neubauer
- Chair of Bioprocess Engineering, Department of Biotechnology, Technische Universität Berlin, Ackerstraße76, ACK24, D-13355 Berlin, Germany
| |
Collapse
|
12
|
Ongley SE, Bian X, Neilan BA, Müller R. Recent advances in the heterologous expression of microbial natural product biosynthetic pathways. Nat Prod Rep 2013; 30:1121-38. [PMID: 23832108 DOI: 10.1039/c3np70034h] [Citation(s) in RCA: 145] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The heterologous expression of microbial natural product biosynthetic pathways coupled with advanced DNA engineering enables optimisation of product yields, functional elucidation of cryptic gene clusters, and generation of novel derivatives. This review summarises the recent advances in cloning and maintenance of natural product biosynthetic gene clusters for heterologous expression and the efforts fundamental for discovering novel natural products in the post-genomics era, with a focus on polyketide synthases (PKSs) and non-ribosomal polypeptide synthetases (NRPS).
Collapse
Affiliation(s)
- Sarah E Ongley
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney 2052, Australia
| | | | | | | |
Collapse
|
13
|
Jiang M, Zhang H, Pfeifer BA. The logic, experimental steps, and potential of heterologous natural product biosynthesis featuring the complex antibiotic erythromycin A produced through E. coli. J Vis Exp 2013:e4346. [PMID: 23354010 DOI: 10.3791/4346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The heterologous production of complex natural products is an approach designed to address current limitations and future possibilities. It is particularly useful for those compounds which possess therapeutic value but cannot be sufficiently produced or would benefit from an improved form of production. The experimental procedures involved can be subdivided into three components: 1) genetic transfer; 2) heterologous reconstitution; and 3) product analysis. Each experimental component is under continual optimization to meet the challenges and anticipate the opportunities associated with this emerging approach. Heterologous biosynthesis begins with the identification of a genetic sequence responsible for a valuable natural product. Transferring this sequence to a heterologous host is complicated by the biosynthetic pathway complexity responsible for product formation. The antibiotic erythromycin A is a good example. Twenty genes (totaling >50 kb) are required for eventual biosynthesis. In addition, three of these genes encode megasynthases, multi-domain enzymes each ~300 kDa in size. This genetic material must be designed and transferred to E. coli for reconstituted biosynthesis. The use of PCR isolation, operon construction, multi-cystronic plasmids, and electro-transformation will be described in transferring the erythromycin A genetic cluster to E. coli. Once transferred, the E. coli cell must support eventual biosynthesis. This process is also challenging given the substantial differences between E. coli and most original hosts responsible for complex natural product formation. The cell must provide necessary substrates to support biosynthesis and coordinately express the transferred genetic cluster to produce active enzymes. In the case of erythromycin A, the E. coli cell had to be engineered to provide the two precursors (propionyl-CoA and (2S)-methylmalonyl-CoA) required for biosynthesis. In addition, gene sequence modifications, plasmid copy number, chaperonin co-expression, post-translational enzymatic modification, and process temperature were also required to allow final erythromycin A formation. Finally, successful production must be assessed. For the erythromycin A case, we will present two methods. The first is liquid chromatography-mass spectrometry (LC-MS) to confirm and quantify production. The bioactivity of erythromycin A will also be confirmed through use of a bioassay in which the antibiotic activity is tested against Bacillus subtilis. The assessment assays establish erythromycin A biosynthesis from E. coli and set the stage for future engineering efforts to improve or diversify production and for the production of new complex natural compounds using this approach.
Collapse
Affiliation(s)
- Ming Jiang
- Chemical and Biological Engineering Department, State University of New York at Buffalo, USA
| | | | | |
Collapse
|
14
|
Cobb RE, Luo Y, Freestone T, Zhao H. Drug Discovery and Development via Synthetic Biology. Synth Biol (Oxf) 2013. [DOI: 10.1016/b978-0-12-394430-6.00010-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
15
|
Artificial chromosomes to explore and to exploit biosynthetic capabilities of actinomycetes. J Biomed Biotechnol 2012; 2012:462049. [PMID: 22919271 PMCID: PMC3420335 DOI: 10.1155/2012/462049] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 06/20/2012] [Accepted: 07/04/2012] [Indexed: 12/02/2022] Open
Abstract
Actinomycetes are an important source of biologically active compounds, like antibiotics, antitumor agents, and immunosuppressors. Genome sequencing is revealing that this class of microorganisms has larger genomes relative to other bacteria and uses a considerable fraction of its coding capacity (5–10%) for the production of mostly cryptic secondary metabolites. To access actinomycetes biosynthetic capabilities or to improve the pharmacokinetic properties and production yields of these chemically complex compounds, genetic manipulation of the producer strains can be performed. Heterologous expression in amenable hosts can be useful to exploit and to explore the genetic potential of actinomycetes and not cultivable but interesting bacteria. Artificial chromosomes that can be stably integrated into the Streptomyces genome were constructed and demonstrated to be effective for transferring entire biosynthetic gene clusters from intractable actinomycetes into more suitable hosts. In this paper, the construction of several shuttle Escherichia coli-Streptomyces artificial chromosomes is discussed together with old and new strategies applied to improve heterologous production of secondary metabolites.
Collapse
|
16
|
Downstream reactions and engineering in the microbially reconstituted pathway for Taxol. Appl Microbiol Biotechnol 2012; 94:841-9. [PMID: 22460591 PMCID: PMC9896016 DOI: 10.1007/s00253-012-4016-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 03/07/2012] [Accepted: 03/08/2012] [Indexed: 02/07/2023]
Abstract
Taxol (a trademarked product of Bristol-Myers Squibb) is a complex isoprenoid natural product which has displayed potent anticancer activity. Originally isolated from the Pacific yew tree (Taxus brevifolia), Taxol has been mass-produced through processes reliant on plant-derived biosynthesis. Recently, there have been alternative efforts to reconstitute the biosynthetic process through technically convenient microbial hosts, which offer unmatched growth kinetics and engineering potential. Such an approach is made challenging by the need to successfully introduce the significantly foreign enzymatic steps responsible for eventual biosynthesis. Doing so, however, offers the potential to engineer more efficient and economical production processes and the opportunity to design and produce tailored analog compounds with enhanced properties. This mini review will specifically focus on heterologous biosynthesis as it applies to Taxol with an emphasis on the challenges associated with introducing and reconstituting the downstream reaction steps needed for final bioactivity.
Collapse
|