1
|
Vivenzio VM, Esposito D, Monti SM, De Simone G. Bacterial α-CAs: a biochemical and structural overview. Enzymes 2024; 55:31-63. [PMID: 39222995 DOI: 10.1016/bs.enz.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Carbonic anhydrases belonging to the α-class are widely distributed in bacterial species. These enzymes have been isolated from bacteria with completely different characteristics including both Gram-negative and Gram-positive strains. α-CAs show a considerable similarity when comparing the biochemical, kinetic and structural features, with only small differences which reflect the diverse role these enzymes play in Nature. In this chapter, we provide a comprehensive overview on bacterial α-CA data, with a highlight to their potential biomedical and biotechnological applications.
Collapse
|
2
|
Liu Y, Wang P, Tian J, Seidi F, Guo J, Zhu W, Xiao H, Song J. Carbohydrate-Binding Modules of Potential Resources: Occurrence in Nature, Function, and Application in Fiber Recognition and Treatment. Polymers (Basel) 2022; 14:1806. [PMID: 35566977 PMCID: PMC9100146 DOI: 10.3390/polym14091806] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/21/2022] [Accepted: 04/24/2022] [Indexed: 02/04/2023] Open
Abstract
Great interests have recently been aroused in the independent associative domain of glycoside hydrolases that utilize insoluble polysaccharides-carbohydrate-binding module (CBM), which responds to binding while the catalytic domain reacts with the substrate. In this mini-review, we first provide a brief introduction on CBM and its subtypes including the classifications, potential sources, structures, and functions. Afterward, the applications of CBMs in substrate recognition based on different types of CBMs have been reviewed. Additionally, the progress of CBMs in paper industry as a new type of environmentally friendly auxiliary agent for fiber treatment is summarized. At last, other applications of CBMs and the future outlook have prospected. Due to the specificity in substrate recognition and diversity in structures, CBM can be a prosperous and promising 'tool' for wood and fiber processing in the future.
Collapse
Affiliation(s)
- Yena Liu
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; (Y.L.); (P.W.); (J.T.); (F.S.); (J.G.); (W.Z.)
| | - Peipei Wang
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; (Y.L.); (P.W.); (J.T.); (F.S.); (J.G.); (W.Z.)
| | - Jing Tian
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; (Y.L.); (P.W.); (J.T.); (F.S.); (J.G.); (W.Z.)
| | - Farzad Seidi
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; (Y.L.); (P.W.); (J.T.); (F.S.); (J.G.); (W.Z.)
| | - Jiaqi Guo
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; (Y.L.); (P.W.); (J.T.); (F.S.); (J.G.); (W.Z.)
| | - Wenyuan Zhu
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; (Y.L.); (P.W.); (J.T.); (F.S.); (J.G.); (W.Z.)
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B 5A3, Canada;
| | - Junlong Song
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; (Y.L.); (P.W.); (J.T.); (F.S.); (J.G.); (W.Z.)
| |
Collapse
|
3
|
Zhu Y, Liu Y, Ai M, Jia X. Surface display of carbonic anhydrase on Escherichia coli for CO 2 capture and mineralization. Synth Syst Biotechnol 2022; 7:460-473. [PMID: 34938905 PMCID: PMC8654698 DOI: 10.1016/j.synbio.2021.11.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/25/2021] [Accepted: 11/28/2021] [Indexed: 11/25/2022] Open
Abstract
Mineralization catalyzed by carbonic anhydrase (CA) is one of the most promising technologies for capturing CO2. In this work, Escherichia coli BL21(DE3) was used as the host, and the N-terminus of ice nucleation protein (INPN) was used as the carrier protein. Different fusion patterns and vectors were used to construct CA surface display systems for α-carbonic anhydrase (HPCA) from Helicobacter pylori 26695 and α-carbonic anhydrase (SazCA) from Sulfurihydrogenibium azorense. The surface display system in which HPCA was fused with INPN via a flexible linker and intermediate repeat sequences showed higher whole-cell enzyme activity, while the enzyme activity of the SazCA expression system was significantly higher than that of the HPCA expression system. The pET22b vector with the signal peptide PelB was more suitable for the cell surface display of SazCA. Cell fractionation and western-blot analysis indicated that SazCA and INPN were successfully anchored on the cell's outer membrane as a fusion protein. The enzyme activity of the surface display strain E-22b-IRLS (11.43 U·mL-1OD600 -1) was significantly higher than that of the intracellular expression strain E-22b-S (8.355 U·mL-1OD600 -1) under optimized induction conditions. Compared with free SazCA, E-22b-IRLS had higher thermal and pH stability. The long-term stability of SazCA was also significantly improved by surface display. When the engineered strain and free enzyme were used for CO2 mineralization, the amount of CaCO3 deposition catalyzed by the strain E-22b-IRLS on the surface (241 mg) was similar to that of the free SazCA and was significantly higher than the intracellular expression strain E-22b-S (173 mg). These results demonstrate that the SazCA surface display strain can serve as a whole-cell biocatalyst for CO2 capture and mineralization.
Collapse
Affiliation(s)
- Yinzhuang Zhu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China
| | - Yaru Liu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China
| | - Mingmei Ai
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China
| | - Xiaoqiang Jia
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, PR China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, PR China
| |
Collapse
|
4
|
Iraninasab S, Sharifian S, Homaei A, Homaee MB, Sharma T, Nadda AK, Kennedy JF, Bilal M, Iqbal HMN. Emerging trends in environmental and industrial applications of marine carbonic anhydrase: a review. Bioprocess Biosyst Eng 2022; 45:431-451. [PMID: 34821989 DOI: 10.1007/s00449-021-02667-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/10/2021] [Indexed: 02/08/2023]
Abstract
Biocatalytic conversion of greenhouse gases such as carbon dioxide into commercial products is one of the promising key approaches to solve the problem of climate change. Microbial enzymes, including carbonic anhydrase, NAD-dependent formate dehydrogenase, ribulose bisphosphate carboxylase, and methane monooxygenase, have been exploited to convert atmospheric gases into industrial products. Carbonic anhydrases are Zn2+-dependent metalloenzymes that catalyze the reversible conversion of CO2 into bicarbonate. They are widespread in bacteria, algae, plants, and higher organisms. In higher organisms, they regulate the physiological pH and contribute to CO2 transport in the blood. In plants, algae, and photosynthetic bacteria carbonic anhydrases are involved in photosynthesis. Converting CO2 into bicarbonate by carbonic anhydrases can solidify gaseous CO2, thereby reducing global warming due to the burning of fossil fuels. This review discusses the three-dimensional structures of carbonic anhydrases, their physiological role in marine life, their catalytic mechanism, the types of inhibitors, and their medicine and industry applications.
Collapse
Affiliation(s)
- Sudabeh Iraninasab
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, P.O. Box 3995, Bandar Abbas, Iran
| | - Sana Sharifian
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, P.O. Box 3995, Bandar Abbas, Iran
| | - Ahmad Homaei
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, P.O. Box 3995, Bandar Abbas, Iran.
| | | | - Tanvi Sharma
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, 173 234, India
| | - Ashok Kumar Nadda
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, 173 234, India
| | - John F Kennedy
- Chembiotech Laboratories, Advanced Science and Technology Institute, The Kyrewood Centre, Tenbury Wells, Worcs, WR15 8FF, UK
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, 64849, Monterrey, Mexico
| |
Collapse
|
5
|
Ren S, Jiang S, Yan X, Chen R, Cui H. Challenges and Opportunities: Porous Supports in Carbonic Anhydrase Immobilization. J CO2 UTIL 2020. [DOI: 10.1016/j.jcou.2020.101305] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
6
|
Hsu K, Tan S, Chiu C, Chang Y, Ng I. ARduino‐pH Tracker and screening platform for characterization of recombinant carbonic anhydrase in
Escherichia coli. Biotechnol Prog 2019; 35:e2834. [DOI: 10.1002/btpr.2834] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/21/2019] [Accepted: 04/29/2019] [Indexed: 01/06/2023]
Affiliation(s)
- Kao‐Pang Hsu
- Department of Chemical EngineeringNational Cheng Kung University Tainan Taiwan, ROC
| | - Shih‐I Tan
- Department of Chemical EngineeringNational Cheng Kung University Tainan Taiwan, ROC
| | - Chen‐Yaw Chiu
- Graduate School of Biochemical EngineeringMing Chi University of Technology New Taipei City Taiwan, ROC
| | - Yu‐Kaung Chang
- Graduate School of Biochemical EngineeringMing Chi University of Technology New Taipei City Taiwan, ROC
| | - I‐Son Ng
- Department of Chemical EngineeringNational Cheng Kung University Tainan Taiwan, ROC
| |
Collapse
|
7
|
Ki MR, Nguyen TKM, Kim SH, Kwon I, Pack SP. Chimeric protein of internally duplicated α-type carbonic anhydrase from Dunaliella species for improved expression and CO 2 sequestration. Process Biochem 2016. [DOI: 10.1016/j.procbio.2016.05.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
8
|
Bringing functions together with fusion enzymes—from nature’s inventions to biotechnological applications. Appl Microbiol Biotechnol 2014; 99:1545-56. [DOI: 10.1007/s00253-014-6315-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 12/04/2014] [Accepted: 12/09/2014] [Indexed: 12/18/2022]
|
9
|
Boone CD, Pinard M, McKenna R, Silverman D. Catalytic mechanism of α-class carbonic anhydrases: CO2 hydration and proton transfer. Subcell Biochem 2014; 75:31-52. [PMID: 24146373 DOI: 10.1007/978-94-007-7359-2_3] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The carbonic anhydrases (CAs; EC 4.2.1.1) are a family of metalloenzymes that catalyze the reversible hydration of carbon dioxide (CO2) and dehydration of bicarbonate (HCO3 (-)) in a two-step ping-pong mechanism: [Formula: see text] CAs are ubiquitous enzymes and are categorized into five distinct classes (α, β, γ, δ and ζ). The α-class is found primarily in vertebrates (and the only class of CA in mammals), β is observed in higher plants and some prokaryotes, γ is present only in archaebacteria whereas the δ and ζ classes have only been observed in diatoms.The focus of this chapter is on α-CAs as the structure-function relationship is best understood for this class, in particular for humans. The reader is referred to other reviews for an overview of the structure and catalytic mechanism of the other CA classes. The overall catalytic site structure and geometry of α-CAs are described in the first section of this chapter followed by the kinetic studies, binding of CO2, and the proton shuttle network.
Collapse
Affiliation(s)
- Christopher D Boone
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, USA,
| | | | | | | |
Collapse
|
10
|
Abstract
Carbonic anhydrases (CAs) catalyze a fundamental reaction: the reversible hydration and dehydration of carbon dioxide (CO2) and bicarbonate ([Formula: see text]), respectively. Current methods for CO2 capture and sequestration are harsh, expensive, and require prohibitively large energy inputs, effectively negating the purpose of removing CO2 from the atmosphere. Due to CA's activity on CO2 there is increasing interest in using CAs for industrial applications such as carbon sequestration and biofuel production. A lot of work in the last decade has focused on immobilizing CA onto various supports for incorporation into CO2 scrubbing applications or devices. Although the proof of principle has been validated, current CAs being tested do not withstand the harsh industrial conditions. The advent of large-scale genome sequencing projects has resulted in several emerging efforts seeking out novel CAs from a variety of microorganisms, including bacteria, micro-, and macro-algae. CAs are also being investigated for their use in medical applications, such drug delivery systems and artificial lungs. This review also looks at possible downstream uses of captured and sequestered CO2, from using it to enhance oil recovery to incorporating it into useful and financially viable products.
Collapse
Affiliation(s)
- Javier M González
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, USA,
| | | |
Collapse
|
11
|
Carbonic Anhydrase: An Efficient Enzyme with Possible Global Implications. INTERNATIONAL JOURNAL OF CHEMICAL ENGINEERING 2013. [DOI: 10.1155/2013/813931] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
As the global atmospheric emissions of carbon dioxide (CO2) and other greenhouse gases continue to grow to record-setting levels, so do the demands for an efficient and inexpensive carbon sequestration system. Concurrently, the first-world dependence on crude oil and natural gas provokes concerns for long-term availability and emphasizes the need for alternative fuel sources. At the forefront of both of these research areas are a family of enzymes known as the carbonic anhydrases (CAs), which reversibly catalyze the hydration of CO2into bicarbonate. CAs are among the fastest enzymes known, which have a maximum catalytic efficiency approaching the diffusion limit of 108 M−1s−1. As such, CAs are being utilized in various industrial and research settings to help lower CO2atmospheric emissions and promote biofuel production. This review will highlight some of the recent accomplishments in these areas along with a discussion on their current limitations.
Collapse
|
12
|
Abstract
In the past decade, the capture of anthropic carbonic dioxide and its storage or transformation have emerged as major tasks to achieve, in order to control the increasing atmospheric temperature of our planet. One possibility rests on the use of carbonic anhydrase enzymes, which have been long known to accelerate the hydration of neutral aqueous CO2 molecules to ionic bicarbonate species. In this paper, the principle underlying the use of these enzymes is summarized. Their main characteristics, including their structure and catalysis kinetics, are presented. A special section is next devoted to the main types of CO2 capture reactors under development, to possibly use these enzymes industrially. Finally, the possible application of carbonic anhydrases to directly store the captured CO2 as inert solid carbonates deserves a review presented in a final section.
Collapse
Affiliation(s)
- Alain C. Pierre
- Institut de Recherches sur la Catalyse et L’environnement de Lyon, Université Claude Bernard Lyon 1 CNRS, UMR 5256, 2 Avenue Albert Einstein, 69626 Villeurbanne, France
| |
Collapse
|
13
|
Kim IG, Jo BH, Kang DG, Kim CS, Choi YS, Cha HJ. Biomineralization-based conversion of carbon dioxide to calcium carbonate using recombinant carbonic anhydrase. CHEMOSPHERE 2012; 87:1091-1096. [PMID: 22397838 DOI: 10.1016/j.chemosphere.2012.02.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 01/31/2012] [Accepted: 02/01/2012] [Indexed: 05/31/2023]
Abstract
Recently, as a mimic of the natural biomineralization process, the use of carbonic anhydrase (CA), which is an enzyme catalyzing fast reversible hydration of carbon dioxide to bicarbonate, has been suggested for biological conversion of CO(2) to valuable chemicals. While purified bovine CA (BCA) has been used in previous studies, its practical utilization in CO(2) conversion has been limited due to the expense of BCA preparation. In the present work, we investigated conversion of CO(2) into calcium carbonate as a target carbonate mineral by using a more economical, recombinant CA. To our knowledge, this is the first report of the usage of recombinant CA for biological CO(2) conversion. Recombinant α-type CA originating in Neisseria gonorrhoeae (NCA) was highly expressed as a soluble form in Escherichia coli. We found that purified recombinant NCA which showed comparable CO(2) hydration activity to commercial BCA significantly promoted formation of solid CaCO(3) through the acceleration of CO(2) hydration rate, which is naturally slow. In addition, the rate of calcite crystal formation was also accelerated using recombinant NCA. Moreover, non-purified crude recombinant NCA also showed relatively significant ability. Therefore, recombinant CA could be an effective, economical biocatalyst in practical CO(2) conversion system.
Collapse
Affiliation(s)
- Im Gyu Kim
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | | | | | | | | | | |
Collapse
|
14
|
Imtaiyaz Hassan M, Shajee B, Waheed A, Ahmad F, Sly WS. Structure, function and applications of carbonic anhydrase isozymes. Bioorg Med Chem 2012; 21:1570-82. [PMID: 22607884 DOI: 10.1016/j.bmc.2012.04.044] [Citation(s) in RCA: 160] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 04/02/2012] [Accepted: 04/21/2012] [Indexed: 01/16/2023]
Abstract
The carbonic anhydrases enzymes (CAs, EC 4.2.1.1) are zinc containing metalloproteins, which efficiently catalyse the reversible conversion of carbon dioxide to bicarbonate and release proton. These enzymes are essentially important for biological system and play several important physiological and patho-physiological functions. There are 16 different alpha-carbonic anhydrase isoforms studied, differing widely in their cellular localization and biophysical properties. The catalytic domains of all CAs possess a conserved tertiary structure fold, with predominately β-strands. We performed an extensive analysis of all 16 mammalian CAs for its structure and function in order to establish a structure-function relationship. CAs have been a potential therapeutic target for many diseases. Sulfonamides are considered as a strong and specific inhibitor of CA, and are being used as diuretics, anti-glaucoma, anti-epileptic, anti-ulcer agents. Currently CA inhibitors are widely used as a drug for the treatment of neurological disorders, anti-glaucoma drugs, anti-cancer, or anti-obesity agents. Here we tried to emphasize how CAs can be used for drug discovery, design and screening. Furthermore, we discussed the role of CA in carbon capture, carbon sensor and metabolon. We hope this review provide many useful information on structure, function, mechanism, and applications of CAs in various discipline.
Collapse
Affiliation(s)
- Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| | | | | | | | | |
Collapse
|
15
|
Park H, Ahn J, Lee J, Lee H, Kim C, Jung JK, Lee H, Lee EG. Expression, immobilization and enzymatic properties of glutamate decarboxylase fused to a cellulose-binding domain. Int J Mol Sci 2011; 13:358-68. [PMID: 22312257 PMCID: PMC3269691 DOI: 10.3390/ijms13010358] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 12/15/2011] [Accepted: 12/19/2011] [Indexed: 11/24/2022] Open
Abstract
Escherichia coli-derived glutamate decarboxylase (GAD), an enzyme that catalyzes the conversion of glutamic acid to gamma-aminobutyric acid (GABA), was fused to the cellulose-binding domain (CBD) and a linker of Trichoderma harzianum endoglucanase II. To prevent proteolysis of the fusion protein, the native linker was replaced with a S3N10 peptide known to be completely resistant to E. coli endopeptidase. The CBD-GAD expressed in E. coli was successfully immobilized on Avicel, a crystalline cellulose, with binding capacity of 33 ± 2 nmolCBD-GAD/gAvicel and the immobilized enzymes retained 60% of their initial activities after 10 uses. The results of this report provide a feasible alternative to produce GABA using immobilized GAD through fusion to CBD.
Collapse
Affiliation(s)
- Hyemin Park
- Biotechnology Process Engineering Center, KRIBB, Daejeon 305-600, Korea; E-Mails: (H.P.); (J.A.); (J.L.); (H.L.); (C.K.); (J.-K.J.); (H.L.)
| | | | | | | | | | | | | | | |
Collapse
|