1
|
Saikia S, Postwala H, Athilingam VP, Anandan A, Padma VV, Kalita PP, Chorawala M, Prajapati B. Single Nucleotide Polymorphisms (SNPs) in the Shadows: Uncovering their Function in Non-Coding Region of Esophageal Cancer. Curr Pharm Biotechnol 2024; 25:1915-1938. [PMID: 38310451 DOI: 10.2174/0113892010265004231116092802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 02/05/2024]
Abstract
Esophageal cancer is a complex disease influenced by genetic and environmental factors. Single nucleotide polymorphisms (SNPs) in non-coding regions of the genome have emerged as crucial contributors to esophageal cancer susceptibility. This review provides a comprehensive overview of the role of SNPs in non-coding regions and their association with esophageal cancer. The accumulation of SNPs in the genome has been implicated in esophageal cancer risk. Various studies have identified specific locations in the genome where SNPs are more likely to occur, suggesting a location-specific response. Chromatin conformational studies have shed light on the localization of SNPs and their impact on gene transcription, posttranscriptional modifications, gene expression regulation, and histone modification. Furthermore, miRNA-related SNPs have been found to play a significant role in esophageal squamous cell carcinoma (ESCC). These SNPs can affect miRNA binding sites, thereby altering target gene regulation and contributing to ESCC development. Additionally, the risk of ESCC has been linked to base excision repair, suggesting that SNPs in this pathway may influence disease susceptibility. Somatic DNA segment alterations and modified expression quantitative trait loci (eQTL) have also been associated with ESCC. These alterations can lead to disrupted gene expression and cellular processes, ultimately contributing to cancer development and progression. Moreover, SNPs have been found to be associated with the long non-coding RNA HOTAIR, which plays a crucial role in ESCC pathogenesis. This review concludes with a discussion of the current and future perspectives in the field of SNPs in non-coding regions and their relevance to esophageal cancer. Understanding the functional implications of these SNPs may lead to the identification of novel therapeutic targets and the development of personalized approaches for esophageal cancer prevention and treatment.
Collapse
Affiliation(s)
- Surovi Saikia
- Department of Natural Product Chemistry, Translational Research Laboratory, Bharathiar University, Coimbatore - 641 046, Tamil Nadu, India
| | - Humzah Postwala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Ahmedabad, India
| | - Vishnu Prabhu Athilingam
- Department of Natural Product Chemistry, Translational Research Laboratory, Bharathiar University, Coimbatore - 641 046, Tamil Nadu, India
| | - Aparna Anandan
- Department of Natural Product Chemistry, Translational Research Laboratory, Bharathiar University, Coimbatore - 641 046, Tamil Nadu, India
| | - V Vijaya Padma
- Department of Natural Product Chemistry, Translational Research Laboratory, Bharathiar University, Coimbatore - 641 046, Tamil Nadu, India
| | - Partha P Kalita
- Program of Biotechnology, Assam Down Town University, Panikhaiti, Guwahati 781026, Assam, India
| | - Mehul Chorawala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Ahmedabad, India
| | - Bhupendra Prajapati
- Department of Pharmaceutics and Pharmaceutical Technology, Shree. S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Kherva, Gujarat, India
| |
Collapse
|
2
|
Zhuang Q, Liu C, Hu Y, Liu Y, Lyu Y, Liao Y, Chen L, Yang H, Mao Y. Identification of RP11-770J1.4 as immune-related lncRNA regulating the CTXN1-cGAS-STING axis in histologically lower-grade glioma. MedComm (Beijing) 2023; 4:e458. [PMID: 38116063 PMCID: PMC10728758 DOI: 10.1002/mco2.458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 11/24/2023] [Accepted: 11/30/2023] [Indexed: 12/21/2023] Open
Abstract
Human gliomas are lethal brain cancers. Emerging evidence revealed the regulatory role of long noncoding RNAs (lncRNAs) in tumors. Here, we performed a comprehensive analysis of the expression profiles of RNAs in histologically lower-grade glioma (LGG). Enrichment analysis revealed that glioma is influenced by immune-related signatures. Survival analysis further established the close correlation between network features and glioma prognosis. Subsequent experiments showed lncRNA RP11-770J1.4 regulates CTXN1 expression through hsa-miR-124-3p. Correlation analysis identified lncRNA RP11-770J1.4 was immune related, specifically involved in the cytosolic DNA sensing pathway. Downregulated lncRNA RP11-770J1.4 resulted in increased spontaneous gene expression of the cGAS-STING pathway. Single-cell RNA sequencing analysis, along with investigations in a glioblastoma stem cell model and patient sample analysis, demonstrated the predominant localization of CTXN1 within tumor cores rather than peripheral regions. Immunohistochemistry staining established a negative correlation between CTXN1 expression and infiltration of CD8+ T cells. In vivo, Ctxn1 knockdown in GL261 cells led to decreased tumor burden and improved survival while increasing infiltration of CD8+ T cells. These findings unveil novel insights into the lncRNA RP11-770J1.4-CTXN1 as a potential immune regulatory axis, highlighting its therapeutic implications for histologically LGGs.
Collapse
Affiliation(s)
- Qiyuan Zhuang
- Department of NeurosurgeryHuashan Hospital, Fudan UniversityShanghaiChina
| | - Chaxian Liu
- Department of NeurosurgeryHuashan Hospital, Fudan UniversityShanghaiChina
| | - Yihan Hu
- School of Life Sciences, Fudan UniversityShanghaiChina
| | - Ying Liu
- Department of PathologySchool of Basic Medical Sciences, Fudan UniversityShanghaiChina
| | - Yingying Lyu
- Department of NeurosurgeryHuashan Hospital, Fudan UniversityShanghaiChina
| | - Yuheng Liao
- Key Laboratory of Medical Epigenetics and Metabolism and Molecular and Cell Biology LabInstitute of Biomedical Sciences, Shanghai Medical College, Fudan UniversityShanghaiChina
| | - Liang Chen
- Department of NeurosurgeryHuashan Hospital, Fudan UniversityShanghaiChina
- National Center for Neurological DisordersHuashan Hospital, Fudan UniversityShanghaiChina
| | - Hui Yang
- Department of NeurosurgeryHuashan Hospital, Fudan UniversityShanghaiChina
- National Center for Neurological DisordersHuashan Hospital, Fudan UniversityShanghaiChina
- Institute for Translational Brain ResearchShanghai Medical College, Fudan UniversityShanghaiChina
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan UniversityShanghaiChina
| | - Ying Mao
- Department of NeurosurgeryHuashan Hospital, Fudan UniversityShanghaiChina
- School of Life Sciences, Fudan UniversityShanghaiChina
- National Center for Neurological DisordersHuashan Hospital, Fudan UniversityShanghaiChina
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan UniversityShanghaiChina
| |
Collapse
|
3
|
Böğürcü-Seidel N, Ritschel N, Acker T, Németh A. Beyond ribosome biogenesis: noncoding nucleolar RNAs in physiology and tumor biology. Nucleus 2023; 14:2274655. [PMID: 37906621 PMCID: PMC10730139 DOI: 10.1080/19491034.2023.2274655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/19/2023] [Indexed: 11/02/2023] Open
Abstract
The nucleolus, the largest subcompartment of the nucleus, stands out from the nucleoplasm due to its exceptionally high local RNA and low DNA concentrations. Within this central hub of nuclear RNA metabolism, ribosome biogenesis is the most prominent ribonucleoprotein (RNP) biogenesis process, critically determining the structure and function of the nucleolus. However, recent studies have shed light on other roles of the nucleolus, exploring the interplay with various noncoding RNAs that are not directly involved in ribosome synthesis. This review focuses on this intriguing topic and summarizes the techniques to study and the latest findings on nucleolar long noncoding RNAs (lncRNAs) as well as microRNAs (miRNAs) in the context of nucleolus biology beyond ribosome biogenesis. We particularly focus on the multifaceted roles of the nucleolus and noncoding RNAs in physiology and tumor biology.
Collapse
Affiliation(s)
| | - Nadja Ritschel
- Institute of Neuropathology, Justus Liebig University Giessen, Giessen, Germany
| | - Till Acker
- Institute of Neuropathology, Justus Liebig University Giessen, Giessen, Germany
| | - Attila Németh
- Institute of Neuropathology, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
4
|
Wang Y, Jiang X, Zhang D, Zhao Y, Han X, Zhu L, Ren J, Liu Y, You J, Wang H, Cai H. LncRNA DUXAP8 as a prognostic biomarker for various cancers: A meta-analysis and bioinformatics analysis. Front Genet 2022; 13:907774. [PMID: 36046244 PMCID: PMC9420988 DOI: 10.3389/fgene.2022.907774] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Dual homeoboxes A pseudogene 8 (DUXAP8) is a newly discovered long noncoding RNA that has been shown to function as an oncogene in a variety of human malignant cancers. By integrating available data, this meta-analysis sought to determine the relationship between clinical prognosis and DUXAP8 expression levels in diverse malignancies.Materials and methods: A systematic search was performed to identify eligible studies from several electronic databases from their inception to 25 October 2021. Pooled odds ratios and hazard ratios with 95% CI were used to estimate the association between DUXAP8 expression and survival. For survival analysis, the Kaplan-Meier method and COX analysis were used. Furthermore, we utilized Spearman’s correlation analysis to explore the correlation between DUXAP8 and tumor mutational burden (TMB), microsatellite instability (MSI), the related genes of mismatch repair (MMR), DNA methyltransferases (DNMTs), and immune checkpoint biomarkers.Results: Our findings indicated that overexpression of DUXAP8 was related to poor overall survival (OS) (HR = 1.63, 95% CI, 1.49–1.77, p < 0.001). In addition, elevated DUXAP8 expression was closely related to poor OS in several cancers in the TCGA database. Moreover, DUXAP8 expression has been associated with TMB, MSI, and MMR in a variety of malignancies.Conclusion: This study revealed that DUXAP8 might serve as a prognostic biomarker and potential therapeutic target for cancer. It can be used to improve cancer diagnosis, discover potential treatment targets, and improve prognosis.
Collapse
Affiliation(s)
- Yongfeng Wang
- Graduate School, Ning Xia Medical University, Yinchuan, China
- General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou, China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Gansu, China
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, China
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Xianglai Jiang
- Graduate School, Ning Xia Medical University, Yinchuan, China
- General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou, China
| | - Dongzhi Zhang
- Graduate School, Ning Xia Medical University, Yinchuan, China
- General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou, China
| | - Yuanbin Zhao
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Xiaoyong Han
- Graduate School, Ning Xia Medical University, Yinchuan, China
- General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou, China
| | - Lihui Zhu
- Graduate School, Ning Xia Medical University, Yinchuan, China
- General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou, China
| | - Jingyao Ren
- Graduate School, Ning Xia Medical University, Yinchuan, China
- General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou, China
| | - Yubin Liu
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Jiarong You
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Haolan Wang
- General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou, China
| | - Hui Cai
- General Surgery Clinical Medical Center, Gansu Provincial Hospital, Lanzhou, China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, Gansu, China
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, China
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
- *Correspondence: Hui Cai,
| |
Collapse
|
5
|
Du P, Chai Y, Zong S, Yue J, Xiao H. Identification of a Prognostic Model Based on Fatty Acid Metabolism-Related Genes of Head and Neck Squamous Cell Carcinoma. Front Genet 2022; 13:888764. [PMID: 35846149 PMCID: PMC9280184 DOI: 10.3389/fgene.2022.888764] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/09/2022] [Indexed: 01/12/2023] Open
Abstract
The fatty acid metabolism (FAM) is known to impact tumorigenesis, tumor progression and treatment resistance via enhancing lipid synthesis, storage and catabolism. However, the role of FAM in head and neck squamous cell carcinoma (HNSCC) has remained elusive. In the present study, we obtained a total of 69 differentially expressed FAM-related genes between 502 HNSCC samples and 44 normal samples from The Cancer Genome Atlas (TCGA) database. The HNSCC samples were divided into 2 clusters according to 69 differentially expressed genes (DEGs) via cluster analysis. Then DEGs in the two clusters were found, and 137 prognostic DEGs were identified by univariate analysis. Subsequently, combined with the clinical information of 546 HNSCC patients from TCGA database, a 12-gene prognostic risk model was established (FEPHX3, SPINK7, FCRLA, MASP1, ZNF541, CD5, BEST2 and ZAP70 were down-regulation, ADPRHL1, DYNC1I1, KCNG1 and LINC00460 were up-regulation) using multivariate Cox regression and LASSO regression analysis. The risk scores of 546 HNSCC samples were calculated. According to the median risk score, 546 HNSCC patients were divided into the high- and low-risk (high- and low score) groups. The Kaplan-Meier survival analysis showed that the survival time of HNSCC patients was significantly shorter in the high-risk group than that in the low-risk group (p < 0.001). The same conclusion was obtained in the Gene Expression Omnibus (GEO) dataset. After that, the multivariate Cox regression analysis indicated that the risk score was an independent factor for patients with HNSCC in the TCGA cohort. In addition, single-sample gene set enrichment analysis (ssGSEA) indicated that the level of infiltrating immune cells was relatively low in the high-risk group compared with the low-risk group. In summary, FAM-related gene expression-based risk signature could predict the prognosis of HNSCC independently.
Collapse
Affiliation(s)
- Peiyu Du
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue Chai
- Department of Medical Oncology, National Cancer Cente, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shimin Zong
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianxin Yue
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Jianxin Yue, ; Hongjun Xiao,
| | - Hongjun Xiao
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Jianxin Yue, ; Hongjun Xiao,
| |
Collapse
|
6
|
Han Y, Zhao G, Shi X, Wang Y, Wen X, Zhang L, Guo X. The Emerging Role of Long Non-Coding RNAs in Esophageal Cancer: Functions in Tumorigenesis and Clinical Implications. Front Pharmacol 2022; 13:885075. [PMID: 35645836 PMCID: PMC9137892 DOI: 10.3389/fphar.2022.885075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 04/12/2022] [Indexed: 11/17/2022] Open
Abstract
Esophageal cancer (EC) is one of the most common malignancies of digestive tracts with poor five-year survival rate. Hence, it is very significant to further investigate the occurrence and development mechanism of esophageal cancer, find more effective biomarkers and promote early diagnosis and effective treatment. Long non-coding RNAs (lncRNAs) are generally defined as non-protein-coding RNAs with more than 200 nucleotides in length. Existing researches have shown that lncRNAs could act as sponges, guides, scaffolds, and signal molecules to influence the oncogene or tumor suppressor expressions at transcriptional, post-transcriptional, and protein levels in crucial cellular processes. Currently, the dysregulated lncRNAs are reported to involve in the pathogenesis and progression of EC. Importantly, targeting EC-related lncRNAs through genome editing, RNA interference and molecule drugs may be one of the most potential therapeutic methods for the future EC treatment. In this review, we summarized the biological functions and molecular mechanisms of lncRNAs, including oncogenic lncRNAs and tumor suppressor lncRNAs in EC. In addition, we generalized the excellent potential lncRNA candidates for diagnosis, prognosis and therapy in EC. Finally, we discussed the current challenges and opportunities of lncRNAs for EC.
Collapse
Affiliation(s)
- Yali Han
- Departments of Physiology, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, China
| | - Guo Zhao
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, China
| | - Xinhang Shi
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, China
| | - Yushan Wang
- Departments of Physiology, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, China
| | - Xin Wen
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, China
| | - Lu Zhang
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, China
| | - Xiangqian Guo
- Department of Preventive Medicine, Institute of Biomedical Informatics, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng, China
- *Correspondence: Xiangqian Guo,
| |
Collapse
|
7
|
Wu C, Song W, Wang Z, Wang B. Functions of lncRNA DUXAP8 in non-small cell lung cancer. Mol Biol Rep 2022; 49:2531-2542. [PMID: 35031926 DOI: 10.1007/s11033-021-07066-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/08/2021] [Indexed: 12/13/2022]
Abstract
Non-small cell lung cancer (NSCLC) poses a serious threat to public health due to its significant morbidity and mortality rates. The processes of NSCLC formation and development are quite complex and involve numerous regulatory biomolecules. Long non-coding RNAs (lncRNAs) have attracted attention since they have been found to play critical roles in the tumorigenesis of various human malignancies. Recently, double homeobox A pseudogene 8 (DUXAP8) was identified as an oncogenic lncRNA that is overexpressed in different tumor types. In NSCLC, high expression of DUXAP8 is associated with poor prognosis in patients. The regulatory mechanism underlying the oncogenic effects of DUXAP8 can be divided into transcriptional level and post-transcriptional level. DUXAP8 promotes proliferation, epithelial-mesenchymal transition, and aerobic glycolysis in NSCLC cells. Moreover, DUXAP8 shows potential for the diagnosis and treatment of NSCLC. Herein, we review the molecular mechanisms underlying the DUXAP8-mediated phenotypes of NSCLC as well as its potential clinical applications.
Collapse
Affiliation(s)
- Cui Wu
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, No. 1035 Boshuo Road, Changchun, 130117, Jilin, China
| | - Wu Song
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, No. 1035 Boshuo Road, Changchun, 130117, Jilin, China.
| | - Zhongnan Wang
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, No. 1035 Boshuo Road, Changchun, 130117, Jilin, China.
| | - Bingmei Wang
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, No. 1035 Boshuo Road, Changchun, 130117, Jilin, China.
| |
Collapse
|
8
|
Chen X, Song J, Wang X, Sun D, Liu Y, Jiang Y. LncRNA LINC00460: Function and mechanism in human cancer. Thorac Cancer 2022; 13:3-14. [PMID: 34821482 PMCID: PMC8720622 DOI: 10.1111/1759-7714.14238] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/01/2021] [Accepted: 11/03/2021] [Indexed: 12/15/2022] Open
Abstract
Long non-coding RNAs (LncRNAs), which are more than 200 nucleotides in length and with limited protein-coding potential, play vital roles in the pathogenesis, tumorigenesis, and angiogenesis of cancers. Aberrant expression of lncRNAs has been detected in various carcinomas and may be correlated with oncogenesis by affecting related genes expression. Recently, an increasing number of studies have reported on long intergenic non-protein coding RNA 460 (LINC00460) in human tumor fields. LINC00460 is upregulated in diverse cancer tissues and cells. The upregulated expression level of LINC00460 is correlated with larger tumor size, tumor node metastasis (TNM) stage, lymph node metastasis, and shorter overall survival. The regulatory mechanism of LINC00460 was complex and diverse. LINC00460 could act as a competitive endogenous RNA (ceRNA), directly bind with proteins or regulate multiple pathways, which affected tumor progression. Moreover, LINC00460 was also identified to increase drug resistance, and therefore, weaken the effectiveness of tumor treatment. It has become increasingly important to investigate the roles of LINC00460 in various cancers by different mechanisms. Therefore, a more comprehensive understanding of LINC00460 is crucial to expound on the cellular function and molecular mechanism of human cancers. In this review, we refer to studies concerning LINC00460 and provide the basis for the evaluation of LINC00460 as a predicted biomarker or potential therapeutic target in malignancies, and also provide ideas for the future research of lncRNAs similar to LINC00460.
Collapse
Affiliation(s)
- Xi Chen
- School of StomatologyWeifang Medical UniversityWeifangShandongChina
| | - Jiwu Song
- Department of StomatologyWeifang People's Hospital, First Affiliated Hospital of Weifang Medical UniversityWeifangShandongChina
| | - Xiaoxiao Wang
- School of StomatologyWeifang Medical UniversityWeifangShandongChina
- Department of DentistryAffiliated Hospital of Weifang Medical UniversityWeifangShandongChina
| | - Dongyuan Sun
- School of StomatologyWeifang Medical UniversityWeifangShandongChina
- Department of DentistryAffiliated Hospital of Weifang Medical UniversityWeifangShandongChina
| | - Yunxia Liu
- School of StomatologyWeifang Medical UniversityWeifangShandongChina
- Department of DentistryAffiliated Hospital of Weifang Medical UniversityWeifangShandongChina
| | - Yingying Jiang
- School of StomatologyWeifang Medical UniversityWeifangShandongChina
- Department of DentistryAffiliated Hospital of Weifang Medical UniversityWeifangShandongChina
| |
Collapse
|
9
|
Xue C, Cai X, Jia J. Long Non-coding RNA Double Homeobox A Pseudogene 8: A Novel Oncogenic Propellant in Human Cancer. Front Cell Dev Biol 2021; 9:709069. [PMID: 34631702 PMCID: PMC8495153 DOI: 10.3389/fcell.2021.709069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 09/03/2021] [Indexed: 12/12/2022] Open
Abstract
A growing number of studies are reporting important roles played by long non-coding RNAs (lncRNAs) in various pathological and physiological processes. LncRNAs are implicated in numerous genomic regulatory functions at different levels, including regulation of transcription, post-transcriptional processes, genomic stability, and epigenetic genome modifications. Double homeobox A pseudogene 8 (DUXAP8), a novel lncRNA, has been reported to be involved in many cancers, including gastric, colorectal, esophageal, bladder, oral, ovarian, lung, and pancreatic cancers as well as hepatocellular carcinoma (HCC). DUXAP8 plays specific oncogenic roles via numerous malignancies promoting pathways. DUXAP8 is frequently dysregulated in multiple cancers, acting as a sponge to downregulate various tumor-suppressing microRNA activities. In this review, we comprehensively explore DUXAP8 expression and prognosis across cancer types, and systematically summarize current evidence concerning the functions and molecular mechanisms of DUXAP8 in tumorigenesis and progression. We conclude that DUXAP8 is a potential biomarker and therapeutic target for multiple cancers.
Collapse
Affiliation(s)
- Chen Xue
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaolu Cai
- Department of Oncological Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Junjun Jia
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
10
|
Wang B, Xu W, Cai Y, Chen J, Guo C, Zhou G, Yuan C. DUXAP8: a promising lncRNA with carcinogenic potential in cancer. Curr Med Chem 2021; 29:1677-1686. [PMID: 34313198 DOI: 10.2174/0929867328666210726092020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/29/2021] [Accepted: 06/03/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Long non-coding RNAs (lncRNA) have influenced numerous biology processes, which has provoked great interest. Not only that, LncRNA DUXAP8 mediates tumorigenesis by affecting the activity of miRNAs, signaling pathways, and oncogene. METHODS The functions of DUXAP8 have been summarized by reading relevant articles on PubMed. RESULTS lncRNA DUXAP8 acts oncogene in most tumors. The abnormal over-expression is associated with the proliferation, invasion, migration, anti-autophagy of tumors. DUXAP8 exerts promotion on Akt / mTOR signaling pathway, facilitating the occurrence of tumors. Furthermore, DUXAP8 affects the activity of miRNAs and proteins, showing its significant potential as a therapeutic target in human cancers. CONCLUSION LncRNA DUXAP8 has been identified as an indispensable therapeutic target of the tumors, providing clinical treatment plans.
Collapse
Affiliation(s)
- Bei Wang
- College of Medical Science, China Three Gorges University, Yichang 443002, China
| | - Wen Xu
- College of Medical Science, China Three Gorges University, Yichang 443002, China
| | - Yuxuan Cai
- College of Medical Science, China Three Gorges University, Yichang 443002, China
| | - Jinlan Chen
- College of Medical Science, China Three Gorges University, Yichang 443002, China
| | - Chong Guo
- College of Medical Science, China Three Gorges University, Yichang 443002, China
| | - Gang Zhou
- College of Traditional Chinese Medicine, China Three Gorges University, Yichang, China
| | - Chengfu Yuan
- College of Medical Science, China Three Gorges University, Yichang 443002, China
| |
Collapse
|
11
|
Takaki W, Konishi H, Shoda K, Arita T, Kataoka S, Shibamoto J, Furuke H, Takabatake K, Shimizu H, Komatsu S, Shiozaki A, Fujiwara H, Masuda K, Otsuji E. Significance of Circular FAT1 as a Prognostic Factor and Tumor Suppressor for Esophageal Squamous Cell Carcinoma. Ann Surg Oncol 2021; 28:8508-8518. [PMID: 34185205 PMCID: PMC8591040 DOI: 10.1245/s10434-021-10089-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 04/10/2021] [Indexed: 12/03/2022]
Abstract
Background Circular RNA is a novel endogenous non-coding RNA with a stable loop structure, and theories for its biogenesis and usefulness as a biomarker in various cancers have been proposed. The present study investigated the significance of circular FAT1 (circFAT1) as a novel biomarker in esophageal squamous cell carcinoma (ESCC). Method CircFAT1 expression levels were measured in ESCC cell lines and the effects of downregulating circFAT1 on cell migration and invasion were examined using a transwell assay. The functions of miR-548g, which will be sponged by circFAT1, were assessed. Furthermore, the expression of circFAT1 was evaluated in 51 radically resected ESCC tissue samples using quantitative reverse transcription polymerase chain reaction (qRT-PCR). The relationships between circFAT1 expression, clinicopathological factors, and patient prognosis were analyzed. Results CircFAT1 expression levels were significantly lower in tumor tissue than in adjacent non-tumorous mucosal tissue (p = 0.01). The downregulation of circFAT1 expression promoted ESCC cell migration and invasive ability, but not proliferation. The expression of miR-548g was upregulated by the downregulation of circFAT1. The overexpression of miR-548g also promoted ESCC cell migration and invasion. Recurrence-free survival (p = 0.02) and cancer-specific survival (p = 0.04) rates were significantly higher in patients with elevated circFAT1 expression levels. Conclusion The expression level of circFAT1 is a novel prognostic marker in ESCC patients. New treatment strategies may be developed using the tumor suppressive functions of circFAT1. Supplementary Information The online version contains supplementary material available at 10.1245/s10434-021-10089-9.
Collapse
Affiliation(s)
- Wataru Takaki
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto City, Japan
| | - Hirotaka Konishi
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto City, Japan.
| | - Katsutoshi Shoda
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto City, Japan.,First Department of Surgery, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Tomohiro Arita
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto City, Japan
| | - Satoshi Kataoka
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto City, Japan
| | - Jun Shibamoto
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto City, Japan
| | - Hirotaka Furuke
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto City, Japan
| | - Kazuya Takabatake
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto City, Japan
| | - Hiroki Shimizu
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto City, Japan
| | - Shuhei Komatsu
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto City, Japan
| | - Atsushi Shiozaki
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto City, Japan
| | - Hitoshi Fujiwara
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto City, Japan
| | | | - Eigo Otsuji
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto City, Japan
| |
Collapse
|
12
|
Lin X, Zhou B, Ma J. Significance of LINC00460 in the progression and prognosis in digestive tract tumors. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2021; 46:628-636. [PMID: 34275932 PMCID: PMC10930199 DOI: 10.11817/j.issn.1672-7347.2021.200975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Indexed: 11/03/2022]
Abstract
The long intergic non-protein coding RNA 460 (LINC00460) is abnormally highly expressed in gastrointestinal tumors and plays an important role in promoting tumor formation and development. LINC00460 is mainly distributed in cytoplasm and has many abnormal gene variants of single nucleotide polymorphism in tumors. LINC00460 can promote the proliferation, metastasis, angiogenesis, radiotherapy and chemotherapy resistance, inhibit the apoptosis of tumor cells, and further promote the malignant progression of tumors via involving in chromatin state maintenance, methylation modification, endogenous competition and transcriptional regulation. It may serve as a valuable tumor marker and therapeutic target.
Collapse
Affiliation(s)
- Xiaoyan Lin
- Medical Research Center, Second Affiliated Hospital, Zhengzhou University, Zhengzhou 450014, China.
| | - Bo Zhou
- Medical Research Center, Second Affiliated Hospital, Zhengzhou University, Zhengzhou 450014, China
| | - Jun Ma
- Medical Research Center, Second Affiliated Hospital, Zhengzhou University, Zhengzhou 450014, China.
| |
Collapse
|
13
|
Zhu R, Hu X, Xu W, Wu Z, Zhu Y, Ren Y, Cheng L. LncRNA MALAT1 inhibits hypoxia/reoxygenation-induced human umbilical vein endothelial cell injury via targeting the microRNA-320a/RAC1 axis. Biol Chem 2021; 401:349-360. [PMID: 31408432 DOI: 10.1515/hsz-2019-0316] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 08/02/2019] [Indexed: 12/18/2022]
Abstract
Angiogenesis is believed to protect against hypoxia/reoxygenation (H/R)-induced cell injury. MALAT1 and microRNA-320a (miR-320a) are involved in cancer angiogenesis. To investigate the function of the MALAT1/miR-320a axis in H/R-induced cell injury, human umbilical vein endothelial cell (HUVEC) angiogenesis was detected using the Cell Counting Kit-8 (CCK-8), Transwell migration, cell adhesion and tube formation assays. The expression of MALAT1 and miR-320a was revealed by quantitative reverse transcription polymerase chain reaction (qRT-PCR). The direct binding relationship between miR-320a and MALAT1 was detected by RNA immunoprecipitation (RIP) and dual luciferase reporter assays. The data indicated that H/R induces angiogenesis injury and that the expression of MALAT1 was augmented in H/R-stimulated HUVECs. Overexpression of MALAT1 alleviated H/R-stimulated HUVEC dysfunction, whereas silencing of MALAT1 exerted the opposite effects. MALAT1 also reduced miR-320a levels in HUVECs. Overexpression of miR-320a repressed the function of MALAT1 on H/R-stimulated HUVECs, whereas inhibition of miR-320a exerted the opposite effect. Additionally, miR-320a inhibition alleviated H/R-stimulated HUVEC injury via RAC1. Taken together, this investigation concluded that MALAT1 represses H/R-stimulated HUVEC injury by targeting the miR-320a/RAC1 axis.
Collapse
Affiliation(s)
- Rongrong Zhu
- Division of Spine, Department of Orthopedics, Tongji Hospital affiliated to Tongji University School of Medicine, Shanghai 200092, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Tongji University, Ministry of Education, Shanghai, China
| | - Xiao Hu
- Division of Spine, Department of Orthopedics, Tongji Hospital affiliated to Tongji University School of Medicine, Shanghai 200092, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Tongji University, Ministry of Education, Shanghai, China
| | - Wei Xu
- Division of Spine, Department of Orthopedics, Tongji Hospital affiliated to Tongji University School of Medicine, Shanghai 200092, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Tongji University, Ministry of Education, Shanghai, China
| | - Zhourui Wu
- Division of Spine, Department of Orthopedics, Tongji Hospital affiliated to Tongji University School of Medicine, Shanghai 200092, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Tongji University, Ministry of Education, Shanghai, China
| | - Yanjing Zhu
- Division of Spine, Department of Orthopedics, Tongji Hospital affiliated to Tongji University School of Medicine, Shanghai 200092, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Tongji University, Ministry of Education, Shanghai, China
| | - Yilong Ren
- Division of Spine, Department of Orthopedics, Tongji Hospital affiliated to Tongji University School of Medicine, Shanghai 200092, China
| | - Liming Cheng
- Division of Spine, Department of Orthopedics, Tongji Hospital affiliated to Tongji University School of Medicine, Shanghai 200092, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Tongji University, Ministry of Education, Shanghai, China
| |
Collapse
|
14
|
Shahmoradi M, Rezvani Z. Functional Prediction of Long Noncoding RNAs in Cutaneous Melanoma Using a Systems Biology Approach. Bioinform Biol Insights 2021; 15:1177932220988508. [PMID: 33613027 PMCID: PMC7868446 DOI: 10.1177/1177932220988508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/20/2020] [Indexed: 11/17/2022] Open
Abstract
Cutaneous melanoma is the most aggressive type of skin cancer which its incidence has significantly increased in recent years worldwide. Thus, more investigations are required to identify the underlying mechanisms of melanoma malignant transformation and metastasis. In this context, long noncoding RNAs (lncRNAs) are a new type of noncoding transcripts that their dysregulations are associated with almost all cancers including melanoma. However, the precise functional roles of most of the significantly altered lncRNAs in melanoma have not yet been fully inspected. In this study, a comprehensive list of lncRNAs was interrogated across cutaneous melanoma samples to identify the significantly altered/dysregulated lncRNAs. To this end, lncRNAs were filtered in several steps and the selected lncRNAs projected to a bioinformatic and systems biology analysis using several publicly available databases and tools such as GEPIA and cBioPortal. According to our results, 30 lncRNAs were notably altered/dysregulated in cutaneous melanoma most of which were co-expressed with each other. Also, co-expression/alteration and differential expression analyses led to the selection of 12 out of these 30 lncRNAs as cutaneous melanoma key lncRNAs. Furthermore, functional demonstrated that these 12 lncRNAs might be involved in melanoma-relevant biological processes and pathways. In addition, the end result of our analyses demonstrated that these lncRNAs are associated with the clinicopathological features of melanoma patients. These 12 lncRNAs need to be further investigated in future studies to characterize their exact roles in melanoma development and to identify their potential for being used as drug targets and/or biomarkers for cutaneous melanoma.
Collapse
Affiliation(s)
- Mozhdeh Shahmoradi
- Division of Biotechnology, Department of Cell and Molecular Biology, Faculty of Chemistry, University of Kashan, Kashan, Iran
| | - Zahra Rezvani
- Division of Biotechnology, Department of Cell and Molecular Biology, Faculty of Chemistry, University of Kashan, Kashan, Iran
| |
Collapse
|
15
|
Xue W, Zheng Y, Shen Z, Li L, Fan Z, Wang W, Zhu Z, Zhai Y, Zhao J, Kan Q. Involvement of long non-coding RNAs in the progression of esophageal cancer. Cancer Commun (Lond) 2021; 41:371-388. [PMID: 33605567 PMCID: PMC8118593 DOI: 10.1002/cac2.12146] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 12/12/2020] [Accepted: 02/02/2021] [Indexed: 02/06/2023] Open
Abstract
Esophageal cancer (EC) is one of the most common malignant tumors of the digestive system with high incidence and mortality rate worldwide. Therefore, exploring the pathogenesis of EC and searching for new targeted therapies are the current research hotspot for EC treatment. Long non‐coding RNAs (lncRNAs) are endogenous RNAs with more than 200 nucleotides, but without protein‐coding function. In recent years, lncRNAs have gradually become the focuses in the field of non‐coding RNA. Some lncRNAs have been proved to be closely related to the pathogenesis of EC. Many lncRNAs are abnormally expressed in EC and participate in many biological processes including cell proliferation, apoptosis, and metastasis by inhibiting or promoting target gene expression. LncRNAs can also regulate the progression of EC through epithelial‐mesenchymal transformation (EMT), which is closely related to the occurrence, development, and prognosis of EC. In this article, we review and discuss the involvement of lncRNAs in the progression of EC.
Collapse
Affiliation(s)
- Wenhua Xue
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, P. R. China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, Henan, 450052, P. R. China
| | - Yuanyuan Zheng
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, P. R. China.,Internet Medical and System Applications of National Engineering Laboratory, Zhengzhou, Henan, 450052, P. R. China
| | - Zhibo Shen
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, P. R. China.,Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, P. R. China.,Internet Medical and System Applications of National Engineering Laboratory, Zhengzhou, Henan, 450052, P. R. China
| | - Lifeng Li
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, P. R. China.,Internet Medical and System Applications of National Engineering Laboratory, Zhengzhou, Henan, 450052, P. R. China
| | - Zhirui Fan
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, P. R. China
| | - Wenbin Wang
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, P. R. China
| | - Zijia Zhu
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, P. R. China
| | - Yunkai Zhai
- Internet Medical and System Applications of National Engineering Laboratory, Zhengzhou, Henan, 450052, P. R. China
| | - Jie Zhao
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, P. R. China.,Internet Medical and System Applications of National Engineering Laboratory, Zhengzhou, Henan, 450052, P. R. China
| | - Quancheng Kan
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, P. R. China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, Henan, 450052, P. R. China
| |
Collapse
|
16
|
Tian S, Tang M, Li J, Wang C, Liu W. Identification of long non-coding RNA signatures for squamous cell carcinomas and adenocarcinomas. Aging (Albany NY) 2020; 13:2459-2479. [PMID: 33318305 PMCID: PMC7880362 DOI: 10.18632/aging.202278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 11/08/2020] [Indexed: 11/25/2022]
Abstract
Studies have demonstrated that both squamous cell carcinomas (SCCs) and adenocarcinomas (ACs) possess some common molecular characteristics. Evidence has accumulated to support the theory that long non-coding RNAs (lncRNAs) serve as novel biomarkers and therapeutic targets in complex diseases such as cancer. In this study, we aimed to identify pan lncRNA signatures that are common to squamous cell carcinomas or adenocarcinomas with different tissues of origin. With the aid of elastic-net regularized regression models, a 35-lncRNA pan discriminative signature and an 11-lncRNA pan prognostic signature were identified for squamous cell carcinomas, whereas a 6-lncRNA pan discriminative signature and a 5-lncRNA pan prognostic signature were identified for adenocarcinomas. Among them, many well-known cancer relevant genes such as MALAT1 and PVT1 were included. The identified pan lncRNA lists can help experimental biologists generate research hypotheses and adopt existing treatments for less prevalent cancers. Therefore, these signatures warrant further investigation.
Collapse
Affiliation(s)
- Suyan Tian
- Division of Clinical Research, First Hospital of Jilin University, Changchun 130021, Jilin, P.R. China
| | - Mingbo Tang
- Department of Thoracic Surgery, First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Jialin Li
- Department of Thoracic Surgery, First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Chi Wang
- Department of Internal Medicine, College of Medicine, University of Kentucky, Lexington, KY 40536, USA.,Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - Wei Liu
- Department of Thoracic Surgery, First Hospital of Jilin University, Changchun 130021, Jilin, China
| |
Collapse
|
17
|
Genetic variations associated with long noncoding RNAs. Essays Biochem 2020; 64:867-873. [DOI: 10.1042/ebc20200033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/10/2020] [Accepted: 09/21/2020] [Indexed: 12/19/2022]
Abstract
Abstract
Genetic variations, including single nucleotide polymorphisms (SNPs) and structural variations, are widely distributed in the genome, including the long noncoding RNA (lncRNA) regions. The changes at locus might produce numerous effects in a variety of aspects. Multiple bioinformatics resources and tools were also developed for systematically dealing with genetic variations associated with lncRNAs. Moreover, correlation of the genetic variations in lncRNAs with immune disease, cancers, and other disease as well as development process were all included for discussion. In this essay, we summarized how and in what aspects these changes would affect lncRNA functions.
Collapse
|
18
|
Luo Q, Wang S, Han H, Xie F, Chen J. High expression of the long noncoding RNA SH3PXD2A-AS1 is associated with poor prognosis in patients with esophageal squamous cell carcinoma. J Int Med Res 2020. [PMCID: PMC7488910 DOI: 10.1177/0300060520949059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Objective Our objective was to explore the prognostic role of long noncoding RNA (lncRNA) SH3PXD2A-AS1 in esophageal squamous cell carcinoma (ESCC). Methods An SH3PXD2A-AS1 expression dataset was retrieved and analyzed from The Cancer Genome Atlas database, and SH3PXD2A-AS1 expression was determined in our cohort of 134 ESCC patients by using quantitative PCR. The clinical significance of SH3PXD2A-AS1 expression was investigated by the Chi square test and its prognostic value was determined by Kaplan–Meier survival curve analysis and Cox proportional hazards analysis. RNA interference and in vitro functional experiments, including cell viability, migration, and invasion, were used to investigate effects of SH3PXD2A-AS1 on cell malignant phenotype. Results SH3PXD2A-AS1 expression was increased in ESCC tissues compared with adjacent normal tissues. A high level of SH3PXD2A-AS1 expression was associated with poor tumor differentiation and advanced T, N, and TNM stages, indicating its oncogenic role in ESCC. Moreover, its high expression predicted poor overall survival in patients with ESCC. Inhibition of SH3PXD2A-AS1 expression significantly suppressed cell viability, migration, and invasion of ESCC cells. Conclusion High SH3PXD2A-AS1 expression is a poor prognostic factor for patients with ESCC. SH3PXD2A-AS1 might function as an oncogene that can promote malignant biological characteristics of ESCC cells.
Collapse
Affiliation(s)
- Qiuli Luo
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China
| | - Shanshan Wang
- Department of Clinical Laboratory, Peking University Cancer Hospital & Institute, Beijing, China
| | - Haibo Han
- Department of Clinical Laboratory, Peking University Cancer Hospital & Institute, Beijing, China
| | - Fei Xie
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China
| | - Jinfeng Chen
- Department of Thoracic Surgery II, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, China
| |
Collapse
|
19
|
Wang XK, Liao XW, Huang R, Huang JL, Chen ZJ, Zhou X, Yang CK, Han CY, Zhu GZ, Peng T. Clinical significance of long non-coding RNA DUXAP8 and its protein coding genes in hepatocellular carcinoma. J Cancer 2020; 11:6140-6156. [PMID: 32922554 PMCID: PMC7477403 DOI: 10.7150/jca.47902] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 08/16/2020] [Indexed: 12/14/2022] Open
Abstract
Backgrounds: Hepatocellular carcinoma (HCC) is a lethal malignancy worldwide that is difficult to diagnose during the early stages and its tumors are recurrent. Long non-coding RNAs (lncRNAs) have increasingly been associated with tumor biomarkers for diagnosis and prognosis. This study attempts to explore the potential clinical significance of lncRNA DUXAP8 and its co-expression related protein coding genes (PCGs) for HCC. Method: Data from a total of 370 HCC patients from The Cancer Genome Atlas were utilized for the analysis. DUXAP8 and its top 10 PCGs were explored for their diagnostic and prognostic implications for HCC. A risk score model and nomogram were constructed for prognosis prediction using prognosis-related genes and DUXAP8. Molecular mechanisms of DUXAP8 and its PCGs involved in HCC initiation and progression were investigated. Then, potential target drugs were identified using genome-wide DUXAP8-related differentially expressed genes in a Connectivity Map database. Results: The top 10 PCGs were identified as: RNF2, MAGEA1, GABRA3, MKRN3, FAM133A, MAGEA3, CNTNAP4, MAGEA6, MALRD1, and DGKI. Diagnostic analysis indicated that DUXAP8, MEGEA1, MKRN3, and DGKI show diagnostic implications (all area under curves ≥0.7, p≤0.05). Prognostic analysis indicated that DUXAP8 and RNF2 had prognostic implications for HCC (adjusted p=0.014 and 0.008, respectively). The risk score model and nomogram showed an advantage for prognosis prediction. A total of 3 target drugs were determined: cinchonine, bumetanide and amiprilose and they may serve as potential therapeutic targets for HCC. Conclusion: Functioning as an oncogene, DUXAP8 is overexpressed in tumor tissue and may serve as both a diagnostic and prognosis biomarker for HCC. MEGEA1, MKRN3, and DGKI maybe potential diagnostic biomarkers and DGKI may also be potentially prognostic biomarkers for HCC.
Collapse
Affiliation(s)
- Xiang-Kun Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Province, China
| | - Xi-Wen Liao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Province, China
| | - Rui Huang
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Province, People's Republic of China
| | - Jian-Lu Huang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Province, China.,Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Guangxi Medical University, Nanning 530031, Guangxi Province, China
| | - Zi-Jun Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Province, China
| | - Xin Zhou
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Province, China
| | - Cheng-Kun Yang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Province, China
| | - Chuang-Ye Han
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Province, China
| | - Guang-Zhi Zhu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Province, China
| | - Tao Peng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Province, China
| |
Collapse
|
20
|
Zhou SN. Role of non-coding RNAs in esophageal carcinoma. Shijie Huaren Xiaohua Zazhi 2020; 28:453-459. [DOI: 10.11569/wcjd.v28.i12.453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In recent years, the research on the role of non-coding RNAs (ncRNAs) in tumors has received more and more attention. Although research on the role of ncRNAs in the early diagnosis, disease monitoring, treatment guidance, and prognosis prediction of esophageal carcinoma has been gradually carried out, there are still many problems that need to be addressed. In the current paper, I review the progress in the research of ncRNAs in esophageal carcinoma, with an aim to help provide new strategies for the prevention and treatment of esophageal carcinoma.
Collapse
Affiliation(s)
- Su-Na Zhou
- Department of Radiation Oncology, The Affiliated Taizhou Hospital, Wenzhou Medical University, Linhai 317000, Zhejiang Province, China
| |
Collapse
|
21
|
Ghafouri‐Fard S, Shoorei H, Dashti S, Branicki W, Taheri M. Expression profile of lncRNAs and miRNAs in esophageal cancer: Implications in diagnosis, prognosis, and therapeutic response. J Cell Physiol 2020; 235:9269-9290. [DOI: 10.1002/jcp.29825] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/11/2020] [Accepted: 05/18/2020] [Indexed: 12/24/2022]
Affiliation(s)
- Soudeh Ghafouri‐Fard
- Department of Medical Genetics Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences Birjand University of Medical Sciences Birjand Iran
| | - Sepideh Dashti
- Department of Medical Genetics Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Wojciech Branicki
- Malopolska Centre of Biotechnology, Jagiellonian University Kraków Poland
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences Tehran Iran
| |
Collapse
|
22
|
Javed Z, Ahmed Shah F, Rajabi S, Raza Q, Iqbal Z, Ullah M, Ahmad T, Salehi B, Sharifi-Rad M, Pezzani R, Yaqoob F, Sadia H, Iriti M, Sharifi-Rad J, Cho WC. LncRNAs as Potential Therapeutic Targets in Thyroid Cancer. Asian Pac J Cancer Prev 2020; 21:281-287. [PMID: 32102500 PMCID: PMC7332117 DOI: 10.31557/apjcp.2020.21.2.281] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Indexed: 12/15/2022] Open
Abstract
Thyroid cancer (TC) is the most common cancer of endocrine system. TC can be subdivided into 4 different entities, papillary, follicular, medullary and anaplastic thyroid cancer. Among them, anaplastic thyroid cancer has the poorest prognosis. Exploring new therapeutic approach may entail favorable prediction as well as increasing overall survival rate of patients. Long non-coding RNAs (lncRNAs), have vast implications in different cancer types. Although they are not transcribed into proteins, they can act as a harness in regulating a plethora of biological functions. They have been implicated in a decisive role in gene expression via modulation of both coding and non-coding RNAs. This article discuss the multi-facet role of lncRNA in thyroid cancer biology.
Collapse
Affiliation(s)
- Zeeshan Javed
- Office for Research Innovation and Commercialization Lahore Garrison University, Lahore, Pakistan
| | - Faiez Ahmed Shah
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Sadegh Rajabi
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Qamar Raza
- Institute of Biochemistry and Biotechnology,University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Zaheer Iqbal
- Center for Excellence in Molecular Biology, University of the Punjab Lahore, Lahore, Pakistan
| | - Mukhtar Ullah
- Office for Research Innovation and Commercialization Lahore Garrison University, Lahore, Pakistan
| | - Touqeer Ahmad
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Bahare Salehi
- Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - Mehdi Sharifi-Rad
- Department of Medical Parasitology, Kerman University of Medical Sciences, Kerman, Iran
| | - Raffaele Pezzani
- OU Endocrinology, Dept. Medicine (DIMED), University of Padova, via Ospedale 105, 35128 Padova, Italy.,AIROB, Associazione Italiana per la Ricerca Oncologica di Base, Padova, Italy
| | - Farooq Yaqoob
- Center for Excellence in Molecular Biology, University of the Punjab Lahore, Lahore, Pakistan
| | - Haleema Sadia
- Office for Research Innovation and Commercialization Lahore Garrison University, Lahore, Pakistan
| | - Marcello Iriti
- Department of Agricultural and Environmental Sciences, Milan State University, 20133 Milan, Italy
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, 30 Gascoigne Road, Hong Kong, China
| |
Collapse
|
23
|
Liu Y, Du X, Cui J, Li C, Guo M, Lv J, Liu X, Dou J, Du X, Fang H, Chen Z. A Genome-Wide Analysis of Long Noncoding RNAs in Circulating Leukocytes and Their Differential Expression in Type 1 Diabetes Patients. J Diabetes Res 2020; 2020:9010314. [PMID: 33299893 PMCID: PMC7710437 DOI: 10.1155/2020/9010314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/27/2020] [Accepted: 11/02/2020] [Indexed: 11/18/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) regulate gene expression at different levels in various diseases, including type 1 diabetes (T1D). However, the expression of circulating lncRNAs in leukocytes in T1D has not been well documented. To identify differentially expressed lncRNAs between T1D patients and healthy controls, RNA sequencing was performed on samples of leukocytes collected from both healthy persons and T1D patients. The categories, enriched pathways, coexpression networks, and the characteristics of novel lncRNAs were analyzed to provide an extensive profile. qPCR was adopted to validate the differential expression of lncRNAs in the validation cohort. A total of 14,930 lncRNAs and 16,063 mRNAs were identified in the peripheral blood leukocyte of T1D patients. After optimization using an adjusted p value (threshold of <0.05), 393 circulating lncRNAs were identified, of which 69 were downregulated and 324 were upregulated in T1D patients. Gene Ontology analysis indicated that these lncRNAs and mRNAs were enriched in the immune system category. Further analysis showed that 61.28% of the novel lncRNAs were conserved in humans. A set of 12 lncRNAs were selected for qPCR validation, and 9 of 12 lncRNAs were confirmed to show significant differential expression between the T1D and control validation cohorts. Among the 9 confirmed lncRNAs, lncRNA MSTRG.128697 and lncRNA MSTRG.128958 were novel and human-specific; however, further validation is required. lncRNA MSTRG.63013 has orthologous sequences in the mouse genome and was identified as a key node for etiology and pathophysiology in animal studies, which will help understand the epigenetic mechanisms of T1D complications.
Collapse
Affiliation(s)
- Yihan Liu
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xiaoming Du
- Tianjin Stomatological Hospital, Tianjin Key Laboratory of Oral Function Reconstruction, Hospital of Stomatology, Nankai University, Tianjin 300041, China
| | - Jia Cui
- Department of Endocrinology, Chinese PLA General Hospital, Beijing 100853, China
| | - Changlong Li
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Meng Guo
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Jianyi Lv
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Xin Liu
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Jingtao Dou
- Department of Endocrinology, Chinese PLA General Hospital, Beijing 100853, China
| | - Xiaoyan Du
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Hongjuan Fang
- Department of Endocrinology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Zhenwen Chen
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| |
Collapse
|
24
|
Senavirathna LK, Huang C, Pushparaj S, Xu D, Liu L. Hypoxia and transforming growth factor β1 regulation of long non-coding RNA transcriptomes in human pulmonary fibroblasts. Physiol Rep 2020; 8:e14343. [PMID: 31925944 PMCID: PMC6954122 DOI: 10.14814/phy2.14343] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
One of the key characteristics of idiopathic pulmonary fibrosis (IPF) is accumulation of excess fibrous tissue in the lung, which leads to hypoxic conditions. Transforming growth factor (TGF) β is a major mediator that promotes the differentiation of fibroblasts to myofibroblasts. However, how hypoxia and TGFβ together contribute the pathogenesis of IPF is poorly understood. Long non-coding RNAs (lncRNAs) have regulatory effects on certain genes and are involved in many diseases. In this study, we determined the effects of hypoxia and/or TGFβ on mRNA and lncRNA transcriptomes in pulmonary fibroblasts. Hypoxia and TGFβ1 synergistically increased myofibroblast marker expression. RNA sequencing revealed that hypoxia and TGFβ1 treatment resulted in significant changes in 669 lncRNAs and 2,676 mRNAs compared to 150 lncRNAs and 858 mRNAs in TGFβ1 alone group and 222 lncRNAs and 785 mRNAs in hypoxia alone group. TGFβ1 induced the protein expression of HIF-1α, but not HIF-2α. On the other hand, hypoxia enhanced the TGFβ1-induced phosphorylation of Smad3, suggesting a cross-talk between these two signaling pathways. In all, 10 selected lncRNAs (five-up and five-down) in RNA sequencing data were validated using real-time PCR. Two lncRNAs were primarily located in cytoplasm, three in nuclei and five in both nuclei and cytoplasm. The silencing of HIF-1α and Smad3, but not Smad2 and HIF-2α rescued the downregulation of FENDRR by hypoxia and TGFβ1. In conclusion, hypoxia and TGFβ1 synergistically regulate mRNAs and lncRNAs involved in several cellular processes, which may contribute to the pathogenesis of IPF.
Collapse
Affiliation(s)
- Lakmini K. Senavirathna
- Oklahoma Center for Respiratory and Infectious DiseasesOklahoma State UniversityStillwaterOKUSA
- Lundberg‐Kienlen Lung Biology and Toxicology LaboratoryDepartment of Physiological SciencesOklahoma State UniversityStillwaterOKUSA
| | - Chaoqun Huang
- Oklahoma Center for Respiratory and Infectious DiseasesOklahoma State UniversityStillwaterOKUSA
- Lundberg‐Kienlen Lung Biology and Toxicology LaboratoryDepartment of Physiological SciencesOklahoma State UniversityStillwaterOKUSA
| | - Samuel Pushparaj
- Oklahoma Center for Respiratory and Infectious DiseasesOklahoma State UniversityStillwaterOKUSA
- Lundberg‐Kienlen Lung Biology and Toxicology LaboratoryDepartment of Physiological SciencesOklahoma State UniversityStillwaterOKUSA
| | - Dao Xu
- Oklahoma Center for Respiratory and Infectious DiseasesOklahoma State UniversityStillwaterOKUSA
- Lundberg‐Kienlen Lung Biology and Toxicology LaboratoryDepartment of Physiological SciencesOklahoma State UniversityStillwaterOKUSA
| | - Lin Liu
- Oklahoma Center for Respiratory and Infectious DiseasesOklahoma State UniversityStillwaterOKUSA
- Lundberg‐Kienlen Lung Biology and Toxicology LaboratoryDepartment of Physiological SciencesOklahoma State UniversityStillwaterOKUSA
| |
Collapse
|
25
|
Li CY, Zhang WW, Xiang JL, Wang XH, Wang JL, Li J. Integrated analysis highlights multiple long non‑coding RNAs and their potential roles in the progression of human esophageal squamous cell carcinoma. Oncol Rep 2019; 42:2583-2599. [PMID: 31638253 PMCID: PMC6859451 DOI: 10.3892/or.2019.7377] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 09/20/2019] [Indexed: 12/24/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is a prevalent aggressive malignant tumor with poor prognosis. Investigations into the molecular changes that occur as a result of the disease, as well as identification of novel biomarkers for its diagnosis and prognosis, are urgently required. Long non‑coding RNAs (lncRNAs) have been reported to play a critical role in tumor progression. The present study performed data mining analyses for ESCC via an integrated study of accumulated datasets and identification of the differentially expressed lncRNAs from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases. The identified intersection of differentially expressed genes (lncRNAs, miRNAs and mRNAs) in ESCC tissues between the GEO and TCGA datasets was investigated. Based on these intersected lncRNAs, the present study constructed a competitive endogenous RNA (ceRNA) network of lncRNAs in ESCC. A total of 81 intersection lncRNAs were identified; 67 of these were included in the ceRNA network. Functional analyses revealed that these 67 key lncRNAs primarily dominated cellular biological processes. The present study then analyzed the associations between the expression levels of these 67 key lncRNAs and the clinicopathological characteristics of the ESCC patients, as well as their survival time using TCGA. The results revealed that 31 of these lncRNAs were associated with tumor grade, tumor‑node‑metastasis (TNM) stage and lymphatic metastasis status (P<0.05). In addition, 15 key lncRNAs were demonstrated to be associated with survival time (P<0.05). Finally, 5 key lncRNAs were selected for validation of their expression levels in 30 patients newly diagnosed with ESCC via reverse transcription‑quantitative PCR (RT‑qPCR). The results suggested that the fold changes in the trends of up‑ and downregulation between GEO, TCGA and RT‑qPCR were consistent. In addition, it was also demonstrated that a select few of these 5 key lncRNAs were significantly associated with TNM stage and lymph node metastasis (P<0.05). The results of the clinically relevant analysis and the aforementioned bioinformatics were similar, hence proving that the bioinformatics analysis used in the present study is credible. Overall, the results from the present study may provide further insight into the functional characteristics of lncRNAs in ESCC through bioinformatics integrative analysis of the GEO and TCGA datasets, and reveal potential diagnostic and prognostic biomarkers for ESCC.
Collapse
Affiliation(s)
- Cheng-Yun Li
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Wen-Wen Zhang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Ji-Lian Xiang
- Department of Gastroenterology, Third People's Hospital of Gansu Province, Lanzhou, Gansu 730000, P.R. China
| | - Xing-Hua Wang
- Department of Gastrointestinal Surgery, Gansu Wuwei Tumor Hospital, Wuwei, Gansu 733000, P.R. China
| | - Jun-Ling Wang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Jin Li
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
26
|
Zhang H, Lu Y, Wu J, Feng J. LINC00460 Hypomethylation Promotes Metastasis in Colorectal Carcinoma. Front Genet 2019; 10:880. [PMID: 31632435 PMCID: PMC6779110 DOI: 10.3389/fgene.2019.00880] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 08/21/2019] [Indexed: 01/06/2023] Open
Abstract
Introduction: Epigenetic alterations and aberrantly expressed long noncoding RNAs (lncRNAs) are pervasive in colorectal cancer (CRC) tumorigenesis. DNA methylation could control lncRNA expression and play an important role in tumor initiation and progression. However, the DNA methylation that regulates lncRNAs in CRC remains poorly characterized. Materials and Methods: In our research, we integrated dysregulated expression and methylation of lncRNAs between colorectal tumor and adjacent mucosa tissues from The Cancer Genome Atlas database. With the use of this strategy, LINC00460, the most frequently epigenetically activated, was identified and further verified in the Cancer Cell Line Encyclopedia and Gene Expression Omnibus databases. Results: Patients with high expression of LINC00460 are prone to metastasis and are associated with poor prognosis. Abnormally expressed LINC00460 could be used as an independent prognostic risk factor for disease-free survival. Knockdown of LINC00460 promotes colon cancer cell invasion and migration in vitro. Conclusion: In summary, our results suggest that DNA methylation-regulated LINC00460 could promote CRC metastasis and serve as a potential therapeutic target for CRC.
Collapse
Affiliation(s)
- Hui Zhang
- Research Center for Clinical Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Ya Lu
- Research Center for Clinical Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Jianzhong Wu
- Research Center for Clinical Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Jifeng Feng
- Research Center for Clinical Oncology, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| |
Collapse
|
27
|
Jiang Y, Cao W, Wu K, Qin X, Wang X, Li Y, Yu B, Zhang Z, Wang X, Yan M, Xu Q, Zhang J, Chen W. LncRNA LINC00460 promotes EMT in head and neck squamous cell carcinoma by facilitating peroxiredoxin-1 into the nucleus. J Exp Clin Cancer Res 2019; 38:365. [PMID: 31429766 PMCID: PMC6700841 DOI: 10.1186/s13046-019-1364-z] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 08/06/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The lncRNA LINC00460 plays crucial roles in several epithelial cancers, although its mechanisms of action differ greatly in different cellular contexts. In this study, we aimed to determine the potential clinical applications of LINC00460 and elucidate the mechanisms by which LINC00460 affects the development and progression of head and neck squamous cell carcinoma (HNSCC). METHODS The biological functions of LINC00460 were assessed in several epithelial cancer cell lines. The subcellular localization of LINC00460 was evaluated by cell nuclear/cytoplasmic fractionation and fluorescence in situ hybridization. RNA pull-down assays, LS-MS/MS analysis, and RNA and chromatin immunoprecipitation assays were performed to identify the molecular mechanism by which LINC00460 promotes HNSCC progression. The clinical pathological features of LINC00460 and PRDX1 were evaluated in HNSCC tissues and paired adjacent normal tissues. RESULTS LINC00460 enhanced HNSCC cell proliferation and metastasis in vitro and in vivo and induced epithelial-mesenchymal transition (EMT). LINC00460 primarily localized within the cytoplasm of HNSCC cells, physically interacted with PRDX1 and facilitated PRDX1 entry into the nucleus. PRDX1 promoted the transcription of LINC00460, forming a positive feedback loop. In addition, PRDX1 also promoted the transcription of EMT-related genes (such as ZEB1, ZEB2 and VIM) through enrichment on gene promoters in the nucleus. LINC00460 effectively induced HNSCC cell EMT in a PRDX1-dependent manner, and PRDX1 mainly mediated the EMT-promoting effect of LINC00460. High levels of LINC00460 and PRDX1 expression were positively associated with lymph metastasis, pathological differentiation and tumor size in HNSCC patients. CONCLUSIONS LINC00460 promoted EMT in HNSCC cells by facilitating PRDX1 entry into the nucleus. LINC00460 and PRDX1 are promising candidate prognostic predictors and potential targets for cancer therapy for HNSCC.
Collapse
Affiliation(s)
- Yingying Jiang
- 0000 0004 0368 8293grid.16821.3cDepartment of Oral and Maxillofacial-Head & Neck Oncology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011 China
- 0000 0004 1790 6079grid.268079.2Department of Dentistry, Affiliated Hospital, Weifang Medical University, Weifang, 261031 China
| | - Wei Cao
- 0000 0004 0368 8293grid.16821.3cDepartment of Oral and Maxillofacial-Head & Neck Oncology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011 China
| | - Kun Wu
- 0000 0004 0368 8293grid.16821.3cDepartment of Oral and Maxillofacial-Head & Neck Oncology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011 China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, 200011 People’s Republic of China
| | - Xing Qin
- 0000 0004 0368 8293grid.16821.3cDepartment of Oral and Maxillofacial-Head & Neck Oncology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011 China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, 200011 People’s Republic of China
| | - Xiaoning Wang
- 0000 0004 0368 8293grid.16821.3cDepartment of Oral and Maxillofacial-Head & Neck Oncology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011 China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, 200011 People’s Republic of China
| | - Yan Li
- 0000 0004 0368 8293grid.16821.3cDepartment of Oral and Maxillofacial-Head & Neck Oncology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011 China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, 200011 People’s Republic of China
| | - Binbin Yu
- 0000 0004 0368 8293grid.16821.3cDepartment of Oral and Maxillofacial-Head & Neck Oncology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011 China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, 200011 People’s Republic of China
| | - Zhen Zhang
- 0000 0004 0368 8293grid.16821.3cDepartment of Oral and Maxillofacial-Head & Neck Oncology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011 China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, 200011 People’s Republic of China
| | - Xu Wang
- 0000 0004 0368 8293grid.16821.3cDepartment of Oral and Maxillofacial-Head & Neck Oncology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011 China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, 200011 People’s Republic of China
| | - Ming Yan
- 0000 0004 0368 8293grid.16821.3cDepartment of Oral and Maxillofacial-Head & Neck Oncology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011 China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, 200011 People’s Republic of China
| | - Qin Xu
- 0000 0004 0368 8293grid.16821.3cDepartment of Oral and Maxillofacial-Head & Neck Oncology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011 China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, 200011 People’s Republic of China
| | - Jianjun Zhang
- 0000 0004 0368 8293grid.16821.3cDepartment of Oral and Maxillofacial-Head & Neck Oncology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011 China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, 200011 People’s Republic of China
| | - Wantao Chen
- 0000 0004 0368 8293grid.16821.3cDepartment of Oral and Maxillofacial-Head & Neck Oncology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011 China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai, 200011 People’s Republic of China
| |
Collapse
|
28
|
Liu W, Zhang Y, Chen M, Shi L, Xu L, Zou X. A genome-wide analysis of long noncoding RNA profile identifies differentially expressed lncRNAs associated with Esophageal cancer. Cancer Med 2018; 7:4181-4189. [PMID: 29926523 PMCID: PMC6089161 DOI: 10.1002/cam4.1536] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 02/26/2018] [Accepted: 03/28/2018] [Indexed: 01/07/2023] Open
Abstract
Esophageal cancer is one of the most common cancers and a leading cause of cancer‐related death worldwide. However, the mechanism of esophageal cancer pathogenesis remains poorly understood. Long noncoding RNAs (lncRNAs) dysregulation have been reported to involve in various human cancers, which highlights the potential of lncRNAs used as novel biomarkers for cancer diagnosis. Although more efforts have been made to identify novel lncRNAs signature in esophageal cancer, the expression pattern, prognostic value, and biological function of most lncRNAs in esophageal cancer still need to be systematically investigated. In this study, we comprehensively analyzed the expression profile of lncRNAs in more than 200 esophageal cancer patients tissue samples from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). We identified thousands of lncRNAs are differentially expressed in esophageal cancer tissues, and many of those lncRNAs expression are associated with patients overall survival or recurrence‐free survival time. Moreover, copy number variation analyses revealed that genomic loci copy number amplification or deletion might contribute to these lncRNAs dysregulation. Among these lncRNAs, DUXAP8 and LINC00460 were significantly upregulated, and GO enrichment analyses indicated that the two lncRNAs associated protein‐coding genes involve with many known biological processes, such as cell cycle and cell‐cell adherens junction. Further experimental validation revealed that knockdown of DUXAP8 could impair esophageal cancer cells proliferation and invasion in vitro. Taken together, our findings identified more aberrantly expressed lncRNAs in esophageal cancer that may provide a useful resource for identifying novel esophageal cancer associated lncRNAs.
Collapse
Affiliation(s)
- Wenjia Liu
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China.,Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yiyang Zhang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China.,Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Min Chen
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China.,Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Liangliang Shi
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China.,Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Lei Xu
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China.,Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Xiaoping Zou
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China.,Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|