1
|
Wang Y, Guan WX, Zhou Y, Zhang XY, Zhao HJ. Red ginseng polysaccharide promotes ferroptosis in gastric cancer cells by inhibiting PI3K/Akt pathway through down-regulation of AQP3. Cancer Biol Ther 2024; 25:2284849. [PMID: 38051132 PMCID: PMC10761076 DOI: 10.1080/15384047.2023.2284849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 11/10/2023] [Indexed: 12/07/2023] Open
Abstract
OBJECTIVE This study aims to investigate the effect of red ginseng polysaccharide (RGP) on gastric cancer (GC) development and explore its mechanism. METHODS GC cell lines AGS were treated with varying concentrations of RGP (50, 100, and 200 μg/mL). AGS cells treated with 200 μg/mL RGP were transfected with aquaporin 3 (AQP3) overexpression vector. Cell proliferation, viability, and apoptosis were evaluated by MTT, colony formation assay, and flow cytometry, respectively. Real-time quantitative reverse transcription PCR (qRT-PCR) was used to detect the expression of AQP3. The levels of Fe2+, malondialdehyde, and lactate dehydrogenase were measured using their respective detection kits, and the reactive oxygen species levels was determined by probe 2',7'-dichlorodihydrofluorescein diacetate. The expression of ferroptosis-related protein and PI3K/Akt pathway-related protein were assessed by western blot. In vivo experiments in nude mice were performed and the mice were divided into four groups (n = 5/group) which gavage administrated with 150 mg/kg normal saline, and 75, 150, 300 mg/kg RGP, respectively. Their tumor weight and volume were recorded. RESULTS RGP treatment effectively inhibited the proliferation and viability of AGS cells in a dosage-dependent manner and induced apoptosis. It induced ferroptosis in AGS cells, as well as inhibiting the expression of PI3K/Akt-related proteins. AQP3 overexpression could reversed the effect of RGP treatment on ferroptosis. Confirmatory in vivo experiments showed that RGP could reduce the growth of implanted tumor, with increased RGP concentration resulting in greater tumor inhibitory effects. CONCLUSION RGP might have therapeutic potential against GC, effectively inhibiting the proliferation and viability of AGS cells.
Collapse
Affiliation(s)
- Yan Wang
- Department of General Surgery, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Gastrointestinal Surgery, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| | - Wen-Xian Guan
- Department of General Surgery, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuan Zhou
- Department of Gastrointestinal Surgery, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| | - Xiao-Yu Zhang
- Department of Gastrointestinal Surgery, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| | - Hai-Jian Zhao
- Department of Gastrointestinal Surgery, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| |
Collapse
|
2
|
Yuan J, Liu Y, Zhang T, Zheng C, Ding X, Zhu C, Shi J, Jing Y. Traditional Chinese medicine for breast cancer treatment: a bibliometric and visualization analysis. PHARMACEUTICAL BIOLOGY 2024; 62:499-512. [PMID: 38813803 PMCID: PMC11141317 DOI: 10.1080/13880209.2024.2359105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/13/2024] [Indexed: 05/31/2024]
Abstract
CONTEXT The use of traditional Chinese medicine (TCM) for breast cancer patients inhibits tumor cell growth and proliferation, alleviates adverse reactions, and inhibits tumor recurrence and metastasis post-surgery. An assessment of its historical efficacy and an examination of the latest research trends are imperative to thoroughly leverage the potential of TCM for breast cancer treatment. OBJECTIVE This study analyzes the published literature on TCM for breast cancer treatment using bibliometric analysis to determine the current state, identify hot spots, and discern trends, providing insight into research in this field. METHODS TCM-based breast cancer treatment publications between 2003 and 2022 were retrieved from the Web of Science, China National Knowledge Infrastructure, Wanfang, and Duxiu databases. Visual analysis was performed using VOSviewer (V1.6.19) and CiteSpace (V6.3.R1) software. Examined metrics included the annual publication count, literature and journal, national and institutional contributions, author co-occurrence, keyword co-occurrence, keywords timeline, and keywords with citation bursts in this research field. RESULTS AND CONCLUSION A total of 1080 English publications and 2617 Chinese publications were included in the analysis. China was the leading contributor of publications. High-frequency keywords such as 'apoptosis', 'expression', 'in vivo', 'chemotherapy', 'triple-negative breast cancer', and 'lymphedema' were identified from English and Chinese publications; 'epithelial mesenchymal transition' and 'network pharmacology' emerged as hotspots. The development of modern science, technology, and in-depth research can result in broader prospects for the research and application of TCM in breast cancer treatment, resulting in more effective solutions for the treatment of breast cancer and other malignant tumors.
Collapse
Affiliation(s)
- Jun Yuan
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai’an, China
- National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai’an, China
| | - Yun Liu
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai’an, China
| | - Tiantian Zhang
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai’an, China
| | - Cheng Zheng
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai’an, China
| | - Xiao Ding
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai’an, China
| | - Chuanrong Zhu
- Department of General Surgery, The Affiliated Huai’an No.1 People’s Hospital of Nanjing Medical University, Huai’an, Jiangsu, China
| | - Jing Shi
- Department of Breast, Maternity and Child, Health Care Hospital of Huai’an, Huai’an, Jiangsu, China
| | - Yi Jing
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai’an, China
- National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai’an, China
| |
Collapse
|
3
|
Luo S, Huang X, Li S, Chen Y, Zhang X, Zeng X. Homogeneous Polyporus polysaccharide exerts anti-bladder cancer effects via autophagy induction. PHARMACEUTICAL BIOLOGY 2024; 62:214-221. [PMID: 38353262 PMCID: PMC10868468 DOI: 10.1080/13880209.2024.2316195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 02/03/2024] [Indexed: 02/16/2024]
Abstract
CONTEXT Polyporus polysaccharide (PPS), the leading bioactive ingredient extracted from Polyporus umbellatus (Pers.) Fr. (Polyporaceae), has been demonstrated to exert anti-bladder cancer and immunomodulatory functions in macrophages. OBJECTIVE To explore the effects of homogeneous Polyporus polysaccharide (HPP) on the proliferation and autophagy of bladder cancer cells co-cultured with macrophages. MATERIALS AND METHODS MB49 bladder cancer cells and RAW264.7 macrophages were co-cultured with or without HPP intervention (50, 100, or 200 μg/mL) for 24 h. The cell counting kit-8 (CCK-8) assay and 5-ethynyl-2″-deoxyuridine (EdU) staining evaluated MB49 cell proliferation. Monodansylcadaverine (MDC) staining and transmission electron microscopy (TEM) observed autophagosomes. Western blotting detected the expression levels of autophagy-related proteins and PI3K/Akt/mTOR pathway proteins. RESULTS HPP inhibited the proliferation of MB49 cells co-cultured with RAW264.7 cells but not MB49 cells alone. HPP altered the expression of autophagy-related proteins and promoted the formation of autophagosomes in MB49 cells in the co-culture system. Autophagy inhibitors 3-methyladenine (3-MA) and chloroquine (CQ) not only antagonized HPP-induced autophagy but also attenuated the inhibitory effects of HPP on MB49 cell proliferation in the co-culture system. HPP or RAW264.7 alone was not sufficient to induce autophagy in MB49 cells. In addition, HPP suppressed the protein expression of the PI3K/Akt/mTOR pathway in MB49 cells in the co-culture system. DISCUSSION AND CONCLUSIONS HPP induced bladder cancer cell autophagy by regulating macrophages in the co-culture system, resulting in the inhibition of cancer cell proliferation. The PI3K/Akt/mTOR pathway was involved in HPP-induced autophagy in the co-culture system.
Collapse
Affiliation(s)
- Siwan Luo
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaopeng Huang
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shiqi Li
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuwen Chen
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xian Zhang
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xing Zeng
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
4
|
Lu K, Xia Y, Cheng P, Li Y, He L, Tao L, Wei Z, Lu Y. Synergistic potentiation of the anti-metastatic effect of a Ginseng-Salvia miltiorrhiza herbal pair and its biological ingredients via the suppression of CD62E-dependent neutrophil infiltration and NET formation. J Adv Res 2024:S2090-1232(24)00490-9. [PMID: 39481643 DOI: 10.1016/j.jare.2024.10.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/19/2024] [Accepted: 10/29/2024] [Indexed: 11/02/2024] Open
Abstract
INTRODUCTION The combination of the roots of ginseng and Salvia miltiorrhiza is an effective approach for treating metastatic cancer in patients with Qi stagnation and blood stasis patterns. However, the molecular mechanism underlying the combined use of ginseng and Salvia miltiorrhiza is unknown. OBJECTIVES This study unveils the pharmacological foundation of ginseng and Salvia miltiorrhiza by examining the involvement of neutrophils in the critical process of tumor hematogenous metastasis. Additionally, by employing a reverse pharmacology research model (effect-target-constituent), potential potent components were screened, and the dominant component formulations were determined. METHODS An experimental lung metastatic model was constructed to compare the antitumor effects of ginseng and Salvia miltiorrhiza. RNA sequencing was employed to identify pivotal biological events and key targets, while the detection of CD62E expression and neutrophil extracellular traps (NETs) release was used to screen for effective substances in ginseng and Salvia miltiorrhiza. In addition, a comprehensive array of in vitro and in vivo experiments was conducted to explore the underlying mechanisms and therapeutic significance. RESULTS Compared with single-herb use, the use of ginseng or Salvia miltiorrhiza significantly reduced tumor metastasis, which was accompanied by reduced neutrophil infiltration into the lungs. Cryptotanshinone (CPT), an active constituent of Salvia miltiorrhiza, can inhibit neutrophil adhesion and recruitment to lung tissue by downregulating the expression of E-selectin (CD62E) in endothelial cells. Moreover, the ginseng -derived ginsenoside Rg1 mitigated the formation of NETs in lung tissues and reversed the protumor effects of NETs. We further explored the efficacy of combination therapy with Rg1 and CPT, which also reduced tumor metastasis in vivo. CONCLUSION Ginseng and Salvia miltiorrhiza exhibited a mutual potentiation of the anti-metastatic effect by suppressing both early and late stages of neutrophil-initiated metastasis cascade. Rg1 and CPT represent the synergistic ingredients from ginseng and Salvia miltiorrhiza, respectively.
Collapse
Affiliation(s)
- Keqin Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yawen Xia
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Peng Cheng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yanan Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Liang He
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Li Tao
- Department of Pharmacy, School of Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| | - Zhonghong Wei
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Yin Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
5
|
Li Q, Hong K, Jia Y, Hu J. Biomineralized Nuclear Receptor Protein-Selection Mass Spectrometry for the Discovery of Drugs and Toxics. Anal Chem 2024; 96:16926-16936. [PMID: 39383328 DOI: 10.1021/acs.analchem.4c03943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
Protein-selection mass spectrometry is cost-effective for the discovery of drugs and toxics. Nuclear receptors (NRs) are major targets for pharmaceuticals and endocrine-disrupting chemicals and are, thus, widely used as "bait" proteins. However, their application is limited due to the tendency to lose protein activity during cold storage. To address this problem, we introduced a novel biomineralization-based approach to preserve activity in NRs, exemplified by human retinoic acid receptor alpha (hRARα), a target for cancer and leucocythemia therapy. Since information on the coordination chemistry of metal ion and NR protein complexes is almost unavailable, we applied peptide mapping analysis for the first time for the rational design of his-hRARα-Co phosphate nanobiomaterial with high bioactivity. This nanobiomaterial successfully captured hRARα bioactive chemicals from a Chinese herb and environmental water and discovered an unsaturated fatty acid, (±)-(9Z,11E)-13-hydroxy-9,11-octadecadienoic acid ((±)13-HODE), which exhibited strong hRARα antagonistic activity.
Collapse
Affiliation(s)
- Qiang Li
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Kaisheng Hong
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Yingting Jia
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Jianying Hu
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
6
|
Li J, Niu Y, Yuan L, Jiang W, Jiao T, Dou H, Nan Y. Research Progress in the Medicine-Food Dual Use of Astragalus for Gastrointestinal Tumors. J Med Food 2024. [PMID: 39431943 DOI: 10.1089/jmf.2024.k.0057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024] Open
Abstract
Gastrointestinal tumors have a major impact on human life expectancy and quality of life and are a major cause of personal and social hygiene stress. Gastrointestinal tumors are the main cause of cancer-related death, and the main treatment methods are surgery, radiotherapy, and chemotherapy. However, they also cause great damage to the body and have a poor prognosis after surgery. Therefore, we urgently need safe and effective drugs to intervene in gastrointestinal tumors. In recent years, Traditional Chinese Medicine has been widely used in tumor treatment as a complementary and alternative therapy. Astragalus membranaceus is one of the main herbal medicines with tonic effect and one of the important components of many antitumor herbal compounds. Astragalus polysaccharides, saponins, and flavonoids are the main active components of Astragalus, all of which have antitumor effects. In this article, we studied the mechanism of action of Astragalus and its active ingredients in the intervention of gastrointestinal tumors in recent years and suggested a new approach for the study of Astragalus intervention in gastrointestinal tumors from the perspective of the homology of medicine and food.
Collapse
Affiliation(s)
- Jiaqing Li
- Ningxia Medical University Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, Yinchuan, China
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan, China
| | - Yang Niu
- Ningxia Medical University Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, Yinchuan, China
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan, China
| | - Ling Yuan
- Pharmacy College of Ningxia Medical University, Yinchuan, China
| | - Wenjie Jiang
- Ningxia Medical University Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, Yinchuan, China
| | - Taiqiang Jiao
- Traditional Chinese Medicine College, Ningxia Medical University, Yinchuan, China
| | - Hongli Dou
- Ningxia Medical University Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, Yinchuan, China
- Marxist College of Shaanxi University of Chinese Medicine, Xi'an, China
| | - Yi Nan
- Ningxia Medical University Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, Yinchuan, China
| |
Collapse
|
7
|
Li M, Li J, Tang Q, Zhu Y. Potential antitumor activity of triptolide and its derivatives: Focused on gynecological and breast cancers. Biomed Pharmacother 2024; 180:117581. [PMID: 39427548 DOI: 10.1016/j.biopha.2024.117581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/01/2024] [Accepted: 10/14/2024] [Indexed: 10/22/2024] Open
Abstract
Cancer remains one of the greatest global health concerns. This is especially true for gynecological cancers, which include cervical, ovarian, and endometrial cancers, and breast cancer. Natural products used for cancer treatment offer some unique advantages. Triptolide (TPL) is a biologically active terpenoid extracted from Tripterygium wilfordii, which exhibits anti-inflammatory, immunosuppressive, antitumor, and other pharmacological activities. However, clinical applications of TPL are restricted because of poor water solubility and severe cytotoxicity; to overcome these limitations, various TPL derivatives and drug delivery systems, especially nanocarriers, have been used. Furthermore, various preclinical and clinical studies have demonstrated that TPL and its derivatives exhibit excellent antitumor effects by targeting proteins involved in multiple signaling pathways. Here, we review the progress regarding novel drug delivery systems, antitumor activities, and molecular mechanisms of action of TPL and its derivatives against gynecological and breast cancers. TPL and its derivatives inhibit tumor growth, suppress tumor metastasis, and enhance the drug sensitization of resistant cancers. In addition, TPL and its derivatives exert synergistic antitumor effects against gynecological and breast cancers when combined with existing antitumor drugs, such as carboplatin, cisplatin, and PI3K inhibitors. Moreover, we highlight the clinical potential of TPL analogs against cancer from bench to bedside and their prospects for future applications in gynecologic and breast cancers.
Collapse
Affiliation(s)
- Mengjie Li
- College of Pharmacy, Qinghai University for Nationalities, Xining, China; Department of Pharmacy, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Jiamiao Li
- Department of Pharmacy, The Affilliated Chengdu 363 Hospital of Southwest Medical University, Chengdu, China
| | - Qing Tang
- Department of Pharmacy, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Yongxia Zhu
- Department of Pharmacy, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
8
|
Lu YY, Fang YY, Wang SS, Guo J, Song JL, Zhu L, Lin ZK, Wang R, Zhang SY, Qiu WS, Qi WW. Cepharanthine sensitizes gastric cancer cells to chemotherapy by targeting TRIB3-FOXO3-FOXM1 axis to inhibit autophagy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156161. [PMID: 39454374 DOI: 10.1016/j.phymed.2024.156161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/28/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024]
Abstract
BACKGROUND Gastric cancer is among the common solid tumors. Chemotherapy resistance is the most common issue in gastric cancer treatment. Inhibiting intracellular autophagy may be a feasible method for overcoming chemotherapy resistance. Cepharanthine (CEP), a natural small molecule extracted from the stephania cephalantha Hayata plant, has been demonstrated to significantly inhibit cancer growth and can regulate autophagy. Although CEP can significantly inhibit cancer growth, it remains unclear whether CEP can regulate autophagy in gastric cancer. This study aimed to investigate whether CEP can enhance the sensitivity of gastric cancer to chemotherapy and elucidate its molecular mechanism. METHODS Three gastric cancer cell lines (AGS, SGC7901, and MFC) and one normal gastric mucosal epithelial cell line (GES-1) were used for in vitro experiments. The characterization of autophagy in gastric cancer cells included the detection of autophagy markers and autophagy flux through immunofluorescence staining and Western blotting, as well as the assessment of lysosomal function using fluorescence staining (LysoTracker Red DND-99, Acridine Orange staining) and Western blotting. The cytotoxicity of CEP, autophagy inhibitors (chloroquine [CQ] and 3-methyladenine [3MA]), and chemotherapy drugs (doxorubicin [DOX] and cisplatin [CIS]) was evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, cell colony formation, and fluorescence staining techniques (H2DCFDA, Dihydroethidium, and JC-1 staining). The interaction between CEP and autophagy inhibitors was tested in a 615 mice model, and changes in the gut microbiota were determined through accurate 16S absolute quantification sequencing. The signaling pathway and autophagy regulatory target TRIB3-FOXO3-FOXM1 were confirmed through molecular docking, RNA sequencing, bioinformatic analysis, transfection techniques, and Western blotting. RESULTS CEP blocked autophagic flux in gastric cancer cells without affecting lysosomal function. As a novel autophagy inhibitor, CEP could combine with conventional autophagy inhibitors (CQ and 3MA) to block intracellular autophagy, thereby inhibiting gastric cancer growth. During this process, changes in the gut microbiota were observed, including low-level changes in Odoribacterium, Erysipelatoclostridium, and ParaPrevotella and high-level changes in Ileibacterium, Enterorhabdus, and Bifidobacterium. Additionally, CEP synergistically inhibited the growth of gastric cancer when combined with chemotherapy drugs. Mechanistically, the TRIB3-FOXO3-FOXM1 signaling axis was found to be involved in the inhibition of gastric cancer by CEP combined with autophagy inhibitors and chemotherapy drugs, thereby mediating cell apoptosis. CONCLUSION This study links the TRIB3-FOXO3-FOXM1 axis with chemotherapy efficacy. Our findings demonstrated that CEP inhibits autophagy by modulating the FOXO3-FOXM1 axis. When combined with chemotherapy drugs (DOX and CIS), CEP, as an autophagy inhibitor, can limit TRIB3 protein expression, thereby regulating the FOXO3-FOXM1 axis and enhancing its ability to prevent gastric cancer growth. These findings may contribute to improving the prognosis of patients with gastric cancer. Furthermore, these results enrich the fundamental understanding of how autophagy inhibition can enhance clinical cancer treatment efficacy and provide insights into the potential mechanisms by which CEP functions as an anti-tumor drug, thereby exploring its value for clinical application.
Collapse
Affiliation(s)
- Yang-Yang Lu
- The Affiliated Hospital of Qingdao University, Department of Oncology, No.16 Jiangsu Road, Shinan District, Qingdao 266000, China
| | - Yuan-Yuan Fang
- The Affiliated Hospital of Qingdao University, Department of Oncology, No.16 Jiangsu Road, Shinan District, Qingdao 266000, China
| | - Sha-Sha Wang
- The Affiliated Hospital of Qingdao University, Department of Oncology, No.16 Jiangsu Road, Shinan District, Qingdao 266000, China
| | - Jing Guo
- The Affiliated Hospital of Qingdao University, Department of Oncology, No.16 Jiangsu Road, Shinan District, Qingdao 266000, China
| | - Jia-Lin Song
- The Affiliated Hospital of Qingdao University, Department of Oncology, No.16 Jiangsu Road, Shinan District, Qingdao 266000, China
| | - Liang Zhu
- Qingdao Municipal Hospital, Department of Orthopedic Surgery, No.1 Jiaozhou Road, Shibei District, Qingdao City, Shandong Province, Qingdao 266000, China
| | - Zhong-Kun Lin
- The Affiliated Hospital of Qingdao University, Department of Oncology, No.16 Jiangsu Road, Shinan District, Qingdao 266000, China; Department of Oncology, Shandong Provincial Third Hospital, No.11 Wuyingshan Middle Road, Tianqiao District, Jinan City, Shandong Province, Jinan 250031, China
| | - Rui Wang
- The Affiliated Hospital of Qingdao University, Department of Oncology, No.16 Jiangsu Road, Shinan District, Qingdao 266000, China
| | - Si-Yi Zhang
- The Affiliated Hospital of Qingdao University, Department of Oncology, No.16 Jiangsu Road, Shinan District, Qingdao 266000, China
| | - Wen-Sheng Qiu
- The Affiliated Hospital of Qingdao University, Department of Oncology, No.16 Jiangsu Road, Shinan District, Qingdao 266000, China.
| | - Wei-Wei Qi
- The Affiliated Hospital of Qingdao University, Department of Oncology, No.16 Jiangsu Road, Shinan District, Qingdao 266000, China.
| |
Collapse
|
9
|
Wang L, Chen H, Deng L, Hu M, Wang Z, Zhang K, Lian C, Wang X, Zhang J. Roburic acid inhibits lung cancer metastasis and triggers autophagy as verified by network pharmacology, molecular docking techniques and experiments. Front Oncol 2024; 14:1449143. [PMID: 39450260 PMCID: PMC11499198 DOI: 10.3389/fonc.2024.1449143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024] Open
Abstract
Background Roburic acid (ROB) is a newly discovered tetracyclic triterpene acid extracted from oak galls, which has anti-inflammatory effects, but the mechanism of its anticancer effect is not clear. Our study focuses on exploring the potential mechanism of action of ROB in the treatment of lung cancer using a combination of network pharmacological prediction, molecular docking technique and experimental validation. Methods A network pharmacology approach was used to screen the protein targets of ROB and lung cancer, and PPI network analysis and enrichment analysis were performed on the intersecting genes. The tissue and organ distribution of the targets was also evaluated based on the BioGPS database. To ensure the reliability of the network pharmacology prediction results, we proceeded to use molecular docking technique to determine the relationship between drugs and targets. Finally, in vitro experiments with cell lines were performed to further reveal the potential mechanism of ROB for the treatment of lung cancer. Results A total of 83 potential targets of ROB in lung cancer were collected and further screened by using Cytoscape software, and 7 targets of PTGS2, CYP19A1, PTGS1, AR, CYP17A1, PTGES and SRD5A1 were obtained as hub genes and 7 hub targets had good binding energy with ROB. GO and KEGG analysis showed that ROB treatment of lung cancer mainly involves Arachidonic acid metabolism, Notch signaling pathway, cancer pathway and PPAR signaling pathway. The results of in vitro experiments indicated that ROB may inhibit the proliferation and metastasis of lung cancer cells and activate the PPARγ signaling pathway, as well as induce cellular autophagy. Conclusions The results of this study comprehensively elucidated the potential targets and molecular mechanisms of ROB for the treatment of lung cancer, providing new ideas for further lung cancer therapy.
Collapse
Affiliation(s)
- Luyao Wang
- Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Bengbu Medical University, Bengbu, China
- Department of Genetics, School of Life Sciences, Bengbu Medical University, Bengbu, China
| | - Huili Chen
- Research Center of Clinical Laboratory Science, Bengbu Medical University, Bengbu, China
| | - Lili Deng
- Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Mengling Hu
- Department of Genetics, School of Life Sciences, Bengbu Medical University, Bengbu, China
| | - Ziqiang Wang
- Research Center of Clinical Laboratory Science, Bengbu Medical University, Bengbu, China
| | - Kai Zhang
- Research Center of Clinical Medicine, Bengbu Medical University, Bengbu, China
| | - Chaoqun Lian
- Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Bengbu Medical University, Bengbu, China
- Research Center of Clinical Laboratory Science, Bengbu Medical University, Bengbu, China
| | - Xiaojing Wang
- Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Bengbu Medical University, Bengbu, China
- Joint Research Center for Regional Diseases of Institute of Healthcare Management (IHM), The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Jing Zhang
- Department of Genetics, School of Life Sciences, Bengbu Medical University, Bengbu, China
| |
Collapse
|
10
|
Lan T, He S, Luo X, Pi Z, Lai W, Jiang C, Gan J, Wei S, Wu Z, Yun C, Leng J, Li C. Disruption of NADPH homeostasis by total flavonoids from Adinandra nitida Merr. ex Li leaves triggers ROS-dependent p53 activation leading to apoptosis in non-small cell lung cancer cells. JOURNAL OF ETHNOPHARMACOLOGY 2024; 332:118340. [PMID: 38762212 DOI: 10.1016/j.jep.2024.118340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/03/2024] [Accepted: 05/11/2024] [Indexed: 05/20/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Adinandra nitida Merr. ex Li leaves serve as a herbal tea and hold a significant role in traditional Chinese medicine, being applied to assist in tumor treatment. Flavonoids present the primary bioactive constituents in Adinandra nitida Merr. ex Li leaves. AIM OF THE STUDY To explore the potential of total flavonoids from Adinandra nitida Merr. ex Li Leaves (TFAN) in inhibiting non-small cell lung cancer (NSCLC) and further elucidate the underlying mechanisms. MATERIALS AND METHODS Human NSCLC cell lines and normal lung cell line were employed to assess the impact of TFAN (0-160 μg/mL for 24, 28 and 72 h) on cell proliferation in vitro. Immunofluorescence (IF) staining gauged p53 expression changes in NSCLC cells under TFAN present condition (150 μg/mL for 24 h). In vivo study utilized NSCLC cell derived xenograft tumors in nude mice, administering TFAN orally (200 and 400 mg/kg) for 14 days. Immunohistochemistry assessed Cleaved Caspase 3 expression change in A549 xenograft tumors treated with TFAN (400 mg/kg for 14 days). RNA-seq and KEGG analysis identified gene expression changes and enriched processes in A549 xenograft tumors treated with TFAN. CM-H2DCFDA and metabolomics assessed ROS level and GSH/GSSG pool changes in A549 cells under TFAN present condition. Cell viability assay and IF staining assessed A549 cell proliferation and p53 expression changes under H2O2-induced oxidative stress (0-40 μM for 24 h) and TFAN present conditions. GSEA and N-Acetyl-L-cysteine (NAC) rescue (0-1 μM for 24 h) analyzed the impact of TFAN on GSH de novo synthesis. NADPH/NADP+ pool measurement and NADPH rescue (0-10 μM for 24 h) analyzed the impact of TFAN on GSH salvage synthesis. GC-FID and HPLC-MS were utilized to detect ethanol and ethyl acetate residues, and to characterize the chemical constituents in TFAN, respectively. The total flavonoid content of TFAN was determined using a 330 nm wavelength. RESULTS TFAN significantly inhibited A549 cells (wild-type p53) but not NCI-H1299 cells (p53-deficient), NCI-H596 cells (p53-mutant) or BEAS-2B in vitro. IF staining validated p53 genotype for the cell lines and revealed an increase in p53 expression in A549 cells after TFAN treatment. In vivo, TFAN selectively inhibited A549 xenograft tumor growth without discernible toxicity, inducing apoptosis evidenced by Cleaved Caspase 3 upregulation. RNA-seq and KEGG analysis suggested ROS biosynthesis was involved in TFAN-induced p53 activation in A549 cells. Elevated ROS level in TFAN-treated A549 cells were observed. Moreover, TFAN sensitized A549 cells to H2O2-induced oxidative stress, with higher p53 expression. Additionally, A549 cells compensated with GSH de novo synthesis under TFAN present condition, confirmed by GSEA and NAC rescue experiment. TFAN disrupted NADPH homeostasis to impair GSH salvage biosynthesis, supported by NADPH/NADP+ change and NADPH rescue experiment. The chemical constituents of TFAN, with acceptable limits for ethanol and ethyl acetate residues and a total flavonoid content of 68.87%, included Catechin, Epicatechin, Quercitroside, Camellianin A, and Apigenin. CONCLUSION The disruption of NADPH homeostasis by TFAN triggers ROS-dependent p53 activation that leads to apoptotic cell death, ultimately suppressing NSCLC growth. These findings offer potential therapeutic implications of Adinandra nitida Merr. ex Li leaves in combating NSCLC.
Collapse
Affiliation(s)
- Taijin Lan
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China; Key Laboratory of Integrative Translational Medicine of Guangxi High Incidence Infectious Diseases, Nanning 530200, China; School of Preclinical Medicine, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Songhua He
- Guangxi Institute for Food and Drug Control, Nanning 530021, China
| | - Xuefei Luo
- School of Preclinical Medicine, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Zhenyu Pi
- School of Preclinical Medicine, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Weihui Lai
- School of Preclinical Medicine, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Chunhui Jiang
- School of Preclinical Medicine, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Jun Gan
- School of Preclinical Medicine, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Suyun Wei
- School of Preclinical Medicine, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Zhanshuai Wu
- School of Preclinical Medicine, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Chenxia Yun
- Key Laboratory of Integrative Translational Medicine of Guangxi High Incidence Infectious Diseases, Nanning 530200, China.
| | - Jing Leng
- Key Laboratory of Integrative Translational Medicine of Guangxi High Incidence Infectious Diseases, Nanning 530200, China.
| | - Changlong Li
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
11
|
Lei Z, Luan F, Zou J, Zhang X, Zhai B, Xin B, Sun J, Guo D, Wang J, Shi Y. Traditional uses, phytochemical constituents, pharmacological properties, and quality control of Pseudostellaria heterophylla (Miq.) Pax. JOURNAL OF ETHNOPHARMACOLOGY 2024; 337:118871. [PMID: 39368760 DOI: 10.1016/j.jep.2024.118871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/24/2024] [Accepted: 09/29/2024] [Indexed: 10/07/2024]
Abstract
ETHNOPHARMACOLOGIC RELEVANCE Pseudostellaria heterophylla (Miq.) Pax belongs to the Caryophyllaceae family, which is widely used in traditional Chinese medicine in Asia. P. heterophylla was first documented in the classical text Bencao Congxin, also known as "Haier Shen". As a renowned folk medicine with a long history of medicinal application in China, this plant is frequently employed to address spleen deficiency and fatigue, loss of appetite, and weakness after illness. In recent years, P. heterophylla has gained significant global attention as an important medicinal plant, attributable to its pharmacological activities on the immune and endocrine systems, as well as its diverse applications. AIM OF THE WORK This review aims to deliver a comprehensive and analytical overview of the ethnopharmacology, phytochemistry, pharmacology, pharmacokinetics, toxicology, and quality control of P. heterophylla, while also offering novel insights and opportunities for future research. MATERIALS AND METHODS Relevant information regarding P. heterophylla was gathered from various databases, including Web of Science, PubMed, ACS Publications, Google Scholar, Baidu Scholar, and CNKI, in addition to The Catalogue of Life, the Flora of China database, and The World Flora Online. All published articles in multiple languages have been included and properly cited. The chemical structure of the compound was illustrated utilizing ChemDraw 19.0 software. RESULTS P. heterophylla has been traditionally employed to address a range of ailments, including cancer, cardiovascular diseases, diabetes, and respiratory disorders. More than 289 active constituents have been identified in P. heterophylla, comprising cyclic peptides, polysaccharides, saponins, alkaloids, flavonoids, nucleosides, and amino acids. Pharmacological investigations have demonstrated that P. heterophylla and its active constituents exhibit a broad spectrum of biological activities, including anti-cancer, immunomodulatory, antioxidant, hypoglycemic, anti-inflammatory effects, modulation of intestinal flora, enhancement of cognitive function, and inhibition of tyrosine kinase activity. Furthermore, it is extensively utilized in the functional food and cosmetics industries. CONCLUSION As a dual-purpose resource for both food and medicine, P. heterophylla possesses significant health care functions and considerable edible and medicinal value, with promising prospects for future development and utilization. However, numerous investigations into the biological activities of P. heterophylla are primarily focused on its extracts and bioactive constituents, and the mechanisms underlying the actions of these extracts and components remain unclear, with a dearth of studies on clinical efficacy and safety. Consequently, further detailed in vitro and in vivo studies investigating the mechanisms of action of pure active compounds of P. heterophylla are warranted, along with additional clinical investigations to ascertain the safety and efficacy of the plant for human use.
Collapse
Affiliation(s)
- Ziwen Lei
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi, PR China
| | - Fei Luan
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi, PR China
| | - Junbo Zou
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi, PR China
| | - Xiaofei Zhang
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi, PR China
| | - Bingtao Zhai
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi, PR China
| | - Bao Xin
- School of Public Health, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi, PR China
| | - Jing Sun
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi, PR China
| | - Dongyan Guo
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi, PR China
| | - Jingyuan Wang
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi, PR China.
| | - Yajun Shi
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi, PR China.
| |
Collapse
|
12
|
Zhang J, Wu Y, Tian Y, Xu H, Lin ZX, Xian YF. Chinese herbal medicine for the treatment of intestinal cancer: preclinical studies and potential clinical applications. Mol Cancer 2024; 23:217. [PMID: 39354520 PMCID: PMC11443726 DOI: 10.1186/s12943-024-02135-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 09/20/2024] [Indexed: 10/03/2024] Open
Abstract
Intestinal cancer (IC) poses a significant global health challenge that drives continuous efforts to explore effective treatment modalities. Conventional treatments for IC are effective, but are associated with several limitations and drawbacks. Chinese herbal medicine (CHM) plays an important role in the overall cancer prevention and therapeutic strategies. Recent years have seen a growing body of research focus on the potential of CHM in IC treatment, showing promising results in managing IC and mitigating the adverse effects of radiotherapy and chemotherapy. This review provides updated information from preclinical research and clinical observation on CHM's role in treatment of IC, offering insights into its comprehensive management and guiding future prevention strategies and clinical practice.
Collapse
Affiliation(s)
- Juan Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, 999077, N.T., Hong Kong SAR, China
| | - Yulin Wu
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, 999077, N.T., Hong Kong SAR, China
| | - Yuanyang Tian
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, 999077, N.T., Hong Kong SAR, China
| | - Hongxi Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, P.R. China
| | - Zhi-Xiu Lin
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, 999077, N.T., Hong Kong SAR, China.
- Hong Kong Institute of Integrative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| | - Yan-Fang Xian
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, 999077, N.T., Hong Kong SAR, China.
| |
Collapse
|
13
|
Ma QY, Xu XY, Zhu YZ, Yao NN, Liu YC, Gao XD, Zhang Q, Luo WJ. Artesunate inhibits vasculogenic mimicry in choroidal melanoma through HIF-1 α/ VEGF/PDGF pathway. Acta Histochem 2024; 126:152174. [PMID: 38976933 DOI: 10.1016/j.acthis.2024.152174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 07/04/2024] [Accepted: 07/04/2024] [Indexed: 07/10/2024]
Abstract
Choroidal melanoma (CM), a highly metastatic eye tumor, exhibits vasculogenic mimicry (VM) facilitated by hypoxia-induced angiogenesis. This study explored the inhibitory impact of the anti-malarial drug Artesunate (ART) on CM VM through modulation of the HIF-1α/VEGF/PDGF pathway. Immunohistochemistry (IHC) confirmed VM in CM with elevated VEGF and PDGF expression. Hypoxia promoted CM proliferation, upregulating HIF-1α, VEGF and PDGF. VEGF and PDGF enhanced CM migration, invasion and VM, with HIF-1α playing a crucial role. ART mitigated VM formation by suppressing the HIF-1α/VEGF/PDGF pathway, highlighting its potential as an anti-tumor agent in CM.
Collapse
Affiliation(s)
- Qing-Yue Ma
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiao-Yan Xu
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yuan-Zhang Zhu
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ning-Ning Yao
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yi-Chong Liu
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiao-di Gao
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qian Zhang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wen-Juan Luo
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
14
|
Yang C, Wei W, Hu F, Zhao X, Yang H, Song X, Sun Z. Dihydroartemisinin suppresses the tumorigenesis of esophageal carcinoma by elevating DAB2IP expression in a NFIC-dependent manner. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:8117-8128. [PMID: 38789636 DOI: 10.1007/s00210-024-03163-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024]
Abstract
Dihydroartemisinin (DHA) has been identified to have the anticancer and anti-inflammatory activities. Disabled homolog 2 interacting protein (DAB2IP) is a well-recognized tumor suppressor. Both DHA and DAB2IP were proven to have suppressing effects on esophageal carcinoma (ESCA) tumorigenesis. However, whether DHA regulated ESCA cells via DAB2IP and its mechanism are still vague. Functional analyses were conducted using MTT, tube formation, sphere formation, and transwell assays in vitro as well as Tumor formation experiments in mice. Levels of genes and proteins were assayed by qRT-PCR and western blotting analyses. The interaction between DAB2IP and Nuclear Factor I C (NFIC) was confirmed using bioinformatics analysis and dual-luciferase reporter assay. DHA treatment suppressed ESCA cell angiogenesis, stemmess, migration, and invasion. DAB2IP level was decreased in ESCA tissues and cells, and DHA elevated DAB2IP expression in ESCA cells. Functionally, DAB2IP overexpression impaired ESCA cell angiogenesis, stemmess, migration and invasion. Mechanistically, NFIC had binding sites on the promoter region and directly targeted DAB2IP. DHA could up-regulate DAB2IP expression via NFIC. Moreover, NFIC was also decreased in ESCA tissues and cells, and its overexpression had anticancer activity in ESCA cells. In addition, DAB2IP knockdown reversed the anticancer effects of NFIC or DHA on ESCA cells. In further in vivo analysis, DHA also suppressed ESCA growth by regulating DAB2IP expression. DHA suppressed the tumorigenesis of ESCA by elevating DAB2IP expression in an NFIC-dependent manner, suggesting the potential clinical application of DHA in ESCA treatment.
Collapse
Affiliation(s)
- Chao Yang
- Department of Thoracic Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, No.136, Jingzhou Street, Xiangcheng District, Xiangyang City, 441021, Hubei Province, People's Republic of China
| | - Wei Wei
- Department of Thoracic Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, No.136, Jingzhou Street, Xiangcheng District, Xiangyang City, 441021, Hubei Province, People's Republic of China
| | - Fen Hu
- Department of Thoracic Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, No.136, Jingzhou Street, Xiangcheng District, Xiangyang City, 441021, Hubei Province, People's Republic of China
| | - Xing Zhao
- Department of Thoracic Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, No.136, Jingzhou Street, Xiangcheng District, Xiangyang City, 441021, Hubei Province, People's Republic of China
| | - Hanxue Yang
- Department of Thoracic Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, No.136, Jingzhou Street, Xiangcheng District, Xiangyang City, 441021, Hubei Province, People's Republic of China
| | - Xiujun Song
- Department of Thoracic Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, No.136, Jingzhou Street, Xiangcheng District, Xiangyang City, 441021, Hubei Province, People's Republic of China
| | - Zhihua Sun
- Department of Thoracic Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, No.136, Jingzhou Street, Xiangcheng District, Xiangyang City, 441021, Hubei Province, People's Republic of China.
| |
Collapse
|
15
|
Su B, Mao Q, Li D, Wu Y, Wang B, Wang X. Mechanism of Fuzheng Qudu prescription in the treatment of lung cancer based on network pharmacology and experimental validation. Heliyon 2024; 10:e37546. [PMID: 39309919 PMCID: PMC11416244 DOI: 10.1016/j.heliyon.2024.e37546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/25/2024] Open
Abstract
Objective This research utilized network pharmacology to investigate the potential of Fuzheng Qudu prescription (FZQDP) in treating lung cancer (LC). Methods The components and their targets of FZQDP were analyzed for their relationship with LC-related targets using bioinformatics tools. Mouse Lewis lung carcinoma (LLC) cells were cultured in vitro and treated with FZQDP or cisplatin (DDP) before applying the MTT assay to determine FZQDP concentrations, and the IC50 value. According to the IC50 value, the effect of FZQDP on apoptosis and cell cycle was detected by flow cytometry. Mouse tumor growth was recorded using live animal imaging, and measurements of tumor and spleen weight were used to calculate the tumor inhibition rate and spleen index. The effects on mouse liver and kidneys were observed by analyzing levels of AST, ALT, BUN, and CRE in blood and hematoxylin and eosin (H & E) stained sections. Additionally, levels of IL-2, IL-10, IL-6, and IFN-γ in serum, along with the frequencies of CD4+ and CD8+ T cells in the spleen, were measured using Mouse multiple Cytokine Assay and flow cytometry, respectively. Results SRC, STAT3, MAPK3, and MAPK1 could be crucial targets of FZQDP in the treatment of LC. FZQDP demonstrated inhibition of LC cell proliferation and tumor growth, as well as enhancement of apoptosis and induction of G2 phase cell cycle arrest. Furthermore, FZQDP led to elevated levels of IL-2 and IFN-γ, increased frequencies of CD4+ T cells and decreased levels of IL-6 and IL-10. Importantly, FZQDP did not exhibit any noticeable hepatotoxic or nephrotoxic effects in mice. Conclusion FZQDP may target multiple signaling pathways to treat LC. In a LC mouse model, FZQDP was found to inhibit tumor growth and improve immune function.
Collapse
Affiliation(s)
- Binjie Su
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| | - Qiyuan Mao
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Daorui Li
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Yingyi Wu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| | - Bo Wang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
- Experimental Animal Center, Xinjiang Medical University, Urumqi, 830017, Xinjiang China
| | - Xueqian Wang
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| |
Collapse
|
16
|
Lv D, Xiang Y, Song T, Li J, Chen Y, Huili Y, Shen T. HECTD2 as a target for veratric acid in the regulation of ferroptosis in renal cell carcinoma. Amino Acids 2024; 56:57. [PMID: 39343853 PMCID: PMC11439856 DOI: 10.1007/s00726-024-03419-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/10/2024] [Indexed: 10/01/2024]
Abstract
Function of HECTD2 in renal cell carcinoma malignant progression is undefined. Molecular mechanism behind anti-cancer effects of veratric acid (VA) from traditional Chinese medicine (TCM) is underexplored. The Cancer Genome Atlas was leveraged to study HECTD2 expression in renal cell carcinoma and its relationship with histological grading. Kaplan-Meier survival analysis was performed. HECTD2 expression was detected in cancer cells and tissues via qRT-PCR and immunohistochemistry. GPX4 and SLC7A11 expression in tumor samples with high or low HECTD2 expression was examined by immunohistochemistry, cell viability by CCK8, cell proliferation by colony formation assay, lipid ROS and mitochondrial superoxide levels by flow cytometry, Fe2+ and MDA content by assay kits, and GPX4 and SLC7A11 proteins by western blot. SeeSAR software screened TCM small molecule compounds with highest affinity to HECTD2, confirmed with cellular thermal shift assay. VA IC50 was measured by CCK8. Xenograft model was developed and treated with VA. Tumor size and weight were monitored, with immunohistochemistry to detect HECTD2 expression in tumors and assess ferroptosis-related markers. HECTD2 was overexpressed in tumor tissues and cells, which positively correlated with histological grading. HECTD2 depletion inhibited cell vitality and proliferation, raised intracellular lipid ROS, mitochondrial superoxide, Fe2+, and MDA. HECTD2 was a target with highest VA affinity. In vitro and vivo experiments concurred that VA treatment hindered malignancy of renal cell carcinoma and enhanced its susceptibility to ferroptosis. HECTD2 supports ferroptosis resistance in renal cell carcinoma, but VA, through its targeting of HECTD2, initiates ferroptosis, showcasing its anti-cancer efficacy.
Collapse
Affiliation(s)
- Dong Lv
- Department of Urology, Deyang People's Hospital, Deyang, 618000, China
| | - Ying Xiang
- Department of Urology, School of Medicine, Sichuan Provincial People's Hospital, Chengdu, 610072, China
| | - Tao Song
- Department of Urology, School of Medicine, Sichuan Provincial People's Hospital, Chengdu, 610072, China
| | - Jinze Li
- Department of Urology, Deyang People's Hospital, Deyang, 618000, China
| | - Yongbo Chen
- Department of Urology, Deyang People's Hospital, Deyang, 618000, China
| | - Youlong Huili
- Department of Urology, Deyang People's Hospital, Deyang, 618000, China
| | - Taimin Shen
- Department of Health Management Center and, Institute of Health Management, School of Medicine, Sichuan Provincial People's Hospital, No. 32, West Second Section, 1St Ring Road, Qingyang District, Chengdu, 610072, China.
| |
Collapse
|
17
|
He C, Li Q, Wu W, Liu K, Li X, Zheng H, Lai Y. Ferroptosis-associated genes and compounds in renal cell carcinoma. Front Immunol 2024; 15:1473203. [PMID: 39399506 PMCID: PMC11466770 DOI: 10.3389/fimmu.2024.1473203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/09/2024] [Indexed: 10/15/2024] Open
Abstract
As the main type of renal cell carcinoma (RCC), clear cell RCC (ccRCC) is often associated with the deletion or mutation of the von Hippel Lindau (VHL) gene, enhancement of glucose and lipid metabolism, and heterogeneity of the tumor microenvironment. VHL alterations in RCC cells lead to the activation of hypoxia-inducible factors and their downstream target vascular endothelial growth factor, and to the reprogramming of multiple cell death pathways and metabolic weakness, including ferroptosis, which are associated with targeted therapy or immunotherapy. The changes in biological metabolites (e.g., iron and lipids) support ferroptosis as a potential therapeutic strategy for RCC, while iron metabolism and ferroptosis regulation have been examined as anti-RCC agents in numerous studies, and various ferroptosis-related molecules have been shown to be related to the metastasis and prognosis of ccRCC. For example, glutathione peroxidase 4 and glutaminase inhibitors can inhibit pyrimidine synthesis and increase reactive oxygen species levels in VHL-deficient RCC cells. In addition, the release of damage-associated molecular patterns by tumor cells undergoing ferroptosis also mediates antitumor immunity, and immune therapy can synergize with targeted therapy or radiotherapy through ferroptosis. However, Inducing ferroptosis not only suppresses cancer, but also promotes cancer development due to its potential negative effects on anti-cancer immunity. Therefore, ferroptosis and various tumor microenviroment-related molecules may co-occur during the development and treatment of RCC, and further understanding of the interactions, core targets, and related drugs of ferroptosis may provide new combination drug strategies for RCC treatment. Here we summarize the key genes and compounds on ferroptosis and RCC in order to envision future treatment strategies and to provide sufficient information for overcoming RCC resistance through ferroptosis.
Collapse
Affiliation(s)
- Chengwu He
- Department of Urology, Shenzhen Shockwave Lithotripsy Research Institute, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Qingyi Li
- Department of Urology, Shenzhen Shockwave Lithotripsy Research Institute, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Weijia Wu
- Department of Urology, Shenzhen Shockwave Lithotripsy Research Institute, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Ke Liu
- Department of Urology, Shenzhen Shockwave Lithotripsy Research Institute, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Xingwen Li
- Tibet Future Biomedicine Company Limited, Golmud, Qinghai, China
| | - Hanxiong Zheng
- Department of Urology, Shenzhen Shockwave Lithotripsy Research Institute, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yongchang Lai
- Department of Pharmaceutical Management, School of Medical Business, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| |
Collapse
|
18
|
Peng Y, Du Y, Zhang Y, Wang Z, Hu T, Mai Y, Song H, Pan W, Cai Q, Ge F, Fan Y, Kim HY, Liu D, Guan X. Gegen Qinlian decoction alleviates depression-like behavior by modulating the gut microenvironment in CUMS rats. BMC Complement Med Ther 2024; 24:339. [PMID: 39304871 DOI: 10.1186/s12906-024-04638-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Gegen Qinlian Decoction (GQD) is a classical traditional Chinese medicine (TCM) formula primarily utilized for treating gut disorders. GQD showed therapeutic effects on several diseases in clinical and animal studies by targeting gut microbes. Our recent studies also found that GQD efficiently alleviated anxiety in methamphetamine-withdrawn mice via regulating gut microbiome and metabolism. Given that various studies have indicated the link between the gut microbiome and the development of depression, here we endeavor to explore whether GQD can manage depression disorders by targeting the gut microbiome. METHODS AND MATERIALS The depression-like model was induced in rats through chronic unpredictable mild stress (CUMS) and the depression levels were determined using the sucrose preference test (SPT). To address the depression-like behavior in rats, oral administration of GQD was employed. The colon microbiome and metabolite patterns were determined by 16s rRNA sequencing and untargeted metabolomics, respectively. RESULTS We found 6 weeks of CUMS can induce depression-like behavior in rats and 4 weeks of GQD treatment can significantly alleviate the depression-like behavior. GQD treatment can also ameliorate the histological lesions in the colon of CUMS rats. Then, CUMS increased the abundance of gut microbes, while GQD treatment can restore it to a lower level. We further discovered that the abundances of 19 bacteria at the genus level were changed with CUMS treatment, among which the abundances of Ruminococcus, Lachnoclostridium, Pygmaiobacter, Bacteroides, Pseudomonas, and Pseudomonas Family_XIII_AD3011_group were stored by GQD treatment. Besides, we identified the levels of 36 colon metabolites were changed with CUMS treatment, among which the levels of Fasciculic acid B, Spermine, Fludrocortisone acetate, alpha-Ketoglutaric acid, 2-Oxoglutaric acid, N'-(benzoyloxy)-2-(2,2-dichlorocyclopropyl) ethanimidamide, N6-Succinyl Adenosine Oleanolic acid, KQH, Ergosta-5,7,9(11),22-Tetraen-3-beta-Ol, Gentisic acid, 4-Hydroxyretinoic Acid, FAHFA (3:0/16:0), Leucine-enkephalin and N-lactoyl-phenylalanine can be restored by GQD treatment. CONCLUSION Our findings provide evidence supporting the therapeutic efficacy of GQD in alleviating depression-like behavior in CUMS rats, potentially being targeted on colon bacteria (especially the abundance of Ruminococcus and Bacteroides) and metabolites (especially the level of Oleanolic acid).
Collapse
Affiliation(s)
- Yaqin Peng
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yao Du
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yuanyuan Zhang
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ze Wang
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Tao Hu
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yuning Mai
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Hongxiu Song
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Weichao Pan
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Qinglong Cai
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Feifei Ge
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yu Fan
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Hee Young Kim
- Department of Physiology, Yonsei University College of Medicine, Seoul, South Korea
| | - Dekang Liu
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Xiaowei Guan
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
19
|
Wu Y, Luo J, Xu B. Insights into the anticancer effects of galangal and galangin: A comprehensive review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156085. [PMID: 39353308 DOI: 10.1016/j.phymed.2024.156085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/03/2024] [Accepted: 09/18/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUNDS Cancer continues to be the leading cause of death worldwide, significantly impacting both health and the economy. Natural products have emerged as promising sources for the development of new anticancer drugs, with galangal and their active ingredient, galangin, garnering substantial interest. PURPOSE This study summarizes recent findings on the anticancer properties of galangal and galangin, highlighting their potential to target various cancer types. METHODS We systematically searched the literature across PubMed, Web of Science, and Google Scholar, using keywords such as "Alpinia officinarum," "Alpinia galanga", "galangal," and "galangin." This thorough approach allowed us to gather and compile a comprehensive collection of existing research on the topic. RESULTS This article provided a thorough analysis of the distribution of galangal, the methods used to extract the active compounds of galangal, and the anticancer properties of both galangin and galangal. It is important to note that galangal and galangin primarily function by regulating the signaling pathways of PI3K/Akt, MAPK, AMPK, p53, NF-κB, and Ras/RAF/MEK/ERK, which in turn triggers apoptosis, autophagy, and ROS while preventing the migration and invasion of cancer cells. We also discussed their toxicity, bioavailability, and clinical uses. CONCLUSION In conclusion, galangal extract and galangin have a lot of promise for treating cancer. It is anticipated that this review will further advance the use of galangal extract and galangin as potential cancer treatment medications. Moreover, the discovery and development of drugs based on galangal has enormous potential for the therapy of cancer.
Collapse
Affiliation(s)
- Yingzi Wu
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai 519087, China; School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Jinhai Luo
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai 519087, China; School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Baojun Xu
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai 519087, China.
| |
Collapse
|
20
|
Ke F, Zhang R, Chen R, Guo X, Song C, Gao X, Zeng F, Liu Q. The role of Rhizoma Paridis saponins on anti-cancer: The potential mechanism and molecular targets. Heliyon 2024; 10:e37323. [PMID: 39296108 PMCID: PMC11407946 DOI: 10.1016/j.heliyon.2024.e37323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/07/2024] [Accepted: 09/01/2024] [Indexed: 09/21/2024] Open
Abstract
Cancer is a disease characterized by uncontrolled cell proliferation, leading to excessive growth and invasion that can spread to other parts of the body. Traditional Chinese medicine has made new advancements in the treatment of cancer, providing new perspectives and directions for cancer treatment. Rhizoma Paridis is a widely used Chinese herbal medicine with documented anti-cancer effects dating back to ancient times. Modern research has shown that Rhizoma Paridis saponins (RPS) have various pharmacological activities. RPS can inhibit cancer in multiple ways, such as suppressing tumor growth, inducing cell cycle arrest, promoting cell apoptosis, enhancing cell autophagy, inducing ferroptosis, reducing inflammation, inhibiting angiogenesis, as well as inhibiting metastasis and invasion, and these findings demonstrate the potent anti-cancer activity of RPS. Polyphyllin I, polyphyllin II, polyphyllin VI, and polyphyllin VII have been widely reported as the main active ingredients with anti-cancer properties. Polyphyllin D, polyphyllin E, and polyphyllin G have also been confirmed to possess strong anti-cancer activity in recent years. Therefore, this review dives deep into the molecular mechanisms underlying the anti-cancer effects of RPS to serve as a valuable reference for future scientific research and their potential applications in cancer treatment.
Collapse
Affiliation(s)
- Famin Ke
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Ranqi Zhang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Rui Chen
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Xiurong Guo
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Can Song
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Xiaowei Gao
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Fancai Zeng
- Laboratory of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou, 646000, China
| | - Qiuyu Liu
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| |
Collapse
|
21
|
Bai J, Qin Q, Li S, Cui X, Zhong Y, Yang L, An L, Deng D, Zhao J, Zhang R, Bai S. Salvia miltiorrhiza inhibited lung cancer through aerobic glycolysis suppression. JOURNAL OF ETHNOPHARMACOLOGY 2024; 331:118281. [PMID: 38701934 DOI: 10.1016/j.jep.2024.118281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 04/17/2024] [Accepted: 04/30/2024] [Indexed: 05/05/2024]
Abstract
Lung cancer causes the most cancer deaths and needs new treatment strategies urgently. Salvia miltiorrhiza is a classical Chinese herb and a strong candidate for tumor treatment. The study found that the aqueous extract of Salvia miltiorrhiza (DSAE), ethanol extract of Salvia miltiorrhiza (DSEE), and its active components danshensu (DSS) and dihydrotanshinone I (DHI), exhibited antineoplastic effects in vivo and in vitro. Meanwhile, DSAE, DSEE, DSS, and DHI reduced glycolysis metabolites (ATP, lactate, and pyruvate contents) production, decreased aerobic glycolysis enzymes, and inhibited Seahorse indexes (OCR and ECAR) in Lewis lung cancer cells (LLC). Data suggests that aerobic glycolysis could be inhibited by Salvia miltiorrhiza and its components. The administration of DSS and DHI further reduced the level of HKII in lung cancer cell lines that had been inhibited with HK-II antagonists (2-deoxyglucose, 2-DG; 3-bromo-pyruvate, 3-BP) or knocked down with siRNA, thereby exerting an anti-lung cancer effect. Although DSS and DHI decreased the level of HKII in HKII-Knock-In lung cancer cell line, their anti-lung cancer efficacy remained limited due to the persistent overexpression of HKII in these cells. Reiterating the main points, we have discovered that the anti-lung cancer effects of Salvia miltiorrhiza may be attributed to its ability to regulate HKII expression levels, thereby inhibiting aerobic glycolysis. This study not only provides a new research paradigm for the treatment of cancer by Salvia miltiorrhiza, but also highlights the important link between glucose metabolism and the effect of Salvia Miltiorrhiza.
Collapse
Affiliation(s)
- Jing Bai
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Pharmacy department, JiNan authority hospital, Jinan, 250000, China
| | - Qiufeng Qin
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Shuying Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Xulan Cui
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yixuan Zhong
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Lei Yang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Lin An
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Di Deng
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Jinlan Zhao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Rong Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Shasha Bai
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
22
|
Cheng Y, Yu G, Du C, Chen Z, Liu X. Yanghe Decoction promotes ferroptosis through PPARγ-dependent autophagy to inhibit the malignant progression of triple-negative breast cancer. Prostaglandins Other Lipid Mediat 2024; 175:106909. [PMID: 39284544 DOI: 10.1016/j.prostaglandins.2024.106909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/09/2024] [Accepted: 09/13/2024] [Indexed: 09/26/2024]
Abstract
Triple-negative breast cancer (TNBC) is a heterogeneous subtype of breast cancer that displays highly aggressive with poor prognosis. Yanghe Decoction (YHD) has been used in the treatment of breast cancer for many years. We aimed to explore the effects of YHD on the malignant phenotypes of MDA-MB-231 cells and the potential mechanism related to PPARγ, autophagy and ferroptosis. The serum of rat containing different concentrations of YHD were collected to culture MDA-MB-231 cells. Cell viability and proliferation were assessed by the CCK-8 assay and EDU staining. Wound healing- and transwell assays were used to detect the capacities of MDA-MB-231 cell migration and invasion. Additionally, the levels of lipid peroxidation, Fe2+ and the expression of ferroptosis-related proteins were evaluated. The expression of PPARγ and autophagy-related proteins was assessed using immunofluorescence staining or western blot assay. Then, the PPARγ inhibitor (GW9662), autophagy inhibitor (3-MA) and autophagy inducer (rapamycin; Rap) were used to further study the potential mechanism of YHD on TNBC. Results indicated that contained-YHD serum significantly decreased the viability, proliferation, migration and invasion of TNBC cells. Moreover, YHD promoted lipid peroxidation level, elevated Fe2+ content and downregulated GPX4, SLC7A11 and SLC3A2 expression. Besides, autophagy was induced and PPARγ was upregulated by YHD in MDA-MB-231 cells. Furthermore, GW9662 alleviated the impacts of YHD on autophagy of MDA-MB-231 cells. Rap reversed the effects of GW9662 on lipid peroxidation, ferroptosis, proliferation, migration and invasion of MDA-MB-231 cells. 3-MA had the similar effects to GW9662. Collectively, YHD suppressed the malignant progression of MDA-MB-231 cells by inducing ferroptosis through PPARγ-dependent autophagy.
Collapse
Affiliation(s)
- YangZi Cheng
- Department of Medical Oncology, Xi'an Ninth Hospital, Xi'an, Shaanxi 710054, China.
| | - GuiPing Yu
- Department of Medical Oncology, Xi'an Ninth Hospital, Xi'an, Shaanxi 710054, China
| | - Chen Du
- Department of Medical Oncology, Xi'an Ninth Hospital, Xi'an, Shaanxi 710054, China
| | - ZhaoHui Chen
- Department of Medical Oncology, Xi'an Ninth Hospital, Xi'an, Shaanxi 710054, China
| | - XuFeng Liu
- Department of Medical Oncology, Xi'an Ninth Hospital, Xi'an, Shaanxi 710054, China
| |
Collapse
|
23
|
Zeng Z, Jia C, Li L, Jia D, Tang R, Li Y, Xiao G, Jiang J, Xu A, Liu Y, Cai D, Bi X. Anti-liver tumor ingredient exploration and validation of Elephantopus tomentosus Linn. by combining in silico and in vitro experiments. Sci Rep 2024; 14:21086. [PMID: 39256453 PMCID: PMC11387400 DOI: 10.1038/s41598-024-71629-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 08/29/2024] [Indexed: 09/12/2024] Open
Abstract
Elephantopus tomentosus (ET) Linn. was reported to be an anti-tumor plant. However, the chemical composition of ET and its anti-tumor compounds and potential mechanisms still unclear. In this paper, UPLC-Q-TOF-MS/MS was firstly used to identified the ingredients in ET and UPLC was used to determine the main compounds of ET. Network pharmacology was applied to predict the potential mechanisms of anti-liver cancer. Anti-tumor nuclear activate compounds and targets of ET were obtained and the anti-liver cancer effect was validated on HepG2. Finally, Molecule docking, RT-qPCR, and western blotting were used for verification of the relationship between nuclear activate compounds and nuclear targets and the potential anti-cancer mechanisms. The result showed that 42 compounds were identified in ET, which consisted of sesquiterpene lactones, flavonoids, and phenylpropanoid compounds. Scabertopin (ST), chlorogenic acid, Isochlorogenic acid B, Isochlorogenic acid A and Isochlorogenic acid C were identified as main compounds and were determined as 0.426%, 0.457%, 0.159%, 0.701%, and 0.103% respectively. 24 compounds showed high pharmacokinetics and good drug-likeness. 520 overlapping targets of the ET compounds and liver cancer were collected. The targets were used for KEGG and GO analysis. GO enrichment analysis suggested that the targets of 24 active compound closed related to promote apoptosis, inhibit proliferation, and regulate oxidative levels. KEGG enrichment analysis suggested that pathway in cancer was enriched most and p38 MAPK/p53 signaling pathway, which closely related to promoting apoptosis and inhibiting proliferation. Compounds-targets analysis based on the parameter of Betweenness, Closeness, Information, Eigenvector, Degree, and component content indicated that ST was the nucleus anti-tumor active compound of ET. HepG2 was first used to validated the anti-tumor effect of ST and the result showed that ST significantly inhibited HepG2 proliferation with a low IC50 less than 5 μM. Nucleus active compound targets, including TP53, CASP3, BCL2, EGFR, TNF-a, IL-1β, and IL-6 were enriched based on degree value of PPI analysis. Molecule docking suggested that ST showed a good combination to TGFBR1 with the combination energy less than - 5 kcal/mol. RT-qPCR result also suggested that ST significantly medicated the mRNA expression level of TP53, CASP3, BCL2, EGFR, TNF-a, IL-1β, and IL-6. Protein expression of p-p38/p38 and p-p53/p53 notable increased by ST treatment. In conclude, combining with UPLC-Q-TOF-MS/MS qualitative analysis, UPLC quantitative analysis, network pharmacology analysis, molecule docking, and in vitro experiments on HepG2, we suggest that ST is an anti-tumor ingredient of ET, which may target to TGFBR1 and promote apoptosis and inhibited proliferation of HepG2 by activating p38 MAPK/p53 signaling pathway. ST can be regarded as a quality marker of ET.
Collapse
Affiliation(s)
- Zhihao Zeng
- School of the Fifth Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
- Guangdong Province Engineering Technology Research Institute of Traditional Chinese Medicine, No. 60 Hengfu Road, Yuexiu District, Guangzhou, 510095, Guangdong, China
| | - Canchao Jia
- School of the Fifth Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
- Guangdong Province Engineering Technology Research Institute of Traditional Chinese Medicine, No. 60 Hengfu Road, Yuexiu District, Guangzhou, 510095, Guangdong, China
| | - Lingjie Li
- Department of Pharmacy, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, #106, Zhongshan Er Road, Yuexiu District, Guangzhou, 510080, Guangdong, China
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Dezheng Jia
- School of the Fifth Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
- Guangdong Province Engineering Technology Research Institute of Traditional Chinese Medicine, No. 60 Hengfu Road, Yuexiu District, Guangzhou, 510095, Guangdong, China
| | - Ruiyin Tang
- School of the Fifth Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
- Guangdong Province Engineering Technology Research Institute of Traditional Chinese Medicine, No. 60 Hengfu Road, Yuexiu District, Guangzhou, 510095, Guangdong, China
| | - Yangxue Li
- Guangdong Province Engineering Technology Research Institute of Traditional Chinese Medicine, No. 60 Hengfu Road, Yuexiu District, Guangzhou, 510095, Guangdong, China
- Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou, 510095, Guangdong, China
| | - Guanlin Xiao
- Guangdong Province Engineering Technology Research Institute of Traditional Chinese Medicine, No. 60 Hengfu Road, Yuexiu District, Guangzhou, 510095, Guangdong, China
- Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou, 510095, Guangdong, China
| | - Jieyi Jiang
- Guangdong Province Engineering Technology Research Institute of Traditional Chinese Medicine, No. 60 Hengfu Road, Yuexiu District, Guangzhou, 510095, Guangdong, China
- Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou, 510095, Guangdong, China
| | - Aili Xu
- Guangdong Province Engineering Technology Research Institute of Traditional Chinese Medicine, No. 60 Hengfu Road, Yuexiu District, Guangzhou, 510095, Guangdong, China
- Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou, 510095, Guangdong, China
| | - Yanchang Liu
- School of the Fifth Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
- Guangdong Province Engineering Technology Research Institute of Traditional Chinese Medicine, No. 60 Hengfu Road, Yuexiu District, Guangzhou, 510095, Guangdong, China
| | - Dake Cai
- Department of Pharmacy, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, #106, Zhongshan Er Road, Yuexiu District, Guangzhou, 510080, Guangdong, China.
| | - Xiaoli Bi
- Guangdong Province Engineering Technology Research Institute of Traditional Chinese Medicine, No. 60 Hengfu Road, Yuexiu District, Guangzhou, 510095, Guangdong, China.
- Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, Guangzhou, 510095, Guangdong, China.
| |
Collapse
|
24
|
Ma P, Yuan L, Jia S, Zhou Z, Xu D, Huang S, Meng F, Zhang Z, Nan Y. Lonicerae Japonicae Flos with the homology of medicine and food: a review of active ingredients, anticancer mechanisms, pharmacokinetics, quality control, toxicity and applications. Front Oncol 2024; 14:1446328. [PMID: 39314630 PMCID: PMC11417411 DOI: 10.3389/fonc.2024.1446328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 08/12/2024] [Indexed: 09/25/2024] Open
Abstract
Lonicerae Japonicae Flos (LJF, called Jinyinhua in China), comes from the dried flower buds or flowers to be opened of Lonicera japonica Thunb. in the Lonicera family. It has a long history of medicinal use and has a wide range of application prospects. As modern research advances, an increasing number of scientific experiments have demonstrated the anticancer potential of LJF. However, there is a notable absence of systematic reports detailing the anti-tumor effects of LJF. This review integrates the principles of Traditional Chinese Medicine (TCM) with contemporary pharmacological techniques, drawing upon literature from authoritative databases such as PubMed, CNKI, and WanFang to conduct a comprehensive study of LJF. Notably, a total of 507 compounds have been isolated and characterized from the plant to date, which include volatile oils, organic acids, flavonoids, iridoids, triterpenes and triterpenoid saponins. Pharmacological studies have demonstrated that LJF extract, along with components such as chlorogenic acid, luteolin, rutin, luteoloside, hyperoside and isochlorogenic acid, exhibits potential anticancer activities. Consequently, we have conducted a comprehensive review and summary of the mechanisms of action and clinical applications of these components. Furthermore, we have detailed the pharmacokinetics, quality control, and toxicity of LJF, while also discussing its prospective applications in the fields of biomedicine and preventive healthcare. It is hoped that these studies will provide valuable reference for the clinical research, development, and application of LJF.
Collapse
Affiliation(s)
- Ping Ma
- Pharmacy Department, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Ling Yuan
- College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Shumin Jia
- Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Ziying Zhou
- Pharmacy Department, General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Duojie Xu
- Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Shicong Huang
- College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Fandi Meng
- Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Zhe Zhang
- Department of Chinese Medical Gastrointestinal, China-Japan Friendship Hospital, Beijing, China
| | - Yi Nan
- Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| |
Collapse
|
25
|
Zhang S, Guo L, Tao R, Liu S. Ferroptosis-targeting drugs in breast cancer. J Drug Target 2024:1-18. [PMID: 39225187 DOI: 10.1080/1061186x.2024.2399181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/07/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
In 2020, breast cancer surpassed lung cancer as the most common cancer in the world for the first time. Due to the resistance of some breast cancer cell lines to apoptosis, the therapeutic effect of anti-breast cancer drugs is limited. According to recent report, the susceptibility of breast cancer cells to ferroptosis affects the progress, prognosis and drug resistance of breast cancer. For instance, roblitinib induces ferroptosis of trastuzumab-resistant human epidermal growth factor receptor 2 (HER2)-positive breast cancer cells by diminishing fibroblast growth factor receptor 4 (FGFR4) expression, thereby augmenting the susceptibility of these cells to HER2-targeted therapies. In tamoxifen-resistant breast cancer cells, Fascin exacerbates their resistance by repressing solute carrier family 7 member 11 (SLC7A11) expression, which in turn heightens their responsiveness to tamoxifen. In recent years, Chinese herbs extracts and therapeutic drugs have been demonstrated to elicit ferroptosis in breast cancer cells by modulating a spectrum of regulatory factors pertinent to ferroptosis, including SLC7A11, glutathione peroxidase 4 (GPX4), acyl-CoA synthetase long chain family member 4 (ACSL4), and haem oxygenase 1 (HO-1). Here, we review the roles and mechanisms of Chinese herbal extracts and therapeutic drugs in regulating ferroptosis in breast cancer, providing potential therapeutic options for anti-breast cancer.
Collapse
Affiliation(s)
- Shuxian Zhang
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, China
| | - Lijuan Guo
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, China
| | - Ran Tao
- Department of Anatomy, Medical College, Dalian University, Dalian, China
| | - Shuangping Liu
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, China
| |
Collapse
|
26
|
Wu Z, Song B, Peng F, Zhang Q, Wu S. Zangsiwei prevents particulate matter-induced lung inflammation and fibrosis by inhibiting the TGF-β/SMAD pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 337:118752. [PMID: 39232997 DOI: 10.1016/j.jep.2024.118752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/11/2024] [Accepted: 08/26/2024] [Indexed: 09/06/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zangsiwei(ZSW) is a traditional Tibetan medicine from China consisting of extracts of Rhododendron anthopogonoides Maxim, Gentiana Tourn, Corydalis hendersonii Hemsl and Berberis kansuensis C.K.Schneid. Traditionally, ZSW has been used by Tibetan physicians to treat chronic respiratory diseases. The role of ZSW in particulate matter-induced lung inflammation and fibrosis remains unclear. AIM OF THE STUDY Combining non-targeted metabolomics, network pharmacology, and molecular docking to explore the mechanism of ZSW in the treatment of particulate matter-induced lung inflammation and fibrosis, and validated by in vivo and in vitro experiments. MATERIALS AND METHODS The serum metabolite profile post-ZSW administration was first identified utilizing non-targeted metabolomics. Network pharmacology and molecular docking were employed to predict potential bioactive components and their corresponding targets. The in silico predictions were subsequently validated through in vivo studies in mice exposed to PM2.5 and silica dust, as well as in vitro studies utilizing human lung epithelial cells (A549) and lung fibroblasts (MRC5). RESULTS Metabolomic analysis identified specific serum metabolites that were associated with ZSW treatment. Network pharmacology and molecular docking identified key targets involved in the Transforming growth factor-β (TGF-β)/SMAD pathway, which were subsequently validated through in vivo experiments demonstrating a reduction in lung inflammation and fibrosis in ZSW-treated mice. In vitro studies demonstrated that ZSW exerts protective effects against PM2.5-induced cytotoxicity and modulates fibrotic markers in a dose-dependent manner. This is consistent with the inhibition of the TGF-β/SMAD pathway. CONCLUSION Our integrated approach, which combines non-targeted metabolomics, network pharmacology, and molecular docking, followed by rigorous in vivo and in vitro validation, establishes ZSW as a potential therapeutic agent for particulate matter-induced lung inflammation and fibrosis.
Collapse
Affiliation(s)
- Zhijian Wu
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China; Hunan Centre for Evidence-based Medicine, Changsha, 410011, China; Research Unit of Respiratory Disease, Central South University, Changsha, Hunan, 410011, China; Clinical Medical Research Center for Pulmonary and Critical Care Medicine in Hunan Province, 410011, China; Diagnosis and Treatment Center of Respiratory Disease in Hunan Province, Changsha, Hunan, 410011, China
| | - Boyang Song
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China; Hunan Centre for Evidence-based Medicine, Changsha, 410011, China; Research Unit of Respiratory Disease, Central South University, Changsha, Hunan, 410011, China; Clinical Medical Research Center for Pulmonary and Critical Care Medicine in Hunan Province, 410011, China; Diagnosis and Treatment Center of Respiratory Disease in Hunan Province, Changsha, Hunan, 410011, China
| | - Fei Peng
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China; Hunan Centre for Evidence-based Medicine, Changsha, 410011, China; Research Unit of Respiratory Disease, Central South University, Changsha, Hunan, 410011, China; Clinical Medical Research Center for Pulmonary and Critical Care Medicine in Hunan Province, 410011, China; Diagnosis and Treatment Center of Respiratory Disease in Hunan Province, Changsha, Hunan, 410011, China
| | - Quan Zhang
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China; Hunan Centre for Evidence-based Medicine, Changsha, 410011, China; Research Unit of Respiratory Disease, Central South University, Changsha, Hunan, 410011, China; Clinical Medical Research Center for Pulmonary and Critical Care Medicine in Hunan Province, 410011, China; Diagnosis and Treatment Center of Respiratory Disease in Hunan Province, Changsha, Hunan, 410011, China
| | - Shangjie Wu
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China; Hunan Centre for Evidence-based Medicine, Changsha, 410011, China; Research Unit of Respiratory Disease, Central South University, Changsha, Hunan, 410011, China; Clinical Medical Research Center for Pulmonary and Critical Care Medicine in Hunan Province, 410011, China; Diagnosis and Treatment Center of Respiratory Disease in Hunan Province, Changsha, Hunan, 410011, China.
| |
Collapse
|
27
|
Zheng Y, Ma Y, Xiong Q, Zhu K, Weng N, Zhu Q. The role of artificial intelligence in the development of anticancer therapeutics from natural polyphenols: Current advances and future prospects. Pharmacol Res 2024; 208:107381. [PMID: 39218422 DOI: 10.1016/j.phrs.2024.107381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/06/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Natural polyphenols, abundant in the human diet, are derived from a wide variety of sources. Numerous preclinical studies have demonstrated their significant anticancer properties against various malignancies, making them valuable resources for drug development. However, traditional experimental methods for developing anticancer therapies from natural polyphenols are time-consuming and labor-intensive. Recently, artificial intelligence has shown promising advancements in drug discovery. Integrating AI technologies into the development process for natural polyphenols can substantially reduce development time and enhance efficiency. In this study, we review the crucial roles of natural polyphenols in anticancer treatment and explore the potential of AI technologies to aid in drug development. Specifically, we discuss the application of AI in key stages such as drug structure prediction, virtual drug screening, prediction of biological activity, and drug-target protein interaction, highlighting the potential to revolutionize the development of natural polyphenol-based anticancer therapies.
Collapse
Affiliation(s)
- Ying Zheng
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, No.37 Guoxue Alley, Chengdu, Sichuan 610041, China
| | - Yifei Ma
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, No.37 Guoxue Alley, Chengdu, Sichuan 610041, China
| | - Qunli Xiong
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, No.37 Guoxue Alley, Chengdu, Sichuan 610041, China
| | - Kai Zhu
- Department of Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fujian 350011, PR China
| | - Ningna Weng
- Department of Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fujian 350011, PR China
| | - Qing Zhu
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, No.37 Guoxue Alley, Chengdu, Sichuan 610041, China.
| |
Collapse
|
28
|
Zhang R, Shi P, Chou Y, Liu W, Zhang C. The effect of traditional Chinese medicine on psychological conditions among elderly patients with cancer: a scoping review. Psychogeriatrics 2024. [PMID: 39209532 DOI: 10.1111/psyg.13182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/19/2024] [Accepted: 08/10/2024] [Indexed: 09/04/2024]
Abstract
Coping with cancer presents a multitude of challenges that encompass every aspect of a patient's life. These challenges not only strain the body but also weigh heavily on the mind, often culminating in profound psychological distress for cancer patients. The cumulative burden of these experiences can heighten the risk of developing psychiatric disorders, exacerbating the already daunting landscape of cancer care. Therefore, this study reviewed the available research with the aim of investigating the effects of traditional Chinese medicine on psychological conditions in elderly cancer patients. In this scoping review, we applied specific criteria to select studies that focused on elderly patients with cancer. We performed an extensive search across electronic databases, including Embase, Science Direct, PubMed, Google Scholar, Scopus, Cochrane Library and Web of Science. In our investigation, we identified a total of 3870 articles related to the topic under review. Following a meticulous screening process that involved evaluating titles, abstracts, and full texts, we ultimately selected five articles deemed relevant for inclusion in this review. Among these articles, three were randomised studies, while the remaining two were review articles. The outcomes of our analysis revealed that herbal decoctions, nutritional counselling, Tai Chi and acupressure, can effectively improve various psychological outcomes in elderly cancer patients. These interventions reduce fatigue, depression, anxiety, and stress, while also enhancing sleep quality and overall mental health. The present study highlights the importance of traditional Chinese medicine in addressing the needs of elderly patients with cancer. As a result, it is recommended that further extensive research be conducted to comprehensively assess the efficacy and safety of traditional Chinese medicine in managing cancer in the elderly.
Collapse
Affiliation(s)
- Renchuan Zhang
- Infection Control Department, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Pei Shi
- Oncology Department, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ying Chou
- Endoscopic Diagnosis and Treatment Department, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Wei Liu
- The Second Orthopaedics Department, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Chunyu Zhang
- Nursing Department, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
29
|
Hu B, Wang C, Wu Y, Han C, Liu J, Chen R, Wang T. Revealing the mechanism of ethyl acetate extracts of Semen Impatientis against prostate cancer based on network pharmacology and transcriptomics. JOURNAL OF ETHNOPHARMACOLOGY 2024; 330:118228. [PMID: 38643863 DOI: 10.1016/j.jep.2024.118228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/30/2024] [Accepted: 04/18/2024] [Indexed: 04/23/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Prostate cancer (PCa) is the most common malignancy of the male genitourinary system and currently lacks effective treatment. Semen Impatientis, the dried ripe seed of Impatiens balsamina L., is described by the Chinese Pharmacopoeia as a traditional Chinese medicine (TCM) and is used in clinical practice to treat tumors, abdominal masses, etc. In our previous study, the ethyl acetate extracts of Semen Impatientis (EAESI) was demonstrated to be the most effective extract against PCa among various extracts. However, the biological effects of EAESI against PCa in vivo and the specific antitumor mechanisms involved remain unknown. AIM OF THE STUDY In this study, we aimed to investigate the antitumor effect of EAESI on PCa in vitro and in vivo by performing network pharmacology analysis, transcriptomic analysis, and experiments to explore and verify the underlying mechanisms involved. MATERIALS AND METHODS The antitumor effect of EAESI on PCa in vitro and in vivo was investigated via CCK-8, EdU, flow cytometry, and wound healing assays and xenograft tumor models. Network pharmacology analysis and transcriptomic analysis were employed to explore the underlying mechanism of EAESI against PCa. Activating transcription factor 3 (ATF3) and androgen receptor (AR) were confirmed to be the targets of EAESI against PCa by RT‒qPCR, western blotting, and rescue assays. In addition, the interaction between ATF3 and AR was assessed by coimmunoprecipitation, immunofluorescence, and nuclear-cytoplasmic separation assays. RESULTS EAESI decreased cell viability, inhibited cell proliferation and migration, and induced apoptosis in AR+ and AR- PCa cells. Moreover, EAESI suppressed the growth of xenograft tumors in vivo. Network pharmacology analysis revealed that the hub targets of EAESI against PCa included AR, AKT1, TP53, and CCND1. Transcriptomic analysis indicated that activating transcription factor 3 (ATF3) was the most likely critical target of EAESI. EAESI downregulated AR expression and decreased the transcriptional activity of AR through ATF3 in AR+ PCa cells; and EAESI promoted the expression of ATF3 and exerted its antitumor effect via ATF3 in AR+ and AR- PCa cells. CONCLUSIONS EAESI exerts good antitumor effects on PCa both in vitro and in vivo, and ATF3 and AR are the critical targets through which EAESI exerts antitumor effects on AR+ and AR- PCa cells.
Collapse
Affiliation(s)
- Bintao Hu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chengwei Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yue Wu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chenglin Han
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jihong Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ruibao Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Tao Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
30
|
Wang YM, Sun JH, Sun RX, Liu XY, Li JF, Li RZ, Du YR, Zhou XZ. Treating chronic atrophic gastritis: identifying sub-population based on real-world TCM electronic medical records. Front Pharmacol 2024; 15:1444733. [PMID: 39170704 PMCID: PMC11335612 DOI: 10.3389/fphar.2024.1444733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 07/26/2024] [Indexed: 08/23/2024] Open
Abstract
Background and Objective Chronic atrophic gastritis (CAG) is a complex chronic disease caused by multiple factors that frequently occurs disease in the clinic. The worldwide prevalence of CAG is high. Interestingly, clinical CAG patients often present with a variety of symptom phenotypes, which makes it more difficult for clinicians to treat. Therefore, there is an urgent need to improve our understanding of the complexity of the clinical CAG population, obtain more accurate disease subtypes, and explore the relationship between clinical symptoms and medication. Therefore, based on the integrated platform of complex networks and clinical research, we classified the collected patients with CAG according to their different clinical characteristics and conducted correlation analysis on the classification results to identify more accurate disease subtypes to aid in personalized clinical treatment. Method Traditional Chinese medicine (TCM) offers an empirical understanding of the clinical subtypes of complicated disorders since TCM therapy is tailored to the patient's symptom profile. We gathered 6,253 TCM clinical electronic medical records (EMRs) from CAG patients and manually annotated, extracted, and preprocessed the data. A shared symptom-patient similarity network (PSN) was created. CAG patient subgroups were established, and their clinical features were determined through enrichment analysis employing community identification methods. Different clinical features of relevant subgroups were correlated based on effectiveness to identify symptom-botanical botanical drugs correspondence. Moreover, network pharmacology was employed to identify possible biological relationships between screened symptoms and medications and to identify various clinical and molecular aspects of the key subtypes using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Results 5,132 patients were included in the study: 2,699 males (52.60%) and 2,433 females (47.41%). The population was divided into 176 modules. We selected the first 3 modules (M29, M3, and M0) to illustrate the characteristic phenotypes and genotypes of CAG disease subtypes. The M29 subgroup was characterized by gastric fullness disease and internal syndrome of turbidity and poison. The M3 subgroup was characterized by epigastric pain and disharmony between the liver and stomach. The M0 subgroup was characterized by epigastric pain and dampness-heat syndrome. In symptom analysis, The top symptoms for symptom improvement in all three subgroups were stomach pain, bloating, insomnia, poor appetite, and heartburn. However, the three groups were different. The M29 subgroup was more likely to have stomach distention, anorexia, and palpitations. Citrus medica, Solanum nigrum, Jiangcan, Shan ci mushrooms, and Dillon were the most popular botanical drugs. The M3 subgroup has a higher incidence of yellow urine, a bitter tongue, and stomachaches. Smilax glabra, Cyperus rotundus, Angelica sinensis, Conioselinum anthriscoides, and Paeonia lactiflora were the botanical drugs used. Vomiting, nausea, stomach pain, and appetite loss are common in the M0 subgroup. The primary medications are Scutellaria baicalensis, Smilax glabra, Picrorhiza kurroa, Lilium lancifolium, and Artemisia scoparia. Through GO and KEGG pathway analysis, We found that in the M29 subgroup, Citrus medica, Solanum nigrum, Jiangcan, Shan ci mushrooms, and Dillon may exert their therapeutic effects on the symptoms of gastric distension, anorexia, and palpitations by modulating apoptosis and NF-κB signaling pathways. In the M3 subgroup, Smilax glabra, Cyperus rotundus, Angelica sinensis, Conioselinum anthriscoides, and Paeonia lactiflora may be treated by NF-κB and JAK-STAT signaling pathway for the treatment of stomach pain, bitter mouth, and yellow urine. In the M0 subgroup, Scutellaria baicalensis, Smilax glabra, Picrorhiza kurroa, Lilium lancifolium, and Artemisia scoparia may exert their therapeutic effects on poor appetite, stomach pain, vomiting, and nausea through the PI3K-Akt signaling pathway. Conclusion Based on PSN identification and community detection analysis, CAG population division can provide useful recommendations for clinical CAG treatment. This method is useful for CAG illness classification and genotyping investigations and can be used for other complicated chronic diseases.
Collapse
Affiliation(s)
- Yu-man Wang
- Graduate School of Hebei University of Traditional Chinese Medicine, Hebei, China
| | - Jian-hui Sun
- Hebei Hospital of Traditional Chinese Medicine, Hebei, China
- Hebei Key Laboratory of Turbidity and Toxicology, Hebei, China
| | - Run-xue Sun
- Hebei Hospital of Traditional Chinese Medicine, Hebei, China
- Hebei Key Laboratory of Turbidity and Toxicology, Hebei, China
| | - Xiao-yu Liu
- Graduate School of Hebei University of Traditional Chinese Medicine, Hebei, China
| | - Jing-fan Li
- Graduate School of Hebei University of Traditional Chinese Medicine, Hebei, China
| | - Run-ze Li
- Graduate School of Hebei University of Traditional Chinese Medicine, Hebei, China
| | - Yan-ru Du
- Hebei Hospital of Traditional Chinese Medicine, Hebei, China
- Hebei Key Laboratory of Turbidity and Toxicology, Hebei, China
- Hebei Provincial Key Laboratory of Integrated Traditional and Western Medicine Research on Gastroenterology, Hebei, China
| | - Xue-zhong Zhou
- School of Computer and Information Technology, Beijing Jiaotong University, Beijing, China
| |
Collapse
|
31
|
Xie Y, Xu S, Chen Z, Song C, Yan W. Unveiling the therapeutic potential of airpotato yam rhizome against colorectal cancer: a network pharmacology approach. Front Oncol 2024; 14:1414766. [PMID: 39156706 PMCID: PMC11327141 DOI: 10.3389/fonc.2024.1414766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/16/2024] [Indexed: 08/20/2024] Open
Abstract
Objective The objective of this investigation was to elucidate the key active compounds and molecular mechanisms underlying the therapeutic potential of airpotato yam rhizome (AYR) in colorectal cancer (CRC) treatment. Methods By utilizing network pharmacology and molecular docking, key targets and signaling pathways of AYR against CRC were predicted and subsequently validated in cellular and mouse xenograft models. Results This study initially predicted that quercetin was the primary compound in AYR that might have potential efficacy against CRC and that EGFR and AKT1 could be the main targets of AYR, with the EGF/EGFR-induced PI3K/AKT signaling pathway potentially playing a crucial role in the anti-CRC effects of AYR. Molecular docking analysis further indicated a strong binding affinity between quercetin and EGFR, primarily through hydrogen bonds. Additionally, the AYR-derived drug-containing serum was found to inhibit the PI3K/AKT signaling pathway, as demonstrated by decreased levels of p-PI3K, p-AKT, and BCL2, which ultimately led to enhanced apoptosis of HCT116 and HT29 cells. The potential antitumor effects of AYR were investigated in nude mouse xenograft models of human HCT116 and HT29 cells, in which AYR was found to induce tumor cell apoptosis and inhibit tumor formation. Conclusion AYR may promote CRC cell apoptosis by suppressing the PI3K/AKT signaling pathway, which provides a basis for further research on the safe and effective use of AYR for the treatment of CRC.
Collapse
Affiliation(s)
- Yiwen Xie
- Department of General Practice, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Sumei Xu
- Department of General Practice, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Zhiyun Chen
- Key Laboratory of Integrative Chinese and Western Medicine for the Diagnosis and Treatment of Circulatory Diseases of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Caiping Song
- Department of Rehabilitation, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Wenxi Yan
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| |
Collapse
|
32
|
Chen X, Sun B, Zeng J, Yu Z, Liu J, Tan Z, Li Y, Peng C. Molecular mechanism of Spatholobi Caulis treatment for cholangiocarcinoma based on network pharmacology, molecular docking, and molecular dynamics simulation. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:5789-5806. [PMID: 38321212 DOI: 10.1007/s00210-024-02985-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 01/28/2024] [Indexed: 02/08/2024]
Abstract
Cholangiocarcinoma (CCA) is a type of malignant tumor originating from the intrahepatic, periportal, or distal biliary system. The treatment means for CCA is limited, and its prognosis is poor. Spatholobi Caulis (SC) is reported to have effects on anti-inflammatory and anti-tumor, but its role in CCA is unclear. First, the potential molecular mechanism of SC for CCA treatment was explored based on network pharmacology, and the core targets were verified by molecular docking and molecular dynamics simulation. Then, we explored the inhibitory effect of SC on the malignant biological behavior of CCA in vitro and in vivo and also explored the related signaling pathways. The effect of combination therapy of SC and cisplatin (DDP) in CCA was also explored. Finally, we conducted a network pharmacological study and simple experimental verification on luteolin, one of the main components of SC. Network pharmacology analysis showed that the core targets of SC on CCA were AKT1, CASP3, MYC, TP53, and VEGFA. Molecular docking and molecular dynamics simulation indicated a good combination between the core target protein and the corresponding active ingredients. In vitro, SC inhibited proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) of CCA cells. In vivo experiments, the results were consistent with in vitro experiments, and there was no significant hepatorenal toxicity of SC at our dosage. Based on KEGG enrichment analysis, we found PI3K/AKT signaling pathway might be the main signaling pathway of SC action on CCA by using AKT agonist SC79. To explore whether SC was related to the chemotherapy sensitivity of CCA, we found that SC combined with DDP could more effectively inhibit the progression of cholangiocarcinoma. Finally, we found luteolin may inhibit the proliferation and invasion of CCA cells. Our study demonstrates for the first time that SC inhibits the progression of CCA by suppressing EMT through the PI3K-AKT signaling pathway, and SC could enhance the effectiveness of cisplatin therapy for CCA.
Collapse
Affiliation(s)
- Xu Chen
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, No. 61 Jiefang West Road, Changsha, 410005, Hunan, People's Republic of China
| | - Bo Sun
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, No. 61 Jiefang West Road, Changsha, 410005, Hunan, People's Republic of China
| | - Jia Zeng
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, 410007, Hunan, People's Republic of China
| | - Zhangtao Yu
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, No. 61 Jiefang West Road, Changsha, 410005, Hunan, People's Republic of China
| | - Jie Liu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Zhiguo Tan
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China.
| | - Yuhang Li
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, No. 61 Jiefang West Road, Changsha, 410005, Hunan, People's Republic of China.
| | - Chuang Peng
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, No. 61 Jiefang West Road, Changsha, 410005, Hunan, People's Republic of China.
| |
Collapse
|
33
|
Wang X, Peng A, Huang C. Suppression of colon cancer growth by berberine mediated by the intestinal microbiota and the suppression of DNA methyltransferases (DNMTs). Mol Cell Biochem 2024; 479:2131-2141. [PMID: 37639199 DOI: 10.1007/s11010-023-04836-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/14/2023] [Indexed: 08/29/2023]
Abstract
The purpose of this study was to demonstrate the regulatory effect of berberine (BBR) on the intestinal microbiota and related epigenetics during the inhibition of colon cancer cell growth in vitro and in vivo. We used a nude mouse xenograft model with HT29 colon cancer cells to establish and divide into a model group and BBR group. The mice were treated for four weeks, and HT29 cells in the BBR group were cultured for 48 h. Cetuximab and the DNA transmethylase (DNMT) inhibitor 5-AZA-dC were added to HT29 cells. Tumour volume and weight were measured by hematoxylin-eosin (HE) staining for histopathological observation. Mouse faeces were collected, and the gut microbiota was analysed with 16S rDNA amplicons. The levels of cytokines in the supernatant of HT29 cells were measured by ELISA. A CCK-8 kit was used to examine the proliferation of HT29 cells, and RT‒PCR was used to measure the levels of c-Myc, DNMT1, DNMT3A, and DNMT3B. We found that BBR reduced the growth of colon cancer cells to a certain extent in vitro and in vivo, although the difference was not statistically significant compared with that in the model group. BBR significantly mediated the abundance, composition and metabolic functions of the intestinal microbial flora in mice with colon cancer. The effect of BBR on inflammatory cytokines, including IL-6, FGF, and PDGF, was not obvious, but BBR significantly downregulated IL-10 levels (P < 0.05) and reduced c-Myc, DNMT1, and DNMT3B levels (P < 0.05). Inhibiting DNMTs with 5-AZA-dC significantly suppressed the proliferation of HT29 cells, which was consistent with the effect of BBR. The inhibitory effect of berberine on colon cancer is related not only to the intestinal microbiota and its metabolic functions but also to the regulation of DNMTs.
Collapse
Affiliation(s)
- Xiulian Wang
- Community Health Service Center, Shenzhen Bao'an Traditional Chinese Medicine Hospital Group, 25 yu'an 2nd Road, Baoan District, Shenzhen, Guangdong, China
| | - An Peng
- Community Health Service Center, Shenzhen Bao'an Traditional Chinese Medicine Hospital Group, 25 yu'an 2nd Road, Baoan District, Shenzhen, Guangdong, China
| | - Chao Huang
- Department of Traditional Chinese Medicine, The Second Affiliated Hospital of Shenzhen University (People's Hospital of Shenzhen Baoan District), 118 Longjing 2nd Road, Baoan District, Shenzhen, 518100, Guangdong, China.
| |
Collapse
|
34
|
Fu L, Zhao L, Li F, Wen F, Zhang P, Yang X, Wang Y. Pharmacological mechanism of quercetin in the treatment of colorectal cancer by network pharmacology and molecular simulation. J Biomol Struct Dyn 2024; 42:7065-7076. [PMID: 37464874 DOI: 10.1080/07391102.2023.2235589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 07/06/2023] [Indexed: 07/20/2023]
Abstract
Colorectal cancer is a serious threat to people's life due to its high incidence and high mortality. Quercetin can effectively treat colorectal carcinoma (CRC), but its exact mechanism of action is still unclear. Then quercetin-related target genes were obtained from Swiss Target Prediction database and Similarity Ensemble Approach (SEA) database, and CRC-related target genes were obtained from GeneCards database, respectively. Common target genes were obtained by FunRich software. String software was used to construct a protein-protein interaction (PPI) network. R package was used for gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. Molecular docking, molecular dynamics (MD) simulation and post-dynamics simulation were used to explore the binding stability of quercetin to key targets. In total, 103 and 141 target information of quercetin were obtained from the Swiss Target Prediction database and SEA database, respectively. 1,649 CRC-related genes were obtained from GeneCards database. FunRich software was used to draw venny map and obtain 36 intersection targets of quercetin and CRC. String software was used to construct the PPI network. The core genes were AKT1, EGFR, MMP9, KDR, MET and PTK2. There were 532 items related to biological processes, 14 items related to cellular components, and 43 items related to molecular functions among the key target GO enrichment items. KEGG enrichment pathways of key targets involved cancer pathways, PI3K-Akt signal pathway, etc. The results of molecular docking, MD simulation and post-dynamics simulation showed they had a good affinity and formed a stable effect. So quercetin may play an important role in the treatment of CRC by acting on AKT1, EGFR, MMP9, KDR, MET and PTK2 to affect the development of CRC.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Le Fu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
- Chongqing University Qianjiang Hospital (Qianjiang Central Hospital of Chongqing), Chongqing, China
| | - Linan Zhao
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
- Chongqing University Qianjiang Hospital (Qianjiang Central Hospital of Chongqing), Chongqing, China
| | - Fei Li
- Chongqing University Qianjiang Hospital (Qianjiang Central Hospital of Chongqing), Chongqing, China
| | - Feng Wen
- Chongqing University Qianjiang Hospital (Qianjiang Central Hospital of Chongqing), Chongqing, China
| | - Peng Zhang
- Chongqing University Qianjiang Hospital (Qianjiang Central Hospital of Chongqing), Chongqing, China
| | - Xia Yang
- Chongqing University Qianjiang Hospital (Qianjiang Central Hospital of Chongqing), Chongqing, China
| | - Yuanqiang Wang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, China
| |
Collapse
|
35
|
Zhan Y, Wang R, Huang C, Xu X, Xiao X, Wu L, Wei J, Long T, Gao C. Digitoxin inhibits ICC cell properties via the NF‑κB/ST6GAL1 signaling pathway. Oncol Rep 2024; 52:103. [PMID: 38940341 PMCID: PMC11229393 DOI: 10.3892/or.2024.8762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/30/2024] [Indexed: 06/29/2024] Open
Abstract
Intrahepatic cholangiocarcinoma (ICC) is a type of liver cancer associated with poor prognosis and increased mortality; the limited treatment strategy highlights the urgent need for investigation. Traditional Chinese Medicine (TCM), used alone or in combination with other treatments, can enhance therapeutic efficacy, improve life quality of patients and extend overall survival. In total, two rounds of screening of a TCM library of 2,538 active compounds were conducted using a Cell Counting Kit‑8 assay and ICC cell lines. Cell proliferation and migration abilities were assessed through colony formation, 5‑ethynyl‑2'‑deoxyuridine, would healing and Transwell assays. The impact of digitoxin (DT) on signaling pathways was initially investigated using RNA sequencing and further validated using reverse transcription‑quantitative PCR, western blotting, lectin blotting and flow cytometry. ICC cells stably overexpressing ST6 β‑galactoside α‑2,6‑sialyltransferase 1 (ST6GAL1) were generated through lentiviral transfection. It was shown that DT emerged as a highly effective anti‑ICC candidate from two rounds high‑throughput library screening. DT could inhibit the proliferation and migration of ICC cells by suppressing NF‑κB activation and reducing nuclear phosphorylated‑NF‑κB levels, along with diminishing ST6GAL1 mRNA and protein expression. The aforementioned biological effects and signal pathways of DT could be counteracted by overexpressing ST6GAL1 in ICC cells. In conclusion, DT suppressed ICC cell proliferation and migration by targeting the NF‑κB/ST6GAL1 signaling axis. The findings of the present study indicated the promising therapeutic effects of DT in managing ICC, offering new avenues for treatment strategies.
Collapse
Affiliation(s)
- Yueping Zhan
- Clinical Laboratory Medicine Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, P.R. China
| | - Rong Wang
- Clinical Laboratory Medicine Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, P.R. China
| | - Chenjun Huang
- Clinical Laboratory Medicine Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, P.R. China
| | - Xuewen Xu
- Clinical Laboratory Medicine Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, P.R. China
| | - Xiao Xiao
- Clinical Laboratory Medicine Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, P.R. China
| | - Linlin Wu
- Clinical Laboratory Medicine Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, P.R. China
| | - Jiao Wei
- Clinical Laboratory Medicine Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, P.R. China
| | - Tian Long
- Clinical Laboratory Medicine Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, P.R. China
| | - Chunfang Gao
- Clinical Laboratory Medicine Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, P.R. China
| |
Collapse
|
36
|
Zhan X, Li H, Jin J, Ju X, Gao J, Chen X, Yuan F, Gu J, Xu D, Ju G. Network pharmacology and experimental validation to explore the role and potential mechanism of Liuwei Dihuang Decoction in prostate cancer. BMC Complement Med Ther 2024; 24:284. [PMID: 39061044 PMCID: PMC11282786 DOI: 10.1186/s12906-024-04572-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
OBJECTIVE To evaluate the anti-tumor effector of Liuwei Dihuang Decoction (LWDHD) in prostate cancer (PCa) and explore the potential mechanism using experimental validation, network pharmacology, bioinformatics analysis, and molecular docking. METHODS CCK test, Clone formation assay and wound-healing assays were used to determine the effect of LWDHD on prostate cancer growth and metastasis. The active ingredients and targets of LWDHD were obtained from the TCMSP database, and the relevant targets were selected by GeneCards, OMIM and DisGeNET databases for PCa. The cross-targets of drugs and disease were imported into the STRING database to construct protein interactions. The network was also visualized using Cytoscape software and core targets are screened using the Network Analyzer plug-in. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment were analyzed using R software. TCGA database was used to analyze the correlation of bioinformatics genes. AutoDock vina was used to predict the molecular docking and binding ability of active ingredients to key targets. Through WB and q-PCR experiments, the above gene targets were detected to verify the effect of LWDHD on PCa. RESULTS CCK and scratch tests confirmed that LWDHD could inhibit the proliferation, invasion and migration of prostate cancer cells. Clone formation experiments showed that LWDHD inhibited the long-term proliferative capacity of PC3 cells. LWDHD and PCa had a total of 99 common targets, establishing a "drug-ingredient-common target" network. Through GO and KEGG enrichment analysis, PI3K/AKT, MAPK, TP53 pathway, MYC, TNF pathway and other signaling pathways were found. Bioinformatics analysis showed that MYC gene was highly expressed and CCND1 and MAPK1 were low expressed in prostate cancer tissues. In addition, TP53, AKT1, MYC, TNF and CCND1 were positively correlated with MAPK1, among which AKT1 and CCND1 were most closely correlated with MAPK1. Molecular docking results showed that quercetin, kaempferol, β-sitosterol and other main active ingredients of LWDHD treatment for PCa were combined with core proteins MAPK1 and AKT1 well. WB and q-PCR results showed that LWDHD inhibited the expression of PI3K and AKT in PC3 cells. CONCLUSION The mechanism of LWDHD therapy for PCa is a multi-target and multi-pathway complex process, which may be related to the biological processes mediated by MAPK1 and AKT1 pathways, such as cell proliferation and inhibition of metastasis, and the regulation of signaling pathways. The PI3K/AKT signaling pathway may be a central pathway of LWDHD to inhibit prostate cancer proliferation.
Collapse
Affiliation(s)
- Xiangyang Zhan
- Urology Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Surgical Institute of Integrative Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Surgical Institute, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Haoze Li
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jingyun Jin
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiran Ju
- Urology Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Surgical Institute of Integrative Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Surgical Institute, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jiawei Gao
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xinglin Chen
- Urology Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Surgical Institute of Integrative Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Surgical Institute, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Fuwen Yuan
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jianyi Gu
- Urology Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- Surgical Institute of Integrative Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- Surgical Institute, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - DongLiang Xu
- Urology Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- Surgical Institute of Integrative Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- Surgical Institute, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Guanqun Ju
- Urology Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- Surgical Institute of Integrative Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- Surgical Institute, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
37
|
Zhao JQ, Zhou QQ, Sun Y, Yu T, Jiang Y, Li HJ. The anti-non-small cell lung cancer effect of Diosbulbin B: Targeting YY1 induced cell cycle arrest and apoptosis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155734. [PMID: 38761775 DOI: 10.1016/j.phymed.2024.155734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 05/07/2024] [Accepted: 05/11/2024] [Indexed: 05/20/2024]
Abstract
BACKGROUND Toxic components frequently exhibit unique characteristics and activities, offering ample opportunities for the advancement of anti-cancer medications. As the main hepatotoxic component of Dioscorea bulbifera L. (DB), Diosbulbin B (DIOB) has been widely studied for its anti-tumor activity at nontoxic doses. However, the effectiveness and mechanism of DIOB against non-small cell lung cancer (NSCLC) remains unclear. PURPOSE To evaluate the anti-NSCLC activity of DIOB and to elucidate the specific mechanism of action. METHOD The effect of DIOB on NSCLCL in vitro was evaluated through CCK8, colony formation, and flow cytometry. The in vivo efficacy and safety of DIOB in treating NSCLC were assessed using various techniques, including HE staining, tunel staining, immunohistochemistry, and biochemical index detection. To understand the underlying mechanism, cell transfection, western blotting, molecular docking, cellular thermal shift assay (CESTA), and surface plasmon resonance (SPR) were employed for investigation. RESULTS DIOB effectively hindered the progression of NSCLC both in vitro and in vivo settings at a no-observed-adverse-effect concentration (NOAEC) and a safe dosage. Specifically, DIOB induced significant G0/G1 phase arrest and apoptosis in A549, PC-9, and H1299 cells, while also notably inhibiting the growth of subcutaneous tumors in nude mice. Mechanistically, DIOB could directly interact with oncogene Yin Yang 1 (YY1) and inhibit its expression. The reduction in YY1 resulted in the triggering of the tumor suppressor P53, which induced cell cycle arrest and apoptosis in NSCLC cells by inhibiting the expression of Cyclin A2, B2, CDK1, CDK2, CDK4, BCL-2, and inducing the expression of BAX. In NSCLC cells, the induction of G0/G1 phase arrest and apoptosis by DIOB was effectively reversed when YY1 was overexpressed or P53 was knocked down. Importantly, we observed that DIOB exerted the same effect by directly influencing the expression of YY1-regulated c-Myc and BIM, particularly in the absence of P53. CONCLUSION For the inaugural investigation, this research unveiled the anti-NSCLC impact of DIOB, alongside its fundamental mechanism. DIOB has demonstrated potential as a treatment agent for NSCLC due to its impressive efficacy in countering NSCLC.
Collapse
Affiliation(s)
- Jin-Quan Zhao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 639 Longmian Avenue, Nanjing 211198, China
| | - Qi-Qi Zhou
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 639 Longmian Avenue, Nanjing 211198, China
| | - Yuan Sun
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 639 Longmian Avenue, Nanjing 211198, China
| | - Ting Yu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 639 Longmian Avenue, Nanjing 211198, China
| | - Yan Jiang
- Nanjing Forestry University, Nanjing 210037, China.
| | - Hui-Jun Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 639 Longmian Avenue, Nanjing 211198, China.
| |
Collapse
|
38
|
Feng F, Hu P, Peng L, Xu L, Chen J, Chen Q, Zhang X, Tao X. Integrated network pharmacology and metabolomics to reveal the mechanism of Pinellia ternata inhibiting non-small cell lung cancer cells. BMC Complement Med Ther 2024; 24:263. [PMID: 38992647 PMCID: PMC11238457 DOI: 10.1186/s12906-024-04574-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 07/01/2024] [Indexed: 07/13/2024] Open
Abstract
Lung cancer is a malignant tumor with highly heterogeneous characteristics. A classic Chinese medicine, Pinellia ternata (PT), was shown to exert therapeutic effects on lung cancer cells. However, its chemical and pharmacological profiles are not yet understood. In the present study, we aimed to reveal the mechanism of PT in treating lung cancer cells through metabolomics and network pharmacology. Metabolomic analysis of two strains of lung cancer cells treated with Pinellia ternata extracts (PTE) was used to identify differentially abundant metabolites, and the metabolic pathways associated with the DEGs were identified by MetaboAnalyst. Then, network pharmacology was applied to identify potential targets against PTE-induced lung cancer cells. The integrated network of metabolomics and network pharmacology was constructed based on Cytoscape. PTE obviously inhibited the proliferation, migration and invasion of A549 and NCI-H460 cells. The results of the cellular metabolomics analysis showed that 30 metabolites were differentially expressed in the lung cancer cells of the experimental and control groups. Through pathway enrichment analysis, 5 metabolites were found to be involved in purine metabolism, riboflavin metabolism and the pentose phosphate pathway, including D-ribose 5-phosphate, xanthosine, 5-amino-4-imidazolecarboxyamide, flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD). Combined with network pharmacology, 11 bioactive compounds were found in PT, and networks of bioactive compound-target gene-metabolic enzyme-metabolite interactions were constructed. In conclusion, this study revealed the complicated mechanisms of PT against lung cancer. Our work provides a novel paradigm for identifying the potential mechanisms underlying the pharmacological effects of natural compounds.
Collapse
Affiliation(s)
- Fan Feng
- School of Biological and Food Engineering, Suzhou University, Anhui, 234000, China
| | - Ping Hu
- School of Biological and Food Engineering, Suzhou University, Anhui, 234000, China
| | - Lei Peng
- School of Biological and Food Engineering, Suzhou University, Anhui, 234000, China
| | - Lisheng Xu
- School of Biological and Food Engineering, Suzhou University, Anhui, 234000, China
| | - Jun Chen
- School of Biological and Food Engineering, Suzhou University, Anhui, 234000, China
| | - Qiong Chen
- School of Biological and Food Engineering, Suzhou University, Anhui, 234000, China
| | - Xingtao Zhang
- School of Biological and Food Engineering, Suzhou University, Anhui, 234000, China
| | - Xingkui Tao
- School of Biological and Food Engineering, Suzhou University, Anhui, 234000, China.
| |
Collapse
|
39
|
Tang Y, Zhuang Y, Zhao C, Gu S, Zhang J, Bi S, Wang M, Bao L, Li M, Zhang W, Zhu L. The metabolites from traditional Chinese medicine targeting ferroptosis for cancer therapy. Front Pharmacol 2024; 15:1280779. [PMID: 39021832 PMCID: PMC11251977 DOI: 10.3389/fphar.2024.1280779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 05/15/2024] [Indexed: 07/20/2024] Open
Abstract
Cancer is a major disease with ever-increasing morbidity and mortality. The metabolites derived from traditional Chinese medicine (TCM) have played a significant role in combating cancers with curative efficacy and unique advantages. Ferroptosis, an iron-dependent programmed death characterized by the accumulation of lipid peroxide, stands out from the conventional forms of cell death, such as apoptosis, pyroptosis, necrosis, and autophagy. Recent evidence has demonstrated the potential of TCM metabolites targeting ferroptosis for cancer therapy. We collected and screened related articles published in or before June 2023 using PubMed, Google Scholar, and Web of Science. The searched keywords in scientific databases were ferroptosis, cancer, tumor, traditional Chinese medicine, botanical drugs, and phytomedicine. Only research related to ferroptosis, the metabolites from TCM, and cancer was considered. In this review, we introduce an overview of the current knowledge regarding the ferroptosis mechanisms and review the research advances on the metabolites of TCM inhibiting cancer by targeting ferroptosis.
Collapse
Affiliation(s)
- Yu Tang
- Department of Pathology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Ying Zhuang
- Department of Pathology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Chuanxiang Zhao
- Institute of Medical Genetics and Reproductive Immunity, School of Medical Science and Laboratory Medicine, Jiangsu College of Nursing, Huai’an, Jiangsu, China
| | - Shuangshuang Gu
- Shanghai Institute of Rheumatology, Shanghai Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Junya Zhang
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Shiqi Bi
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Ming Wang
- Department of Medical Imaging, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Lei Bao
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Mei Li
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Wei Zhang
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Liqun Zhu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
40
|
Yue YZ, Li MX, Wang XH, Qin YY, Wang YH, Tan JH, Su LL, Yan S. UPLC-Q-TOF/MS-Based Serum Metabolomics Reveals Potential Anti-tumor Mechanism of Banxia Xiexin Decoction in Colorectal Cancer Mice. Chin J Integr Med 2024; 30:623-632. [PMID: 37222828 DOI: 10.1007/s11655-023-3552-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2023] [Indexed: 05/25/2023]
Abstract
OBJECTIVE To clarify the potential mechanism of Banxia Xiexin Decoction (BXD) on colorectal cancer (CRC) from the perspective of metabolomics. METHODS Forty male C57BL/6 mice were randomly divided into normal control (NC), azoxymethane/dextran sulfate sodium (AOM/DSS) model, low-dose BXD (L-BXD), high-dose BXD (H-BXD) and mesalamine (MS) groups according to a random number table, 8 mice in each group. Colorectal cancer model was induced by AOM/DSS. BXD was administered daily at doses of 3.915 (L-BXD) and 15.66 g/kg (H-BXD) by gavage for consecutive 21 days, and 100 mg/kg MS was used as positive control. Following the entire modeling cycle, colon length of mice was measured and quantity of colorectal tumors were counted. The spleen and thymus index were determined by calculating the spleen/thymus weight to body weight. Inflammatory cytokine and changes of serum metabolites were analyzed by enzyme-linked immunosorbent assay kits and ultra performance liquid chromatography-quadrupole/time-of-flight mass spectrometry (UPLC-Q/TOF-MS), respectively. RESULTS Notably, BXD supplementation protected against weight loss, mitigated tumor formation, and diminished histologic damage in mice treated with AOM/DSS (P<0.05 or P<0.01). Moreover, BXD suppressed expression of serum inflammatory enzymes, and improved the spleen and thymus index (P<0.05). Compared with the normal group, 102 kinds of differential metabolites were screened in the AOM/DSS group, including 48 potential biomarkers, involving 18 main metabolic pathways. Totally 18 potential biomarkers related to CRC were identified, and the anti-CRC mechanism of BXD was closely related to D-glutamine and D-glutamate metabolism, phenylalanine, tyrosine and tryptophan biosynthesis, arginine biosynthesis, nitrogen metabolism and so on. CONCLUSION BXD exerts partial protective effects on AOM/DSS-induced CRC by reducing inflammation, protecting organism immunity ability, and regulating amino acid metabolism.
Collapse
Affiliation(s)
- Yin-Zi Yue
- Department of General Surgery, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215009, China
| | - Ming-Xuan Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xiao-Hui Wang
- Department of General Surgery, Bayinguoleng Mongolian Autonomous Prefecture People's Hospital, Xinjiang Uygur Autonomous Region, Korla, 841000, China
| | - Yuan-Yuan Qin
- Department of Pharmacy, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215009, China
| | - Ya-Hui Wang
- Department of Anorectal Surgery, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215009, China
| | - Jin-Hua Tan
- Department of General Surgery, Bayinguoleng Mongolian Autonomous Prefecture People's Hospital, Xinjiang Uygur Autonomous Region, Korla, 841000, China
| | - Lian-Lin Su
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Shuai Yan
- Department of Anorectal Surgery, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215009, China.
| |
Collapse
|
41
|
Zhang X, Yuan L, Zhang W, Zhang Y, Wu Q, Li C, Wu M, Huang Y. Liquid-liquid phase separation in diseases. MedComm (Beijing) 2024; 5:e640. [PMID: 39006762 PMCID: PMC11245632 DOI: 10.1002/mco2.640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 07/16/2024] Open
Abstract
Liquid-liquid phase separation (LLPS), an emerging biophysical phenomenon, can sequester molecules to implement physiological and pathological functions. LLPS implements the assembly of numerous membraneless chambers, including stress granules and P-bodies, containing RNA and protein. RNA-RNA and RNA-protein interactions play a critical role in LLPS. Scaffolding proteins, through multivalent interactions and external factors, support protein-RNA interaction networks to form condensates involved in a variety of diseases, particularly neurodegenerative diseases and cancer. Modulating LLPS phenomenon in multiple pathogenic proteins for the treatment of neurodegenerative diseases and cancer could present a promising direction, though recent advances in this area are limited. Here, we summarize in detail the complexity of LLPS in constructing signaling pathways and highlight the role of LLPS in neurodegenerative diseases and cancers. We also explore RNA modifications on LLPS to alter diseases progression because these modifications can influence LLPS of certain proteins or the formation of stress granules, and discuss the possibility of proper manipulation of LLPS process to restore cellular homeostasis or develop therapeutic drugs for the eradication of diseases. This review attempts to discuss potential therapeutic opportunities by elaborating on the connection between LLPS, RNA modification, and their roles in diseases.
Collapse
Affiliation(s)
- Xinyue Zhang
- College of Life and Health Sciences Northeastern University Shenyang China
| | - Lin Yuan
- Laboratory of Research in Parkinson's Disease and Related Disorders Health Sciences Institute China Medical University Shenyang China
| | - Wanlu Zhang
- College of Life and Health Sciences Northeastern University Shenyang China
| | - Yi Zhang
- College of Life and Health Sciences Northeastern University Shenyang China
| | - Qun Wu
- Department of Pediatrics Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine Shanghai China
| | - Chunting Li
- College of Life and Health Sciences Northeastern University Shenyang China
| | - Min Wu
- Wenzhou Institute University of Chinese Academy of Sciences Wenzhou Zhejiang China
- The Joint Research Center Affiliated Xiangshan Hospital of Wenzhou Medical University Ningbo China
| | - Yongye Huang
- College of Life and Health Sciences Northeastern University Shenyang China
- Key Laboratory of Bioresource Research and Development of Liaoning Province College of Life and Health Sciences Northeastern University Shenyang China
| |
Collapse
|
42
|
Liao W, Zhang R, Chen G, Zhu X, Wu W, Chen Z, Jiang C, Lin Z, Ma L, Yu H. Berberine synergises with ferroptosis inducer sensitizing NSCLC to ferroptosis in p53-dependent SLC7A11-GPX4 pathway. Biomed Pharmacother 2024; 176:116832. [PMID: 38850659 DOI: 10.1016/j.biopha.2024.116832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/21/2024] [Accepted: 05/26/2024] [Indexed: 06/10/2024] Open
Abstract
Berberine (BBR) is a compound derived from Chinese herbal medicine, known for its anticancer properties through multiple signaling pathways. However, whether BBR can inhibit tumor growth by participating in ferroptosis remains unconfirmed. In this study, we demonstrated that berberine synergistically inhibited NSCLC in combination with multiple ferroptosis inducers, and this combination synergistically down-regulated the mRNA and protein expression of SLC7A11, GPX4, and NRF2, resulting in ferroptosis accompanied by significant depletion of GSH, and aberrant accumulation of reactive oxygen species and malondialdehyde. In a lung cancer allograft model, the combination treatment exhibited enhanced anticancer effects compared to using either drug alone. Notably, p53 is critical in determining the ferroptosis sensitivity. We found that the combination treatment did not elicit a synergistic anticancer effect in cells with a p53 mutation or with exogenous expression of mutant p53. These findings provide insight into the mechanism by which combination induces ferroptosis and the regulatory role of p53 in this process. It may guide the development of new strategies for treating NSCLC, offering great medical potential for personal diagnosis and treatment.
Collapse
Affiliation(s)
- Weilin Liao
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao Special Administrative Region of China
| | - Ren Zhang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao Special Administrative Region of China
| | - Geer Chen
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao Special Administrative Region of China
| | - Xiaoyu Zhu
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao Special Administrative Region of China
| | - Weiyu Wu
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao Special Administrative Region of China
| | - Ziyu Chen
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao Special Administrative Region of China
| | - Chenyu Jiang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao Special Administrative Region of China
| | - Zicong Lin
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao Special Administrative Region of China
| | - Lijuan Ma
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao Special Administrative Region of China
| | - Haijie Yu
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao Special Administrative Region of China.
| |
Collapse
|
43
|
Wu ZH, Zhang HF, Li JY, Diao YR, Huang MJ, Gao DY, Liang CH, Luo ZQ. Effectiveness and safety of brucea javanica oil assisted TACE versus TACE in the treatment of liver cancer: a systematic review and meta-analysis of randomized controlled trials. Front Pharmacol 2024; 15:1337179. [PMID: 38974037 PMCID: PMC11224762 DOI: 10.3389/fphar.2024.1337179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/06/2024] [Indexed: 07/09/2024] Open
Abstract
Background: The effectiveness and safety of using Brucea javanica oil (BJO) in combination with Transarterial Chemoembolization (TACE) for liver cancer treatment are subjects of debate. This study aims to assess the comparative effectiveness and safety of BJO-assisted TACE versus TACE alone and quantifies the differences between these two treatment methods. Methods: A systematic search was conducted in multiple databases including PubMed, Cochrane, CNKI, and Wanfang, until 1 July 2023. Meta-analysis was conducted, and the results were presented as mean difference (MD), risk ratio (RR), and 95% confidence intervals (CI). Results: The search yielded 11 RCTs, with a combined sample size of 1054 patients. Meta-analysis revealed that BJO-assisted TACE exhibited superior outcomes compared to standalone TACE. Specific data revealed that BJO-assisted TACE improves clinical benefit rate by 22% [RR = 1.22, 95% CI (1.15, 1.30)], increases the number of people with improved quality of life by 32%, resulting in an average score improvement of 9.53 points [RR = 1.32, 95% CI (1.22, 1.43); MD = 9.53, 95% CI (6.95, 12.10)]. Furthermore, AFP improvement rate improved significantly by approximately 134% [RR = 2.34, 95% CI (1.58, 3.46)], accompanied by notable improvements in liver function indicators, with an average reduction of 27.19 U/L in AST [MD = -27.19, 95% CI (-40.36, -14.02)], 20.77 U/L in ALT [MD = -20.77, 95% CI (-39.46, -2.08)], 12.17 μmol/L in TBIL [MD = -12.17, 95% CI (-19.38, -4.97)], and a decrease of 43.72 pg/mL in VEGF [MD = -43.72, 95% CI (-63.29, -24.15)]. Most importantly, there was a 29% reduction in the occurrence of adverse reactions [RR = 0.71, 95% CI (0.60, 0.84)]. Conclusion: These findings indicate that BJO-assisted TACE may be considered as a potentially beneficial treatment option for liver cancer patients when compared to standalone TACE. It appears to contribute to improved treatment outcomes, enhanced quality of life, and potentially reduced adverse reactions, suggesting it warrants further investigation as a promising approach for liver cancer treatment. Systematic Review Registration: identifier CRD42023428948.
Collapse
Affiliation(s)
- Zhi-Hai Wu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Hai-Feng Zhang
- Department of Epidemiology, School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
| | - Jun-Yan Li
- School of Information Technology, Monash University Malaysia, Subang Jaya, Malaysia
| | - Yi-Rui Diao
- Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| | - Man-Jing Huang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Dong-Yang Gao
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Chang-Hao Liang
- Centre for Evidence-Based Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Zhi-Qiang Luo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
44
|
He J, Li G, Wu Y, Zhang T, Yao M, Zang M, Zou J, Song J, Li L, Chen Q, Cao G, Cai L. Traditional Chinese Medicine JianPiHuaTan formula improving quality of life and survival in patients with colorectal cancer through RAS/RAF downstream signaling pathways. Front Pharmacol 2024; 15:1391399. [PMID: 38974035 PMCID: PMC11225497 DOI: 10.3389/fphar.2024.1391399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 05/20/2024] [Indexed: 07/09/2024] Open
Abstract
Objective JianPiHuaTan Formula (JPHTF), a traditional Chinese medicine (TCM), has been utilized as an adjunctive therapy for colorectal cancer (CRC). The study aims to evaluate the potential clinical benefits of JPHTF and its effectiveness in inhibiting tumor growth. Methods 300 stage II/III CRC patients and 412 advanced CRC patients were enrolled to verify the clinical value of JPHTF in CRC treatment. Furthermore, CRC patient-derived xenograft (PDX) mice were utilized to investigate the regulatory mechanisms of JPHTF. Results JPHTF significantly improved abdominal distension, shortness of breath, drowsiness, loss of appetite, sleep, and tiredness in stage II/III CRC patients, thereby improving their quality of life. Simultaneously, JPHTF served as a supportive therapy in extending the overall survival (OS) of stage IV CRC patients with RAS/RAF mutations undergoing chemotherapy. Additionally, JPHTF effectively impeded tumor progression in CRC PDX models with RAS mutation, accompanied by a reduction in tumor cell content in the JPHTF group. Transcriptomic analysis revealed the involvement of the Hippo and Hedgehog signaling pathways in JPHTF-mediated CRC inhibition. Furthermore, mice in the JPHTF group exhibited increased immune cell infiltration. Conclusion These findings suggested that JPHTF may inhibits tumor growth in CRC with RAS mutation by modulating RAS/RAF downstream signaling pathways, specifically the Hippo and Hedgehog signaling, leading to increased immune cell infiltration.
Collapse
Affiliation(s)
- Jian He
- GCP Center, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Guojun Li
- Department of Oncology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yu Wu
- Department of Oncology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tong Zhang
- Department of Oncology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Mingjiang Yao
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Pharmacology of Chinese Materia, Beijing, China
| | - Mingxuan Zang
- Department of Oncology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jianhua Zou
- Department of Oncology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jinjie Song
- Department of Oncology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liusheng Li
- Department of Oncology, Beijing Hospital of Integrated Traditional Chinese and Western Medicine, Beijing, China
| | | | - Guang Cao
- Department of General Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Linlin Cai
- Department of Oncology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
45
|
Hua Y, Shen Y. Applications of self-assembled peptide hydrogels in anti-tumor therapy. NANOSCALE ADVANCES 2024; 6:2993-3008. [PMID: 38868817 PMCID: PMC11166105 DOI: 10.1039/d4na00172a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/29/2024] [Indexed: 06/14/2024]
Abstract
Peptides are a class of active substances composed of a variety of amino acids with special physiological functions. The rational design of peptide sequences at the molecular level enables their folding into diverse secondary structures. This property has garnered significant attention in the biomedical sphere owing to their favorable biocompatibility, adaptable mechanical traits, and exceptional loading capabilities. Concurrently with advancements in modern medicine, the diagnosis and treatment of tumors have increasingly embraced targeted and personalized approaches. This review explores recent applications of self-assembled peptides derived from natural amino acids in chemical therapy, immunotherapy, and other adjunctive treatments. We highlighted the utilization of peptide hydrogels as delivery systems for chemotherapeutic drugs and other bioactive molecules and then discussed the challenges and prospects for their future application.
Collapse
Affiliation(s)
- Yue Hua
- Department of Obstetrics and Gynecology, Zhongda Hospital, School of Medicine, Southeast University Nanjing Jiangsu 210009 China
| | - Yang Shen
- Department of Obstetrics and Gynecology, Zhongda Hospital, School of Medicine, Southeast University Nanjing Jiangsu 210009 China
| |
Collapse
|
46
|
Gui H, Fan X. Anti-tumor effect of dandelion flavone on multiple myeloma cells and its mechanism. Discov Oncol 2024; 15:215. [PMID: 38850433 PMCID: PMC11162407 DOI: 10.1007/s12672-024-01076-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024] Open
Abstract
BACKGROUND Multiple myeloma (MM) is a prevalent hematologic malignancy characterized by the uncontrolled proliferation of monoclonal plasma cells in the bone marrow and excessive monoclonal immunoglobulin production, leading to organ damage. Despite therapeutic advancements, recurrence and drug resistance remain significant challenges. OBJECTIVE This study investigates the effects of dandelion flavone (DF) on MM cell proliferation, migration, and invasion, aiming to elucidate the mechanisms involved in MM metastasis and to explore the potential of traditional Chinese medicine in MM therapy. METHODS DF's impact on myeloma cell viability was evaluated using the CCK-8 and colony formation assays. Cell mobility and invasiveness were assessed through wound healing and transwell assays, respectively. RT-PCR was employed to quantify mRNA levels of MMP-2, MMP-9, TIMP-1, and TIMP-2. Apoptotic rates and molecular markers were analyzed via flow cytometry and RT-PCR. The PI3K/AKT signaling pathway was studied using Western blot and ELISA, with IGF-1 and the PI3K inhibitor LY294002 used to validate the findings. RESULTS DF demonstrated dose-dependent inhibitory effects on MM cell proliferation, migration, and invasion. It reduced mRNA levels of MMP-2 and MMP-9 while increasing those of TIMP-1 and TIMP-2. Furthermore, DF enhanced the expression of pro-apoptotic proteins and inhibited M2 macrophage polarization by targeting key molecules and enzymes. The anti-myeloma activity of DF was mediated through the inhibition of the PI3K/AKT pathway, as evidenced by diminished phosphorylation and differential effects in the presence of IGF-1 and LY294002. CONCLUSION By modulating the PI3K/AKT pathway, DF effectively inhibits MM cell proliferation, migration, and invasion, and induces apoptosis, establishing a novel therapeutic strategy for MM based on traditional Chinese medicine.
Collapse
Affiliation(s)
- Hua Gui
- Hematology Department, QingPu Branch of ZhongShan Hospital Affiliated to Fudan University, 1158 Park Road(E), Qingpu, Shanghai, China
| | - Xiaohong Fan
- Hematology Department, QingPu Branch of ZhongShan Hospital Affiliated to Fudan University, 1158 Park Road(E), Qingpu, Shanghai, China.
| |
Collapse
|
47
|
Liu Y, Wang Y, Yang Y, Quan Y, Guo M. Liquiritigenin Induces Cell Cycle Arrest and Apoptosis in Lung Squamous Cell Carcinoma. Cell Biochem Biophys 2024; 82:1397-1407. [PMID: 38775930 DOI: 10.1007/s12013-024-01294-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2024] [Indexed: 08/25/2024]
Abstract
Liquiritigenin (LQ), as a dihydroflavone monomer compound extracted from Glycyrrhiza uralensis Fisch, has been demonstrated to show anti-tumor effects in multiple human cancers, including lung adenocarcinoma. Our study aimed to explore its role in lung squamous cell carcinoma (LSCC) development and the related mechanism. The effects of LQ on SK-MES-1 and NCI-H520 cell proliferation, cell cycle, and apoptosis were investigated. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and colony formation assays revealed that LQ inhibited LSCC cell viability and proliferation in a dose- and time-dependent manner. Flow cytometry analysis demonstrated that LQ promoted G2/M cell cycle arrest, cell apoptosis, and loss of mitochondrial membrane potential. In vivo assays showed that LQ administration suppressed tumor growth in nude mice. Additionally, LQ treatment reduced the levels of phosphorylated PI3K, AKT, and mTOR levels in LSCC cells. Pretreatment with the PI3K inhibitor LY294002 antagonized the LQ-mediated effects on cell proliferation, cell cycle arrest, and apoptosis in LSCC cells. Collectively, LQ induces cell cycle arrest and apoptosis in LSCC by inactivating the PI3K/AKT/mTOR pathway.
Collapse
Affiliation(s)
- Yaqi Liu
- Department of Traditional Chinese Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Yixiao Wang
- Department of Dermatology, Wuhan Hospital of Traditional Chinese Medicine, Wuhan, 430014, China
| | - Yiran Yang
- Department of Traditional Chinese Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Yihong Quan
- Department of Traditional Chinese Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Mingxing Guo
- Department of Traditional Chinese Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China.
| |
Collapse
|
48
|
Tuo P, Zhao R, Li N, Yan S, Yang G, Wang C, Sun J, Sun H, Wang M. Lycorine inhibits Ang II-induced heart remodeling and inflammation by suppressing the PI3K-AKT/NF-κB pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155464. [PMID: 38484625 DOI: 10.1016/j.phymed.2024.155464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/03/2024] [Accepted: 02/16/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Ang II induces hypertensive heart failure (HF) via hemodynamic and non-hemodynamic actions. Lycorine (LYC) is an alkaloid derived from Lycoris bulbs, and it possesses anti-cardiovascular disease-related activities. Herein, we explored the potential LYC-mediated regulation of Ang II-induced HF. METHODS Over 4 weeks, we established a hypertensive HF mouse model by infusing Ang II into C57BL/6 mice using a micro-osmotic pump. For the final two weeks, mice were administered LYC via intraperitoneal injection. The LYC signaling network was then deduced using RNA sequencing. RESULTS LYC administration strongly suppressed hypertrophy, myocardial fibrosis, and cardiac inflammation. As a result, it minimized heart dysfunction while causing no changes in blood pressure. The Nuclear Factor kappa B (NF-κB) network/phosphoinositol-3-kinase (PI3K)-protein kinase B (AKT) was found to be a major modulator of LYC-based cardioprotection using RNA sequencing study. We further confirmed that in cultured cardiomyocytes and mouse hearts, LYC reduced the inflammatory response and downregulated the Ang II-induced PI3K-AKT/NF-κB network. Moreover, PI3K-AKT or NF-κB axis depletion in cardiomyocytes completely abrogated the anti-inflammatory activities of LYC. CONCLUSION Herein, we demonstrated that LYC safeguarded hearts in Ang II -stimulated mice by suppressing the PI3K-AKT/NF-κB-induced inflammatory responses. Given the evidence mentioned above, LYC is a robust therapeutic agent for hypertensive HF.
Collapse
Affiliation(s)
- Pingping Tuo
- Department of Pharmacology, College of Pharmacy, Beihua University, Jilin, Jilin, 132000, China
| | - Risheng Zhao
- Department of Pharmacology, College of Pharmacy, Beihua University, Jilin, Jilin, 132000, China
| | - Ning Li
- Department of Clinical Pharmacy, The First Hospital of Jilin University, Jilin, Changchun, 130012, China
| | - Shuang Yan
- Department of Ultrasonography, Inteqrated Traditional Chinese and Western Medicine Hospital of Jilin city Jilin Province, Jilin, 132000, China
| | - Gege Yang
- Department of Pharmacology, College of Pharmacy, Beihua University, Jilin, Jilin, 132000, China
| | - Chunmei Wang
- Department of Pharmacology, College of Pharmacy, Beihua University, Jilin, Jilin, 132000, China
| | - Jinghui Sun
- Department of Pharmacology, College of Pharmacy, Beihua University, Jilin, Jilin, 132000, China
| | - Haiming Sun
- Department of Pharmacology, College of Pharmacy, Beihua University, Jilin, Jilin, 132000, China.
| | - Mengyang Wang
- Department of Pharmacology, College of Pharmacy, Beihua University, Jilin, Jilin, 132000, China.
| |
Collapse
|
49
|
Zheng X, Han Y, Gu L, Gao S, Lv Y, Li C. Study of the mechanism by which Xiaoyan decoction combined with E7449 regulates tumorigenesis in lung adenocarcinoma. J Cell Mol Med 2024; 28:e18467. [PMID: 38898581 PMCID: PMC11186742 DOI: 10.1111/jcmm.18467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 04/22/2024] [Accepted: 05/13/2024] [Indexed: 06/21/2024] Open
Abstract
TNKS is a new target for the treatment of lung adenocarcinoma, the synergistic effects of the TCM compound Xiaoyan decoction and the TNKS inhibitor E7449 in the intervention on TNKS were investigated, and the possible underlying mechanisms involved were clarified. Immunohistochemistry was used to analyse TNKS expression in tumour tissues. The impact of targeting TNKS on cell growth, invasion, apoptosis, key genes and signalling pathways was investigated in tumour cells by Western blotting, rescue experiments, colony formation assays, flow cytometry and label-free experiments. Tumour xenografts with A549 cells were then transplanted for in vivo study. We found that TNKS high expression was closely related to the advanced tumour stage and tumour size in lung adenocarcinom. After TNKS was knocked down in vitro, the growth, proliferation, migration and invasion were markedly reduced in A549 and H1975 cells. We subsequently applied the Xiaoyan decoction and TNKS inhibitors to intervene in lung adenocarcinoma. Xiaoyan decoction and E7449 suppressed TNKS expression and inhibited adenocarcinoma cell proliferation, migration, invasion and apoptosis in vitro. Proteomic analysis revealed that E7449 treatment may be most closely associated with the classic Wnt/β-catenin pathway, whereas Xiaoyan decoction treatment may be related to the WNT/PLAN pathway. Xenograft studies confirmed that E7449 or Xiaoyan decoction inhibited lung tumour growth in vivo and attenuated the Wnt signalling pathway in adenocarcinoma. These findings suggest that TNKS is a novel therapeutic target. TCM preparations and small molecule inhibitors are expected to constitute an effective combination strategy.
Collapse
Affiliation(s)
- Xu Zheng
- First Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjinChina
| | - Yanyan Han
- First Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjinChina
| | - Lili Gu
- First Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjinChina
| | - Shan Gao
- First Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjinChina
| | - Yan Lv
- First Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjinChina
| | - Chong Li
- First Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjinChina
| |
Collapse
|
50
|
Mishra AK, S L N, Jain A, Jagtap CY, Dane G, Paroha S, Sahoo PK. Effectiveness of Semecarpus anacardium Linn. fruits in cancer and inflammatory diseases: A mini review. Fitoterapia 2024; 175:105978. [PMID: 38685508 DOI: 10.1016/j.fitote.2024.105978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/02/2024]
Abstract
BACKGROUND Semecarpus anacardium Linn. (SCA) fruits are found in India's sub-Himalayan, tropical, and central regions and have been utilized for centuries in traditional Indian medicine to treat various ailments. In recent times, a growing body of research has emerged indicating that the extracts and active components found in SCA fruits possess qualities that can potentially inhibit the development of cancer and inflammatory markers. PURPOSE This study aims to provide a comprehensive review of the existing literature on the pharmacological mechanisms underlying the effects of extracts and phytochemicals of SCA fruits in cellular, animal models, and clinical trials of cancer and inflammatory diseases. METHODS A comprehensive literature search was conducted utilizing several databases, including PubMed, Scopus, Google Scholar, preprint platforms, and the Cochrane Database of Systematic Reviews using the keywords "Semecarpus anacardium", "Anti-inflammatory," and "cancer". The collection of articles started with establishing the database and continued until April 2024. RESULTS Out of 1130 retrieved database records, 316 pertained to systematic reviews. The remaining 814 records focused on examining the anticancer and anti-inflammatory properties of SCA fruits. In the course of these investigations, the four primary cancer types linked to SCA fruits are identified as lung cancer, hepatocellular carcinoma, breast cancer, and blood cancer. CONCLUSION The findings will provide more support for investigating SCA fruits in cancer treatment and will furnish thorough reference data and recommendations for future studies on this botanical medication.
Collapse
Affiliation(s)
- Ashwini Kumar Mishra
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
| | - Neha S L
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
| | - Ankit Jain
- Department of Pharmacy, Birla Institute of Technology and Science Pilani (BITS-PILANI), Pilani Campus, Rajasthan, 333001, India
| | | | - Ganesh Dane
- Central Ayurveda Research Institute, Jhansi, Uttar Pradesh, 284003, India
| | - Shweta Paroha
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
| | - Pravat Kumar Sahoo
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India.
| |
Collapse
|