1
|
Guha P, Chini A, Rishi A, Mandal SS. Long noncoding RNAs in ubiquitination, protein degradation, and human diseases. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:195061. [PMID: 39341591 DOI: 10.1016/j.bbagrm.2024.195061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/07/2024] [Accepted: 09/19/2024] [Indexed: 10/01/2024]
Abstract
Protein stability and turnover is critical in normal cellular and physiological process and their misregulation may contribute to accumulation of unwanted proteins causing cellular malfunction, neurodegeneration, mitochondrial malfunction, and disrupted metabolism. Signaling mechanism associated with protein degradation is complex and is extensively studied. Many protein and enzyme machineries have been implicated in regulation of protein degradation. Despite these insights, our understanding of protein degradation mechanisms remains limited. Emerging studies suggest that long non-coding RNAs (lncRNAs) play critical roles in various cellular and physiological processes including metabolism, cellular homeostasis, and protein turnover. LncRNAs, being large nucleic acids (>200 nt long) can interact with various proteins and other nucleic acids and modulate protein structure and function leading to regulation of cell signaling processes. LncRNAs are widely distributed across cell types and may exhibit tissue specific expression. They are detected in body fluids including blood and urine. Their expressions are also altered in various human diseases including cancer, neurological disorders, immune disorder, and others. LncRNAs are being recognized as novel biomarkers and therapeutic targets. This review article focuses on the emerging role of noncoding RNAs (ncRNAs), particularly long noncoding RNAs (lncRNAs), in the regulation of protein polyubiquitination and proteasomal degradation.
Collapse
Affiliation(s)
- Prarthana Guha
- Gene Regulation and Epigenetics Research Laboratory, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, United States of America
| | - Avisankar Chini
- Gene Regulation and Epigenetics Research Laboratory, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, United States of America
| | - Ashcharya Rishi
- Gene Regulation and Epigenetics Research Laboratory, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, United States of America
| | - Subhrangsu S Mandal
- Gene Regulation and Epigenetics Research Laboratory, Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, United States of America.
| |
Collapse
|
2
|
Bhat AA, Gupta G, Dahiya R, Thapa R, Gahtori A, Shahwan M, Jakhmola V, Tiwari A, Kumar M, Dureja H, Singh SK, Dua K, Kumarasamy V, Subramaniyan V. CircRNAs: Pivotal modulators of TGF-β signalling in cancer pathogenesis. Noncoding RNA Res 2024; 9:277-287. [PMID: 38505309 PMCID: PMC10945146 DOI: 10.1016/j.ncrna.2024.01.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/19/2024] [Accepted: 01/20/2024] [Indexed: 03/21/2024] Open
Abstract
The intricate molecular landscape of cancer pathogenesis continues to captivate researchers worldwide, with Circular RNAs (circRNAs) emerging as pivotal players in the dynamic regulation of biological functions. The study investigates the elusive link between circRNAs and the Transforming Growth Factor-β (TGF-β) signalling pathway, exploring their collective influence on cancer progression and metastasis. Our comprehensive investigation begins by profiling circRNA expression patterns in diverse cancer types, revealing a repertoire of circRNAs intricately linked to the TGF-β pathway. Through integrated bioinformatics analyses and functional experiments, we elucidate the specific circRNA-mRNA interactions that modulate TGF-β signalling, unveiling the regulatory controls governing this crucial pathway. Furthermore, we provide compelling evidence of the impact of circRNA-mediated TGF-β modulation on key cellular processes, including epithelial-mesenchymal transition (EMT), migration, and cell proliferation. In addition to their mechanistic roles, circRNAs have shown promise as diagnostic and prognostic biomarkers, as well as potential molecular targets for cancer therapy. Their ability to modulate critical pathways, such as the TGF-β signalling axis, underscores their significance in cancer biology and clinical applications. The intricate interplay between circRNAs and TGF-β is dissected, uncovering novel regulatory circuits that contribute to the complexity of cancer biology. This review unravels a previously unexplored dimension of carcinogenesis, emphasizing the crucial role of circRNAs in shaping the TGF-β signalling landscape.
Collapse
Affiliation(s)
- Asif Ahmad Bhat
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
- School of Pharmacy, Graphic Era Hill University, Dehradun, 248007, India
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, Ajman, 346, United Arab Emirates
| | - Rajiv Dahiya
- School of Pharmacy, Faculty of Medical Sciences, The University of the West Indies, St. Augustine, Trinidad & Tobago
| | - Riya Thapa
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
| | - Archana Gahtori
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shri Guru Ram Rai University, Dehradun, 248001, Uttarakhand, India
| | - Moyad Shahwan
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, Ajman, 346, United Arab Emirates
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, 346, United Arab Emirates
| | - Vikas Jakhmola
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, 248007, India
| | - Abhishek Tiwari
- Pharmacy Academy, IFTM University, Lodhipur-Rajput, Moradabad, (U.P.), 244102, India
| | - Mahish Kumar
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, India
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology, Sydney, Ultimo, NSW, 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology, Sydney, Ultimo, NSW, 2007, Australia
- Discipline of Pharmacy, Graduate School of Health, University of Technology, Sydney, Ultimo, NSW, 2007, Australia
| | - Vinoth Kumarasamy
- Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, 56000, Cheras, Kuala Lumpur, Malaysia
| | - Vetriselvan Subramaniyan
- Pharmacology Unit, Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Jalan Lagoon Selatan, Bandar Sunway, 47500, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
3
|
Yu Y, Xu Z, Ni H, Jin M, Dai C. Clinicopathological and prognostic value of long non-coding RNA CCAT1 expression in patients with digestive system cancer. Oncol Lett 2023; 25:73. [PMID: 36688111 PMCID: PMC9843303 DOI: 10.3892/ol.2023.13659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 11/09/2022] [Indexed: 01/03/2023] Open
Abstract
Colon cancer associated transcript-1 (CCAT1) is known to play an important role in numerous types of human cancer, including bladder, prostate and ovarian cancer. However, a consistent perspective has not been established in digestive system cancer (DSC). To explore the prognostic value of CCAT1 in patients with DSC, a meta-analysis was performed. A systematic search of PubMed, Embase, Web of Science, China National Knowledge Infrastructure, Chinese Biological Medical Literature database, Cochrane Library and WanFang database was applied to select eligible articles. Pooled odds ratios (ORs) or hazard ratios (HRs) with corresponding 95% confidence intervals (CIs) were calculated to estimate the effects of CCAT1 on pathological or clinical features. A total of 1,719 patients from 12 eligible articles were enrolled in the meta-analysis. The results revealed that elevated CCAT1 expression was significantly related to larger tumor size (OR, 1.81; 95% CI, 1.31-2.48), poorer differentiation (OR, 0.45; 95% CI, 0.31-0.64), earlier lymph node metastasis (OR, 3.14; 95% CI, 2.34-4.22) and advanced TNM stage (OR, 3.08; 95% CI, 2.07-4.59). In addition, high CCAT1 expression predicted a poorer outcome for overall survival rate (HR, 2.37; 95% CI, 2.11-2.67) and recurrence-free survival rate (HR, 2.16, 95% CI, 1.31-3.57). High expression levels of CCAT1 were therefore related to unfavorable clinical outcomes of patients with DSC. These results demonstrated that CCAT1 could serve as a prognostic predictor in human DSC.
Collapse
Affiliation(s)
- Yue Yu
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Zhihua Xu
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Hao Ni
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Mengxian Jin
- Department of Endocrinology, Suzhou Xiangcheng People's Hospital, Suzhou, Jiangsu 215131, P.R. China,Correspondence to: Dr Mengxian Jin, Department of Endocrinology, Suzhou Xiangcheng People's Hospital, 1060 Huayuan Road, Xiangcheng, Suzhou, Jiangsu 215131, P.R. China, E-mail:
| | - Chen Dai
- Department of Thyroid and Breast Surgery, Ningbo First Hospital, Ningbo, Zhejiang 315010, P.R. China,Dr Chen Dai, Department of Thyroid and Breast Surgery, Ningbo First Hospital, 59 Liu Ting Street, Haishu, Ningbo, Zhejiang 315010, P.R. China, E-mail:
| |
Collapse
|
4
|
Li D, Lu L, Liu M, Sun J. Inhibition of long noncoding RNA cancer susceptibility candidate 7 attenuates hepatocellular carcinoma development by targeting microRNA-30a-5p. Bioengineered 2022; 13:11296-11308. [PMID: 35484972 PMCID: PMC9208517 DOI: 10.1080/21655979.2022.2068289] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Long non-coding RNA (lncRNA) cancer susceptibility candidate 7 (CASC7) was reported to be participated in tumor development. This study was carried out to investigate the functions of CASC7 in hepatocellular carcinoma (HCC) progression. The expression of CASC7 and microRNA-30a-5p (miR-30a-5p) in HCC tissues and cells were detected by quantitative Real-time PCR (qRT-PCR). The expression of Krueppel-like factor 10 (KLF10), transforming growth factor-β (TGF-β), and SMAD3 were detected by Western Blot analysis. Transwell assay, flow cytometry, Cell Counting Kit-8 (CCK-8) assay and colony formation assay were performed to evaluate the effects of CASC7, KLF10 and miR-30a-5p on cell function. The relationship among CASC7, KLF10 and miR-30a-5p was evaluated by luciferase reporter assay and bioinformatics analyses. Tumor growth was detected in nude mice. The expression levels of CASC7 were increased and the expression levels of miR-30a-5p were reduced in HCC cells and tissues. Knockdown of CASC7 and overexpression of miR-30a-5p reduced tumor growth as well as HCC cell proliferation, invasion and migration. In HCC tumor tissues, the expression of miR-30a-5p was negatively correlated with the expression of CASC7. Moreover, as a target of miR-30a-5p, KLF10 was regulated by CASC7 and miR-30a-5p, and CASC7 regulated the KLF10/TGF-β/SMAD3 pathway via binding to miR-30a-5p, thereby promoting HCC cell progression.
Collapse
Affiliation(s)
- Dongsheng Li
- Hepatobiliary Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Lin Lu
- Hepatobiliary Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Miaomiao Liu
- Hepatobiliary Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Jufeng Sun
- Hepatobiliary Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| |
Collapse
|
5
|
Tang W, Xue J, Luo L, Wang Y, Cai X, Liu Y, Huang D, Wang X, He T, Lu D, Yang F. Kangxianruangan granule‑containing serum mediated inhibition of hepatic oval cell differentiation into hepatocellular carcinoma cells via the Wnt‑1/β‑catenin signaling pathway. Mol Med Rep 2021; 25:55. [PMID: 34913065 PMCID: PMC8711029 DOI: 10.3892/mmr.2021.12571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 04/27/2021] [Indexed: 11/30/2022] Open
Abstract
Hepatocellular carcinoma is a malignancy with poor clinical prognosis. Hepatic oval cells (HOCs) tend to differentiate into cancerous hepatocellular carcinoma cells (HCCs) in the tumor microenvironment. The purpose of the present study was to explore the role of kangxianruangan granule (KXRG)-containing serum in inhibiting the differentiation of HOCs into HCCs via the Wnt-1/β-catenin signaling pathway. N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) was applied to induce the transformation of the rat HOC cell line WB-F344 into HCCs. The overexpression plasmid, Wnt-1-up, was utilized to increase Wnt-1 expression. Subsequently, high, medium and low concentrations of KXRG were applied to MNNG-treated WB-F344 cells to assess the inhibitory effect of KXRG on cell differentiation. Flow cytometry was conducted to detect the cell cycle distribution, apoptotic rate and expression of cytokeratin-19 (CK-19) protein in cells. An immunofluorescence double staining protocol was used to detect the expression of Wnt-1 and β-catenin. ELISAs were performed to detect α fetoprotein in the cell supernatants. Reverse transcription-quantitative PCR and western blotting were conducted to detect the mRNA and protein expression levels of Wnt-1, β-catenin, Cyclin D1, C-myc, matrix metalloproteinase-7 (MMP-7), Axin2 and epithelial cell adhesion molecule (EpCAM) in cells. Compared with the normal group, the apoptotic rate, proportion of S phase cells, concentration of AFP in the cell supernatant, level of CK-19 protein, and mRNA and protein expression levels of Wnt-1, β-catenin, Cyclin D1, C-myc, MMP-7, Axin2 and EpCAM were all significantly increased in the model group. Addition of KXRG significantly reduced the aforementioned indicators compared with the model group. Moreover, Wnt-1 overexpression further increased the aforementioned indicators compared with the model group, whereas KXRG significantly inhibited these effects. The results indicated that KXRG inhibited the differentiation of HOCs into HCCs via the Wnt-1/β-catenin signaling pathway, which suggested the potential clinical application of KXRG for the prevention of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Wenqian Tang
- Health Management Centre, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei 430074, P.R. China
| | - Juan Xue
- Clinical College of Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei 430061, P.R. China
| | - Lei Luo
- Health Management Centre, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei 430074, P.R. China
| | - Yao Wang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Xin Cai
- Department of Infectious Diseases, The People's Hospital of Jiangshan, Jiangshan, Zhejiang 324100, P.R. China
| | - Yuqing Liu
- Department of Infectious Diseases, Yancheng TCM Hospital Affiliated Nanjing University of Chinese Medicine, Nanjing, Jiangsu 224001, P.R. China
| | - Dawei Huang
- Department of Hepatology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei 430074, P.R. China
| | - Xiaodong Wang
- Department of Hepatology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei 430074, P.R. China
| | - Tangqing He
- Department of Hepatology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei 430074, P.R. China
| | - Dingbo Lu
- Department of Hepatology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei 430074, P.R. China
| | - Fan Yang
- Health Management Centre, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei 430074, P.R. China
| |
Collapse
|
6
|
Circular RNA as An Epigenetic Regulator in Chronic Liver Diseases. Cells 2021; 10:cells10081945. [PMID: 34440714 PMCID: PMC8392363 DOI: 10.3390/cells10081945] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/19/2021] [Accepted: 07/28/2021] [Indexed: 02/05/2023] Open
Abstract
Circular RNA (circRNA) is a type of non-coding RNA characterized by a covalently closed continuous loop. CircRNA is generated by pre-mRNA through back-splicing and is probably cleared up by extracellular vesicles. CircRNAs play a pivotal role in the epigenetic regulation of gene expression at transcriptional and post-transcriptional levels. Recently, circRNAs have been demonstrated to be involved in the regulation of liver homeostasis and diseases. However, the epigenetic role and underlying mechanisms of circRNAs in chronic liver diseases remain unclear. This review discussed the role of circRNAs in non-neoplastic chronic liver diseases, including alcoholic liver disease (ALD), metabolic-associated fatty liver disease (MAFLD), viral hepatitis, liver injury and regeneration, liver cirrhosis, and autoimmune liver disease. The review also highlighted that further efforts are urgently needed to develop circRNAs as novel diagnostics and therapeutics for chronic liver diseases.
Collapse
|
7
|
Xiang X, Fu Y, Zhao K, Miao R, Zhang X, Ma X, Liu C, Zhang N, Qu K. Cellular senescence in hepatocellular carcinoma induced by a long non-coding RNA-encoded peptide PINT87aa by blocking FOXM1-mediated PHB2. Theranostics 2021; 11:4929-4944. [PMID: 33754036 PMCID: PMC7978318 DOI: 10.7150/thno.55672] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/11/2021] [Indexed: 12/18/2022] Open
Abstract
Rationale: Recently, long non-coding RNAs (lncRNAs), known to be involved in human cancer progression, have been shown to encode peptides with biological functions, but the role of lncRNA-encoded peptides in cellular senescence is largely unexplored. We previously reported the tumor-suppressive role of PINT87aa, a peptide encoded by the long intergenic non-protein coding RNA, p53 induced transcript (LINC-PINT). Here, we investigated PINT87aa's role in hepatocellular carcinoma (HCC) cellular senescence. Methods: We examined PINT87aa and truncated PINT87aa functions in vitro by monitoring cell proliferation and performed flow cytometry, senescence-associated β-galactosidase staining, JC-1 staining indicative of mitochondrial membrane potential, the ratio of the overlapping area of light chain 3 beta (LC3B) and mitochondrial probes and the ratio of lysosomal associated membrane protein 1 (LAMP1) overlapping with cytochrome c oxidase subunit 4I1 (COXIV) denoting mitophagy. PINT87aa and truncated PINT87aa functions in vivo were verified by subcutaneously transplanted tumors in nude mice. The possible binding between PINT87aa and forkhead box M1 (FOXM1) was predicted through structural analysis and verified by co-immunoprecipitation and immunofluorescence co-localization. Rescue experiments were performed in vivo and in vitro following FOXM1 overexpression. Further, chromatin immunoprecipitation, polymerase chain reaction, and dual-luciferase reporter gene assay were conducted to validate FOXM1 binding to the prohibitin 2 (PHB2) promoter. Results: PINT87aa was significantly increased in the hydrogen peroxide-induced HCC cell senescence model. Overexpression of PINT87aa induced growth inhibition, cellular senescence, and decreased mitophagy in vitro and in vivo. In contrast, FOXM1 gain-of-function could partially reduce the proportion of senescent HCC cells and enhance mitophagy. PINT87aa overexpression did not affect the expression of FOXM1 itself but reduced that of its target genes involved in cell cycle and proliferation, especially PHB2, which was involved in mitophagy and transcribed by FOXM1. Structural analysis indicated that PINT87aa could bind to the DNA-binding domain of FOXM1, which was confirmed by co-immunoprecipitation and immunofluorescence co-localization. Furthermore, we demonstrated that the 2 to 39 amino acid truncated form of the peptide exerted effects similarly to the full form. Conclusion: Our study established the role of PINT87aa as a novel biomarker and a key regulator of cellular senescence in HCC and identified PINT87aa as a potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Xiaohong Xiang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Yunong Fu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Kun Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510080, PR China
| | - Runchen Miao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Xing Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Xiaohua Ma
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Chang Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| | - Nu Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510080, PR China
| | - Kai Qu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, PR China
| |
Collapse
|
8
|
Puckett DL, Alquraishi M, Chowanadisai W, Bettaieb A. The Role of PKM2 in Metabolic Reprogramming: Insights into the Regulatory Roles of Non-Coding RNAs. Int J Mol Sci 2021; 22:1171. [PMID: 33503959 PMCID: PMC7865720 DOI: 10.3390/ijms22031171] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 01/17/2023] Open
Abstract
Pyruvate kinase is a key regulator in glycolysis through the conversion of phosphoenolpyruvate (PEP) into pyruvate. Pyruvate kinase exists in various isoforms that can exhibit diverse biological functions and outcomes. The pyruvate kinase isoenzyme type M2 (PKM2) controls cell progression and survival through the regulation of key signaling pathways. In cancer cells, the dimer form of PKM2 predominates and plays an integral role in cancer metabolism. This predominance of the inactive dimeric form promotes the accumulation of phosphometabolites, allowing cancer cells to engage in high levels of synthetic processing to enhance their proliferative capacity. PKM2 has been recognized for its role in regulating gene expression and transcription factors critical for health and disease. This role enables PKM2 to exert profound regulatory effects that promote cancer cell metabolism, proliferation, and migration. In addition to its role in cancer, PKM2 regulates aspects essential to cellular homeostasis in non-cancer tissues and, in some cases, promotes tissue-specific pathways in health and diseases. In pursuit of understanding the diverse tissue-specific roles of PKM2, investigations targeting tissues such as the kidney, liver, adipose, and pancreas have been conducted. Findings from these studies enhance our understanding of PKM2 functions in various diseases beyond cancer. Therefore, there is substantial interest in PKM2 modulation as a potential therapeutic target for the treatment of multiple conditions. Indeed, a vast plethora of research has focused on identifying therapeutic strategies for targeting PKM2. Recently, targeting PKM2 through its regulatory microRNAs, long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) has gathered increasing interest. Thus, the goal of this review is to highlight recent advancements in PKM2 research, with a focus on PKM2 regulatory microRNAs and lncRNAs and their subsequent physiological significance.
Collapse
Affiliation(s)
- Dexter L. Puckett
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996, USA; (D.L.P.); (M.A.)
| | - Mohammed Alquraishi
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996, USA; (D.L.P.); (M.A.)
| | - Winyoo Chowanadisai
- Department of Nutrition, Oklahoma State University, Stillwater, OK 74078, USA;
| | - Ahmed Bettaieb
- Department of Nutrition, University of Tennessee Knoxville, Knoxville, TN 37996, USA; (D.L.P.); (M.A.)
| |
Collapse
|
9
|
He H, Wang Y, Ye P, Yi D, Cheng Y, Tang H, Zhu Z, Wang X, Jin S. Long noncoding RNA ZFPM2-AS1 acts as a miRNA sponge and promotes cell invasion through regulation of miR-139/GDF10 in hepatocellular carcinoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:159. [PMID: 32795316 PMCID: PMC7427719 DOI: 10.1186/s13046-020-01664-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 08/04/2020] [Indexed: 12/12/2022]
Abstract
Background Emerging evidence has shown that dysregulated expression of long noncoding RNAs (lncRNAs) is implicated in liver hepatocellular carcinoma (HCC). However, the role and molecular mechanism of differentially expressed lncRNAs in HCC has not been fully explained. Methods The expression profiles of lncRNAs in HCC samples were derived from microarrays analysis or downloaded from The Cancer Genome Atlas (TCGA), and their correlation with prognosis and clinical characteristics were further analyzed. Silencing of lncRNA ZFPM2-AS1 was conducted to assess the effect of ZFPM2-AS1 in vitro. The miRcode and Target Scan databases were used to determine the lncRNA-miRNA-mRNA interactions. The biological functions were demonstrated by luciferase reporter assay, western blotting, PCR and rescue experiments. Results The expression level of lncRNA ZFPM2-AS1 was significantly higher in HCC tissues than in adjacent normal tissues, and higher ZFPM2-AS1 was remarkably related to poor survival. Functionally, silencing of lncRNA ZFPM2-AS1 inhibited cell proliferation, migration, invasion and promoted cell apoptosis in vitro. Bioinformatics analysis based on the miRcode and TargetScan databases showed that lncRNA ZFPM2-AS1 regulated GDF10 expression by competitively binding to miR-139. miR-139 and downregulated GDF10 reversed cell phenotypes caused by lncRNA ZFPM2-AS1 by rescue analysis. Conclusions ZFPM2-AS1, an upregulated lncRNA in HCC, was associated with malignant tumor phenotypes and worse patient survival. ZFPM2-AS1 regulated the progression of HCC by acting as a competing endogenous RNA (ceRNA) to competitively bind to miR-139 and regulate GDF10 expression. Our study provides new insight into the posttranscriptional regulation mechanism of lncRNA ZFPM2-AS1 and suggests that ZFPM2-AS1/miR-139/GDF10 may act as a potential therapeutic target and prognostic biomarker for HCC.
Collapse
Affiliation(s)
- Hui He
- Department of Laparoscopic Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, 116000, Liaoning Province, China
| | - Yawei Wang
- Department of thoracic surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital& Institute, Shenyang, 110042, Liaoning Province, China
| | - Peng Ye
- Department of Urological Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, Liaoning Province, China
| | - Dehui Yi
- Department of organ transplantation& hepatobiliary surgery, the First Affiliated Hospital of China Medical University, Shenyang, 110042, Liaoning Province, China
| | - Ying Cheng
- Department of organ transplantation& hepatobiliary surgery, the First Affiliated Hospital of China Medical University, Shenyang, 110042, Liaoning Province, China
| | - Haibo Tang
- Department of Gastrointestinal & Hernia & Bariatric Surgery, the Third Xiangya Hospital of Central South University, Changsha, 410000, Hunan Province, China
| | - Zhi Zhu
- Department of Laparoscopic Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, 116000, Liaoning Province, China
| | - Xun Wang
- Department of Laparoscopic Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, 116000, Liaoning Province, China
| | - Shi Jin
- Department of Laparoscopic Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, 116000, Liaoning Province, China.
| |
Collapse
|
10
|
Liu L, Zheng M, Wang X, Gao Y, Gu Q. LncRNA NR_136400 Suppresses Cell Proliferation and Invasion by Acting as a ceRNA of TUSC5 That Is Modulated by miR-8081 in Osteosarcoma. Front Pharmacol 2020; 11:641. [PMID: 32499696 PMCID: PMC7242660 DOI: 10.3389/fphar.2020.00641] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 04/21/2020] [Indexed: 12/11/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are emerging as important regulators of the processes involved in cancer development and progression. The molecular mechanism by which lncRNAs regulate the progression of osteosarcoma has not been clearly elucidated. The role of NR_136400, which is an uncharacterized lncRNA, has not been previously reported in osteosarcoma (OS). In the present study, we demonstrated that NR_136400 was downregulated in OS cells and that its downregulation promoted OS cell proliferation, apoptosis, and invasion. NR_136400 downregulation facilitated EMT by inhibiting the expression of E-cadherin and elevating the expression of ZEB1, Snail, and fibronectin. In vivo experiments using a xenograft tumor mouse model revealed that NR_136400 downregulation promoted tumor growth in OS. Mechanistic investigations demonstrated that NR_136400 competitively bound to miR-8081 and then upregulated the protein expression of TUSC5. Taken together, a newly identified regulatory mechanism of the lncRNA NR_136400/miR-8081/TUSC5 axis was systematically studied in OS, providing a promising target for therapeutic treatment.
Collapse
Affiliation(s)
- Liyun Liu
- Henan Provincial People's Hospital, School of Clinical Medicine, Henan University, Zhengzhou, China.,Luoyang Orthopedic Hospital of Henan Province, Orthopedic Hospital of Henan Province, Zhengzhou, China
| | - Mingxia Zheng
- Department of Paediatrics, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinwei Wang
- Department of Spine Surgery, Changzheng Hospital, The Second Military Medical University, Shanghai, China
| | - Yanzheng Gao
- Henan Provincial People's Hospital, School of Clinical Medicine, Henan University, Zhengzhou, China
| | - Qingguo Gu
- Department of Spine Surgery, Changzheng Hospital, The Second Military Medical University, Shanghai, China
| |
Collapse
|
11
|
Yang F, Lei P, Zeng W, Gao J, Wu N. Long Noncoding RNA LINC00173 Promotes the Malignancy of Melanoma by Promoting the Expression of IRS4 Through Competitive Binding to microRNA-493. Cancer Manag Res 2020; 12:3131-3144. [PMID: 32440211 PMCID: PMC7211300 DOI: 10.2147/cmar.s243869] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 03/31/2020] [Indexed: 12/14/2022] Open
Abstract
Purpose Long intergenic non-protein-coding RNA 173 (LINC00173) plays crucial roles in lung cancer. However, the expression and biological functions of LINC00173 in melanoma have not yet been investigated. In this study, we aimed to characterize the involvement of LINC00173 in melanoma and elucidate its mechanisms of action. Materials and Methods Reverse-transcription quantitative PCR was performed to measure LINC00173 expression in melanoma. A CCK-8 assay, flow cytometry, and migration and invasion assays were applied to examine melanoma cell proliferation, apoptosis, migration, and invasion, respectively. A xenograft tumor experiment was performed to determine the tumorous growth of melanoma cells in vivo. Results We found that LINC00173 was upregulated in melanoma tissues and cell lines. High LINC00173 expression was closely associated with TNM stage, lymph node metastasis, and shorter overall survival of patients with melanoma. Functional assays revealed that LINC00173 downregulation inhibited melanoma cell proliferation, migration, and invasion and induced apoptosis, suggesting that LINC00173 acts as an oncogenic RNA. LINC00173 knockdown retarded the tumorous growth of melanoma cells in vivo. Mechanistically, LINC00173 increased insulin receptor substrate 4 (IRS4) expression by sponging microRNA-493 (miR-493), thereby acting as a competing endogenous RNA. The effects of LINC00173 knockdown on the malignant phenotype of melanoma cells were reversed by overexpression of IRS4 or knockdown of miR-493. Conclusion The LINC00173–miR-493–IRS4 pathway regulates melanoma characteristics by increasing the expression of IRS4 via competitive binding of LINC00173 to miR-493, suggesting that this pathway is a potential target for the diagnosis, prognosis, and/or treatment of melanoma.
Collapse
Affiliation(s)
- Fan Yang
- Department of Dermatology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, People's Republic of China
| | - Pengzhen Lei
- Department of Orthopedics, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, People's Republic of China
| | - Weihui Zeng
- Department of Dermatology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710048, People's Republic of China
| | - Jianwu Gao
- Department of Dermatology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, People's Republic of China
| | - Na Wu
- Department of Dermatology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, People's Republic of China
| |
Collapse
|
12
|
Ai J, Sun J, Zhou G, Zhu T, Jing L. Long non-coding RNA GAS6-AS1 acts as a ceRNA for microRNA-585, thereby increasing EIF5A2 expression and facilitating hepatocellular carcinoma oncogenicity. Cell Cycle 2020; 19:742-757. [PMID: 32089066 PMCID: PMC7145326 DOI: 10.1080/15384101.2020.1729323] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 12/22/2019] [Accepted: 12/29/2019] [Indexed: 12/23/2022] Open
Abstract
Long non-coding RNA termed GAS6 antisense RNA 1 (GAS6-AS1) plays an essential role in gastric and non-small cell lung cancers. Nonetheless, the function of GAS6-AS1 in hepatocellular carcinoma (HCC) has not been so far studied in detail. In this study, reverse-transcription quantitative PCR was performed to measure GAS6-AS1 expression in HCC samples. A series of functional experiments, including MTT assay, colony formation assay, flow-cytometric analysis, and transwell migration and invasion assays, was performed to determine the influence of GAS6-AS1 knockdown on the malignant phenotype of HCC. The results showed that GAS6-AS1 was significantly upregulated in HCC tissue samples and cell lines. Increased GAS6-AS1 expression was associated with tumor size, Edmondson grade, and Tumor-Node-Metastasis (TNM) stage among patients with HCC. The overall survival of patients with HCC characterized with high expression of GAS6-AS1 was significantly shorter in comparison to that of patients with low level of GAS6-AS1. Functional experiments indicated that knockdown of GAS6-AS1 suppressed HCC cell proliferation, colony formation, migration, and invasion in vitro; promoted apoptosis in vitro; and decreased tumor growth in vivo. Of note, GAS6-AS1 was validated as a competing endogenous RNA (ceRNA) for microRNA-585 (miR-585) and consequently increased the expression of eukaryotic translation initiation factor 5A2 (EIF5A2). Finally, rescue experiments confirmed the association among GAS6-AS1, miR-585, and EIF5A2 in HCC cells. Our study provides substantial evidence that the GAS6-AS1/miR-585/EIF5A2 pathway plays an important role in HCC progression and that might be considered as a potential target for therapeutic approaches in HCC.
Collapse
Affiliation(s)
- Jing Ai
- Department of Ophthalmology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Junhui Sun
- Hepatobiliary and Pancreatic Interventional Treatment Center, Division of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Guanhui Zhou
- Hepatobiliary and Pancreatic Interventional Treatment Center, Division of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Tongyin Zhu
- Hepatobiliary and Pancreatic Interventional Treatment Center, Division of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Li Jing
- Hepatobiliary and Pancreatic Interventional Treatment Center, Division of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| |
Collapse
|
13
|
Zhu X, Luo W, Bei C, Kong J, Zhang S, Fu Y, Li D, Tan S. Correlations between chromobox homolog 8 and key factors of epithelial-mesenchymal transition in hepatocellular carcinoma. Cancer Cell Int 2019; 19:340. [PMID: 31889893 PMCID: PMC6916084 DOI: 10.1186/s12935-019-1063-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 12/09/2019] [Indexed: 02/07/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide, especially in China, with high metastasis and poor prognosis. Recently, as the core component of the polycomb repressive complexes 1 (PRC1), chromobox protein homolog 8 (CBX8) is considered as an oncogene and prognostic marker in HCC. Methods A tissue microarray of 166 paired HCC and adjacent non-tumor samples were collected to identify the relationship between CBX8 and epithelial mesenchymal transition (EMT) associated proteins by Spearman correlation analysis. Knock-down of CBX8 in HCC cells was conducted to detect the biologic functions of CBX8 in HCC metastasis. Results We found out that CBX8 was over-expressed in HCC and its expression was closely related to the metastasis of HCC patients. In addition, knock-down of CBX8 was found to inhibit the invasion and migration ability of HCC cells. Moreover, there was a significant relationship between expression of CBX8 and EMT associated proteins both in HCC cells and tumor tissues. Conclusions Our results indicate that CBX8 promotes metastasis of HCC by inducing EMT process.
Collapse
Affiliation(s)
- Xiaonian Zhu
- 1Department of Epidemiology and Health Statistics, School of Public Health, Guilin Medical University, 109 Huancheng North Road 2, Guilin, 541004 Guangxi People's Republic of China
| | - Wei Luo
- 2Nanchong Central Hospital, The Second Clinical College of North Sichuan Medical College, Nanchong, 637000 Sichuan People's Republic of China
| | - Chunhua Bei
- 1Department of Epidemiology and Health Statistics, School of Public Health, Guilin Medical University, 109 Huancheng North Road 2, Guilin, 541004 Guangxi People's Republic of China
| | - Juan Kong
- 1Department of Epidemiology and Health Statistics, School of Public Health, Guilin Medical University, 109 Huancheng North Road 2, Guilin, 541004 Guangxi People's Republic of China
| | - Shidong Zhang
- 1Department of Epidemiology and Health Statistics, School of Public Health, Guilin Medical University, 109 Huancheng North Road 2, Guilin, 541004 Guangxi People's Republic of China
| | - Yuanyuan Fu
- 1Department of Epidemiology and Health Statistics, School of Public Health, Guilin Medical University, 109 Huancheng North Road 2, Guilin, 541004 Guangxi People's Republic of China
| | - Di Li
- 1Department of Epidemiology and Health Statistics, School of Public Health, Guilin Medical University, 109 Huancheng North Road 2, Guilin, 541004 Guangxi People's Republic of China
| | - Shengkui Tan
- 1Department of Epidemiology and Health Statistics, School of Public Health, Guilin Medical University, 109 Huancheng North Road 2, Guilin, 541004 Guangxi People's Republic of China
| |
Collapse
|
14
|
Shang W, Adzika GK, Li Y, Huang Q, Ding N, Chinembiri B, Rashid MSI, Machuki JO. Molecular mechanisms of circular RNAs, transforming growth factor-β, and long noncoding RNAs in hepatocellular carcinoma. Cancer Med 2019; 8:6684-6699. [PMID: 31523930 PMCID: PMC6826001 DOI: 10.1002/cam4.2553] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 08/23/2019] [Accepted: 08/26/2019] [Indexed: 12/17/2022] Open
Abstract
At the heart of hepatocellular carcinoma (HCC) lies disruption of signaling pathways at the level of molecules, genes, and cells. Non‐coding RNAs (ncRNAs) have been implicated in the disease progression of HCC. For instance, dysregulated expression of circular RNAs (circRNAs) has been observed in patients with HCC. As such, these RNAs are potential therapeutic targets and diagnostic markers for HCC. Long non‐coding RNAs (lncRNAs), a type of ncRNA, have also been recognized to participate in the initiation and progression of HCC. Transforming growth factor‐beta (TGF‐β) is another element which is now recognized to play crucial roles in HCC. It has been implicated in many biological processes such as survival, immune surveillance, and cell proliferation. In HCC, TGF‐β promotes disease progression by two mechanisms: an intrinsic signaling pathway and the extrinsic pathway. Through these pathways, it modulates various microenvironment factors such as inflammatory mediators and fibroblasts. An interesting yet‐to‐be resolved concept is whether the HCC‐promoting role of TGF‐β pathways is limited to a subset of HCC patients or it is involved in the whole process of HCC development. This review summarizes recent advancements to highlight the roles of circRNAs, lncRNAs, and TGF‐β in HCC.
Collapse
Affiliation(s)
- Wenkang Shang
- Department of Laboratory Medicine, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | | | - Yujie Li
- Department of Clinical Laboratory, The First People's Hospital of Kunshan, Kunshan, Jiangsu, China
| | - Qike Huang
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Ningding Ding
- Department of Neurophysiology and Location Diagnosis, Guangdong 39 Brain Hospital, Guangzhou, Guangdong, China
| | - Bianca Chinembiri
- Physiology Department, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | | | | |
Collapse
|