1
|
Du W, Xia X, Gou Q, Qiu Y. Mendelian randomization and transcriptomic analysis reveal a positive cause-and-effect relationship between Alzheimer's disease and colorectal cancer. Transl Oncol 2025; 51:102169. [PMID: 39608211 PMCID: PMC11635780 DOI: 10.1016/j.tranon.2024.102169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/25/2024] [Accepted: 10/29/2024] [Indexed: 11/30/2024] Open
Abstract
BACKGROUND This study addresses the complex multifactorial causes of Alzheimer's disease (AD) and colorectal cancer (CRC), two significant public health issues. Despite previous research, the precise relationship between AD and CRC remains unclear. This study aimed to explore the potential causal relationship between AD and CRC using Mendelian randomization (MR) and to identify risk genes through colocalization and transcriptomic analyses. METHOD The study used a two-sample Mendelian randomization (MR) approach to investigate the causal effect of AD on CRC. Genome-wide association study (GWAS) summary statistics for AD and CRC were utilized. Colocalization analysis was conducted to identify risk genes associated with AD, which were then validated through transcriptomic analysis in CRC samples. The study used GWAS data from a cohort of European patients and applied several MR methods, including MR Egger, weighted median, and inverse-variance weighted approaches, to ensure robust findings. RESULTS The MR analysis revealed a significant positive causal relationship between AD and CRC, indicating that an increased genetic predisposition to AD is associated with a elevated risk of developing CRC. The colocalization analysis identified COLEC11 as a significant risk gene for AD, which also showed a strong positive correlation with clinical features and survival outcomes in CRC. Elevated COLEC11 expression was linked to advanced clinical stages, increased tumor mutational burden, microsatellite instability, and poorer overall survival in CRC patients. CONCLUSIONS This study provides evidence of a causal relationship between AD and CRC, suggesting that shared genetic and inflammatory pathways may underlie both conditions. The identification of COLEC11 as a potential link between AD and CRC offers new avenues for research and therapeutic interventions. These findings contribute to a deeper understanding of the interplay between neurodegenerative and oncologic diseases, highlighting the importance of exploring common pathogenic mechanisms.
Collapse
Affiliation(s)
- Wei Du
- Department of Biotherapy, West China Hospital and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xueming Xia
- Department of Head and Neck Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qiheng Gou
- Department of Head and Neck Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yan Qiu
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
2
|
Li X, Zhu D. Role of disulfide death in cancer (Review). Oncol Lett 2025; 29:55. [PMID: 39606569 PMCID: PMC11600708 DOI: 10.3892/ol.2024.14801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/24/2024] [Indexed: 11/29/2024] Open
Abstract
The research field of regulated cell death is growing extensively. Following the recognition of ferroptosis, other unique and distinct forms of regulated cell death, including cuproptosis and disulfide death, have been identified. Disulfide death occurs due to the abnormal accumulation of disulfides within cells in environments lacking glucose, leading to contraction of the actin cytoskeleton, which ultimately triggers various signaling pathways and cell death. The induction of disulfide death in the treatment of cancer may exhibit significant therapeutic potential. Therefore, in the present review, a comprehensive and critical analysis of the current understanding of the molecular mechanisms and regulatory networks of disulfide death is presented. In addition, the potential physiological functions of disulfide death in tumor suppression and immune surveillance as well as its pathological roles and therapeutic potential are described. The core focus areas for future research into this form of cell death are also explored. Given the current lack of extensive clinical findings and well-defined key concepts, these may be regarded as pivotal points of interest in future studies.
Collapse
Affiliation(s)
- Xue Li
- Oncology Department, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213000, P.R. China
| | - Danxia Zhu
- Oncology Department, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213000, P.R. China
| |
Collapse
|
3
|
Zhu M, Sun X, Fang J, Li X. Deconvolution of cell-type-associated markers predictive of response to neoadjuvant radiotherapy. Comput Biol Chem 2024; 113:108269. [PMID: 39520737 DOI: 10.1016/j.compbiolchem.2024.108269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/30/2024] [Accepted: 10/20/2024] [Indexed: 11/16/2024]
Abstract
Tumor microenvironent contains prognostic molecular markers and therapeutic targets from different cellular sources, which are still not fully revealed in the resistance and recurrence after radiotherapy for rectal cancer. By integrating the scRNA-seq data, we deconvoluted the bulk transcriptomics of rectal cancer collected before preoperative neoadjuvant radiotherapy (nRT) into fractions and gene expression of the six cell types. The inferred cell-type-associated DEGs, abbreviated as caDEGs, of myeloid and stromal cells were enriched for overlapping yet unique biological processes including immunity, angiogenesis, and metabolism, respectively. Ecotyper analysis indicates that the caDEGs reflects cell states and ecotypes in association with nRT response. By mapping the caDEGs onto the context-free and newly built ligand-receptor and collagen-integrin lists from scRNA-Seq data, respectively, we inferred 297 cell-type-specific trans- and/or cis-collagen-integrin and 219 heterotypic ligand-receptor interactions potentially associated with nRT response, including interactions between stromal-associated COL1A2/COL6A1/COL6A2 and stromal or CMS1-associated ITGA1/B1, between epithelial-associated JAG1 and stromal-associated NOTCHs, between CMS2 epithelial-associated CCL15 and proliferating myeloid-associated CCR1, between myeloid-associated CCL4/CD86 and lymphatic endothelial-associated ACKR2, and between myeloid-associated TNFS13B and B cell-associated TNFRSF13B/C, etc. Intriguingly, results suggest a greater number of down-regulated cell-type-related markers in resistant cancers to nRT. Favorable myeloid-associated CD14, epithelial-associated DYM, stromal-associated COL1A2 and COL3A1, and unfavorable epithelial-associated CELSR3 and KCNH8 markers were inferred at least from two independent nCRT datasets of GSE119409, GSE35452, and GSE45404. The results provide insights into roles of the stromal and immune cells beside epithelial cells in resistance to radiotherapy for rectal cancers. The proposed approach can be applicable to other diseases as well. Codes and additional data are available at https://github.com/Xueling21/rectalNRT_deconv.
Collapse
Affiliation(s)
- Min Zhu
- Hefei Cancer Hospital of CAS; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences (CAS), Hefei 230031, China; School of Mathematics and Computer Science, Tongling University, Tongling 244061, China
| | - Xiao Sun
- Hefei Cancer Hospital of CAS; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences (CAS), Hefei 230031, China; School of Electronic and Information Engineering, Anhui Jianzhu University, South Campus: No. 292 Ziyun Road, Shushan District, Hefei 230009, China
| | - Jinman Fang
- Hefei Cancer Hospital of CAS; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences (CAS), Hefei 230031, China.
| | - Xueling Li
- Hefei Cancer Hospital of CAS; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences (CAS), Hefei 230031, China; School of Mathematics and Computer Science, Tongling University, Tongling 244061, China.
| |
Collapse
|
4
|
Wang Z, Chen H, Sun L, Wang X, Xu Y, Tian S, Liu X. Uncovering the potential of APOD as a biomarker in gastric cancer: A retrospective and multi-center study. Comput Struct Biotechnol J 2024; 23:1051-1064. [PMID: 38455068 PMCID: PMC10918487 DOI: 10.1016/j.csbj.2024.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 02/16/2024] [Accepted: 02/16/2024] [Indexed: 03/09/2024] Open
Abstract
Gastric cancer (GC) poses a significant health challenge worldwide, necessitating the identification of predictive biomarkers to improve prognosis. Dysregulated lipid metabolism is a well-recognized hallmark of tumorigenesis, prompting investigation into apolipoproteins (APOs). In this study, we focused on apolipoprotein D (APOD) following comprehensive analyses of APOs in pan-cancer. Utilizing data from the TCGA-STAD and GSE62254 cohorts, we elucidated associations between APOD expression and multiple facets of GC, including prognosis, tumor microenvironment (TME), cancer biomarkers, mutations, and immunotherapy response, and identified potential anti-GC drugs. Single-cell analyses and immunohistochemical staining confirmed APOD expression in fibroblasts within the GC microenvironment. Additionally, we independently validated the prognostic significance of APOD in the ZN-GC cohort. Our comprehensive analyses revealed that high APOD expression in GC patients was notably associated with unfavorable clinical outcomes, reduced microsatellite instability and tumor mutation burden, alterations in the TME, and diminished response to immunotherapy. These findings provide valuable insights into the potential prognostic and therapeutic implications of APOD in GC.
Collapse
Affiliation(s)
- Zisong Wang
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei Province, China
- School of Basic Medical Sciences, Wuhan University, Wuhan 430071, Hubei Province, China
| | - Hongshan Chen
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei Province, China
| | - Le Sun
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei Province, China
| | - Xuanyu Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei Province, China
| | - Yihang Xu
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei Province, China
| | - Sufang Tian
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei Province, China
| | - Xiaoping Liu
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei Province, China
| |
Collapse
|
5
|
Pirota V, Stritto AD, Magnaghi LR, Biesuz R, Doria F, Mella M, Freccero M, Crespan E. A Novel G-Quadruplex Structure within Apolipoprotein E Promoter: A New Promising Target in Cancer and Dementia Fight? ACS OMEGA 2024; 9:45203-45213. [PMID: 39554422 PMCID: PMC11561760 DOI: 10.1021/acsomega.4c06430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/27/2024] [Accepted: 10/03/2024] [Indexed: 11/19/2024]
Abstract
Human apolipoprotein E (APOE) is a crucial lipid transport glycoprotein involved in various biological processes, including lipid metabolism, immune response, and neurodegeneration. Elevated APOE levels are linked to poor prognosis in several cancers and increased risk of Alzheimer's disease (AD). Therefore, modulating APOE expression presents a promising therapeutic strategy for both cancer and AD. Considering the pivotal role of G-quadruplex (G4) structures in medicinal chemistry as modulators of gene expression, here, we present a newly discovered G-quadruplex (G4) structure within the ApoE gene promoter. Bioinformatic analysis identified 21 potential G4-forming sequences in the ApoE promoter, with the more proximal to the transcription start site, pApoE, showing the highest G-score. Biophysical studies confirmed the folding of pApoE into a stable parallel G4 under physiological conditions, supported by circular dichroism, NMR spectroscopy, UV-melting, and a quantitative PCR stop assay. Moreover, the ability to modulate pApoE-G4 folding was demonstrated by using G4-stabilizing ligands (HPHAM, Braco19, and PDS), which increased the thermal stability of pApoE-G4. In contrast, peptide nucleic acid conjugates were synthesized to disrupt G4 formation, effectively hybridizing with pApoE sequences, and confirming the potential to unfold G4 structures. Overall, our findings provide a mainstay for future therapeutic approaches targeting ApoE-G4s to regulate APOE expression, offering potential advancements in cancer and AD treatment.
Collapse
Affiliation(s)
- Valentina Pirota
- Department
of Chemistry, University of Pavia, via Taramelli 10, I-27100 Pavia, Italy
- G4-INTERACT,
USERN, via Taramelli
10, I-27100 Pavia, Italy
| | - Angela Dello Stritto
- Istituto
di Genetica Molecolare “Luigi Luca Cavalli-Sforza”, via Abbiategrasso 207, I-27100 Pavia, Italy
| | - Lisa Rita Magnaghi
- Department
of Chemistry, University of Pavia, via Taramelli 10, I-27100 Pavia, Italy
- Unità
di Ricerca di Pavia, Via G. Giusti 9, I-50121 Firenze, Italy
| | - Raffaela Biesuz
- Department
of Chemistry, University of Pavia, via Taramelli 10, I-27100 Pavia, Italy
- Unità
di Ricerca di Pavia, Via G. Giusti 9, I-50121 Firenze, Italy
| | - Filippo Doria
- Department
of Chemistry, University of Pavia, via Taramelli 10, I-27100 Pavia, Italy
| | - Mariella Mella
- Department
of Chemistry, University of Pavia, via Taramelli 10, I-27100 Pavia, Italy
| | - Mauro Freccero
- Department
of Chemistry, University of Pavia, via Taramelli 10, I-27100 Pavia, Italy
| | - Emmanuele Crespan
- Istituto
di Genetica Molecolare “Luigi Luca Cavalli-Sforza”, via Abbiategrasso 207, I-27100 Pavia, Italy
| |
Collapse
|
6
|
Yildirim OS, Yildiz P, Karaer A, Calleja-Agius J, Ozcan S. Exploring the protein signature of endometrial cancer: A comprehensive review through diverse samples and mass spectrometry-based proteomics. EUROPEAN JOURNAL OF SURGICAL ONCOLOGY 2024:108783. [PMID: 39488491 DOI: 10.1016/j.ejso.2024.108783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 10/23/2024] [Indexed: 11/04/2024]
Abstract
Endometrial cancer (EC) is increasing incidence among women, and it constitutes a health problem for women globally. An important aspect of EC management involves the use of protein biomarkers for early detection and monitoring. Protein biomarkers allow the identification of high-risk patients, the detection of the disease in its early stages, and the assessment of treatment responses. Mass spectrometry (MS)-based proteomics offers robust analytical techniques and a comprehensive understanding of proteins. Proteomics methods allow scientists to investigate both the quantities and functions of proteins. Thus, it provides valuable insights into how proteins are altered under different conditions. This review summarizes recent advances in MS-based proteomic biomarker discovery for EC, focusing on different sample types and MS-based techniques used in clinical studies. The review emphasized in detail the most commonly used key sources such as blood, urine, vaginal fluids and tissue. Furthermore, MS-based proteomics techniques such as untargeted, targeted, sequential window acquisition of all theoretical mass spectra (SWATH-MS) and mass spectrometry imaging used in the discovery and validation/validation phases were evaluated. This review highlights the importance of biomarker discovery and clinical translation to improve diagnostic and therapeutic outcomes in EC. It aims to provide a comprehensive overview of MS-based proteomics in EC, guiding future research and clinical applications.
Collapse
Affiliation(s)
- Oyku Su Yildirim
- Department of Chemistry, Middle East Technical University (METU), 06800, Ankara, Turkiye
| | - Pelin Yildiz
- Department of Chemistry, Middle East Technical University (METU), 06800, Ankara, Turkiye
| | - Abdullah Karaer
- Reproductive Sciences & Advanced Bioinformatics Application & Research Center, Inonu University, 44280, Malatya, Turkiye; Department of Obstetrics and Gynecology, School of Medicine, Inonu University, 44280, Malatya, Turkiye
| | - Jean Calleja-Agius
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, Msida, MSD2080, Malta
| | - Sureyya Ozcan
- Department of Chemistry, Middle East Technical University (METU), 06800, Ankara, Turkiye; Cancer Systems Biology Laboratory (CanSyL), Middle East Technical University (METU), 06800, Ankara, Turkiye.
| |
Collapse
|
7
|
Sun X, Zhao X, Wang S, Liu Q, Wei W, Xu J, Wang H, Yang W. The pathological significance and potential mechanism of ACLY in cholangiocarcinoma. Front Immunol 2024; 15:1477267. [PMID: 39399493 PMCID: PMC11466796 DOI: 10.3389/fimmu.2024.1477267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 09/10/2024] [Indexed: 10/15/2024] Open
Abstract
Background and aim Cholangiocarcinoma (CCA) is a rare cancer, yet its incidence and mortality rates have been steadily increasing globally over the past few decades. Currently, there are no effective targeted treatment strategies available for patients. ACLY (ATP Citrate Lyase), a key enzyme in de novo lipogenesis, is aberrantly expressed in several tumors and is associated with malignant progression. However, its role and mechanisms in CCA have not yet been elucidated. Methods The expression of ACLY in CCA was assessed using transcriptomic profiles and tissue microarrays. Kaplan-Meier curves were employed to evaluate the prognostic significance of ACLY in CCA. Functional enrichment analysis was used to explore the potential mechanisms of ACLY in CCA. A series of assays were conducted to examine the effects of ACLY on the proliferation and migration of CCA cells. Ferroptosis inducers and inhibitors, along with lipid peroxide probes and MDA assay kits, were utilized to explore the role of ACLY in ferroptosis within CCA. Additionally, lipid-depleted fetal bovine serum and several fatty acids were used to evaluate the impact of fatty acids on ferroptosis induced by ACLY inhibition. Correlation analyses were performed to elucidate the relationship between ACLY and tumor stemness as well as tumor microenvironment. Results The expression of ACLY was found to be higher in CCA tissues compared to adjacent normal tissues. Patients with elevated ACLY expression demonstrated poorer overall survival outcomes. ACLY were closed associated with fatty acid metabolism and tumor-initiating cells. Knockdown of ACLY did not significantly impact the proliferation and migration of CCA cells. However, ACLY inhibition led to increased accumulation of lipid peroxides and enhanced sensitivity of CCA cells to ferroptosis inducers. Polyunsaturated fatty acids were observed to inhibit the proliferation of ACLY-knockdown cells; nonetheless, this inhibitory effect was diminished when the cells were cultured in medium supplemented with lipid-depleted fetal bovine serum. Additionally, ACLY expression was negatively correlated with immune cell infiltration and immune scores in CCA. Conclusion ACLY promotes ferroptosis by disrupting the balance of saturated and unsaturated fatty acids. ACLY may therefore serve as a potential diagnostic and therapeutic target for CCA.
Collapse
Affiliation(s)
- Xiaoyan Sun
- Translational Medicine Centre, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaofang Zhao
- Translational Medicine Centre, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Senyan Wang
- Translational Medicine Centre, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Qi Liu
- Translational Medicine Centre, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wenjuan Wei
- Translational Medicine Centre, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jing Xu
- Translational Medicine Centre, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hongyang Wang
- Translational Medicine Centre, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute/Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
- National Center for Liver Cancer, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Wen Yang
- Translational Medicine Centre, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- International Co-operation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute/Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
- National Center for Liver Cancer, Naval Medical University (Second Military Medical University), Shanghai, China
| |
Collapse
|
8
|
Cho KH, Lee Y, Lee SH, Kim JE, Bahuguna A, Dominguez-Horta MDC, Martinez-Donato G. Enhancing Wound Healing and Anti-Inflammatory Effects by Combination of CIGB-258 and Apolipoprotein A-I against Carboxymethyllysine Toxicity in Zebrafish: Insights into Structural Stabilization and Antioxidant Properties. Antioxidants (Basel) 2024; 13:1049. [PMID: 39334708 PMCID: PMC11428460 DOI: 10.3390/antiox13091049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/24/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
CIGB-258 is known to exert anti-inflammatory activity via structural stabilization of apolipoprotein A-I (apoA-I) and functional enhancement of high-density lipoproteins (HDL) against acute toxicity of carboxymethyllysine (CML). The co-presence of CIGB-258 in reconstituted HDL (rHDL) formed larger rHDL particles and enhanced anti-inflammatory activity in a dose-dependent manner of apoA-I:CIGB-258, 1:0, 1:0.1, 1:0.5, and 1:1 of molar ratio, in the synthesis of the rHDL. However, no study has evaluated the enhancement of HDL functionality by the co-presence of lipid-free apoA-I and CIGB-258. The present study was therefore designed to compare the structural stabilization and functional improvement of HDL in the presence of lipid-free apoA-I and CIGB-258 in molar ratios of 1:0, 1:0.1, 1:0.5, and 1:1 within both HDL2 and HDL3. As the concentration of CIGB-258 increased, it effectively inhibited the cupric-ion-induced oxidation of HDL, thereby safeguarding apoA-I from proteolytic degradation. Additionally, the wound-healing activity of zebrafish was significantly (p < 0.01) enhanced by the co-addition of apoA-I:CIGB-258 (1:1) up to 1.6-fold higher than apoA-I alone (1:0) under the presence of CML. ApoA-I:CIGB-258 (1:1) treatment exhibited the lowest apoptosis and production of reactive oxygen species against CML-induced damage in the wound site. Also, an increase in wounded tissue granulation and epidermis thickness was observed with increasing concentration of CIGB-258 during 48 h post-treatment via the healing process. Intraperitoneal injection of apoA-I:CIGB-258 mixture remarkably ameliorated the acute paralysis and restored zebrafish swimming ability impaired by the acute toxicity of CML. The increase of CIGB-258 content, especially co-injection of apoA-I:CIGB-258 (1:1), leads to a significant 2.3-fold (p < 0.001) and 4.1-fold (p < 0.001) higher zebrafish survivability and recovery of swimming ability, respectively, than those of CML-control. In the apoA-I:CIGB-258 (1:1) group, neutrophil infiltration and interleukin (IL)-6 production was lowest in the hepatic tissue with the least cellular damage and apoptosis. Additionally, the group treated with apoA-I:CIGB-258 (1:1) demonstrated the lowest plasma levels of total cholesterol (TC) and triglycerides (TG), along with minimal damage to the kidney, ovary, and testicular cells. Conclusively, co-treatment of CIGB-258 with apoA-I effectively mitigated acute inflammation in zebrafish, safeguarded vital organs, structurally stabilized apoA-I, and enhanced HDL functionality.
Collapse
Affiliation(s)
- Kyung-Hyun Cho
- Raydel Research Institute, Medical Innovation Complex, Daegu 41061, Republic of Korea
| | - Yunki Lee
- Raydel Research Institute, Medical Innovation Complex, Daegu 41061, Republic of Korea
| | - Sang Hyuk Lee
- Raydel Research Institute, Medical Innovation Complex, Daegu 41061, Republic of Korea
| | - Ji-Eun Kim
- Raydel Research Institute, Medical Innovation Complex, Daegu 41061, Republic of Korea
| | - Ashutosh Bahuguna
- Raydel Research Institute, Medical Innovation Complex, Daegu 41061, Republic of Korea
| | | | - Gillian Martinez-Donato
- Center for Genetic Engineering and Biotechnology, Ave 31, e/158 y 190, Playa, La Havana 10600, Cuba
| |
Collapse
|
9
|
Liu H, Lv Z, Zhang G, Yan Z, Bai S, Dong D, Wang K. Molecular understanding and clinical aspects of tumor-associated macrophages in the immunotherapy of renal cell carcinoma. J Exp Clin Cancer Res 2024; 43:242. [PMID: 39169402 PMCID: PMC11340075 DOI: 10.1186/s13046-024-03164-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 08/12/2024] [Indexed: 08/23/2024] Open
Abstract
Renal cell carcinoma (RCC) is one of the most common tumors that afflicts the urinary system, accounting for 90-95% of kidney cancer cases. Although its incidence has increased over the past decades, its pathogenesis is still unclear. Tumor-associated macrophages (TAMs) are the most prominent immune cells in the tumor microenvironment (TME), comprising more than 50% of the tumor volume. By interacting with cancer cells, TAMs can be polarized into two distinct phenotypes, M1-type and M2-type TAMs. In the TME, M2-type TAMs, which are known to promote tumorigenesis, are more abundant than M1-type TAMs, which are known to suppress tumor growth. This ratio of M1 to M2 TAMs can create an immunosuppressive environment that contributes to tumor cell progression and survival. This review focused on the role of TAMs in RCC, including their polarization, impacts on tumor proliferation, angiogenesis, invasion, migration, drug resistance, and immunosuppression. In addition, we discussed the potential of targeting TAMs for clinical therapy in RCC. A deeper understanding of the molecular biology of TAMs is essential for exploring innovative therapeutic strategies for the treatment of RCC.
Collapse
Affiliation(s)
- Han Liu
- Department of Urology, Shengjing Hospital of China Medical University, #36 Sanhao Street, Shenyang, Liaoning, 110004, China
| | - Zongwei Lv
- Department of Urology, Shengjing Hospital of China Medical University, #36 Sanhao Street, Shenyang, Liaoning, 110004, China
| | - Gong Zhang
- Department of Urology, Shengjing Hospital of China Medical University, #36 Sanhao Street, Shenyang, Liaoning, 110004, China
| | - Zhenhong Yan
- Department of Urology, Shengjing Hospital of China Medical University, #36 Sanhao Street, Shenyang, Liaoning, 110004, China
| | - Song Bai
- Department of Urology, Shengjing Hospital of China Medical University, #36 Sanhao Street, Shenyang, Liaoning, 110004, China.
| | - Dan Dong
- College of Basic Medical Science, China Medical University, #77 Puhe Road, Shenyang, Liaoning, 110122, China.
| | - Kefeng Wang
- Department of Urology, Shengjing Hospital of China Medical University, #36 Sanhao Street, Shenyang, Liaoning, 110004, China.
| |
Collapse
|
10
|
Serambeque B, Mestre C, Hundarova K, Marto CM, Oliveiros B, Gomes AR, Teixo R, Carvalho AS, Botelho MF, Matthiesen R, Carvalho MJ, Laranjo M. Proteomic Profile of Endometrial Cancer: A Scoping Review. BIOLOGY 2024; 13:584. [PMID: 39194522 DOI: 10.3390/biology13080584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/20/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024]
Abstract
Proteomics can be a robust tool in protein identification and regulation, allowing the discovery of potential biomarkers. In clinical practice, the management of endometrial cancer can be challenging. Thus, identifying promising markers could be beneficial, helping both in diagnosis and prognostic stratification, even predicting the response to therapy. Therefore, this manuscript systematically reviews the existing evidence of the proteomic profile of human endometrial cancer. The literature search was conducted via Medline (through PubMed) and the Web of Science. The inclusion criteria were clinical, in vitro, and in vivo original studies reporting proteomic analysis using all types of samples to map the human endometrial cancer proteome. A total of 55 publications were included in this review. Most of the articles carried out a proteomic analysis on endometrial tissue, serum and plasma samples, which enabled the identification of several potential diagnostic and prognostic biomarkers. In addition, eight articles were analyzed regarding the identified proteins, where three studies showed a strong correlation, sharing forty-five proteins. This analysis also allowed the identification of the 10 most frequently reported proteins in these studies: EGFR, PGRMC1, CSE1L, MYDGF, STMN1, CASP3 ANXA2, YBX1, ANXA1, and MYH11. Proteomics-based approaches pointed out potential diagnostic and prognostic candidates for endometrial cancer. However, there is a lack of studies exploring novel therapeutic targets.
Collapse
Affiliation(s)
- Beatriz Serambeque
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Institute of Biophysics, Faculty of Medicine, 3000-548 Coimbra, Portugal
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal
| | - Catarina Mestre
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Institute of Biophysics, Faculty of Medicine, 3000-548 Coimbra, Portugal
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal
| | - Kristina Hundarova
- Gynecology Service, Department of Gynecology, Obstetrics, Reproduction and Neonatology, Unidade Local de Saúde de Coimbra, 3004-561 Coimbra, Portugal
| | - Carlos Miguel Marto
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Institute of Biophysics, Faculty of Medicine, 3000-548 Coimbra, Portugal
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), 3004-561 Coimbra, Portugal
- Univ Coimbra, Institute of Experimental Pathology, Faculty of Medicine, 3000-548 Coimbra, Portugal
- Univ Coimbra, Institute of Integrated Clinical Practice and Laboratory for Evidence-Based Sciences and Precision Dentistry, 3000-075 Coimbra, Portugal
- Univ Coimbra, Centre for Mechanical Engineering, Materials and Processes (CEMMPRE), Advanced Production and Intelligent Systems (ARISE), 3030-788 Coimbra, Portugal
| | - Bárbara Oliveiros
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), 3004-561 Coimbra, Portugal
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO) and Laboratory of Biostatistics and Medical Informatics (LBIM), Faculty of Medicine, 3004-531 Coimbra, Portugal
| | - Ana Rita Gomes
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Institute of Biophysics, Faculty of Medicine, 3000-548 Coimbra, Portugal
- Univ Coimbra, Chemical Engineering and Renewable Resources for Sustainability (CERES), Faculty of Pharmacy, Laboratory of Pharmaceutical Chemistry, 3000-548 Coimbra, Portugal
| | - Ricardo Teixo
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Institute of Biophysics, Faculty of Medicine, 3000-548 Coimbra, Portugal
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal
| | - Ana Sofia Carvalho
- iNOVA4Health, NOVA Medical School (NMS), Faculdade de Ciências Médicas (FCM), Universidade Nova de Lisboa, 1150-082 Lisboa, Portugal
| | - Maria Filomena Botelho
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Institute of Biophysics, Faculty of Medicine, 3000-548 Coimbra, Portugal
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), 3004-561 Coimbra, Portugal
- Univ Coimbra, Institute of Experimental Pathology, Faculty of Medicine, 3000-548 Coimbra, Portugal
| | - Rune Matthiesen
- iNOVA4Health, NOVA Medical School (NMS), Faculdade de Ciências Médicas (FCM), Universidade Nova de Lisboa, 1150-082 Lisboa, Portugal
| | - Maria João Carvalho
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Institute of Biophysics, Faculty of Medicine, 3000-548 Coimbra, Portugal
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal
- Gynecology Service, Department of Gynecology, Obstetrics, Reproduction and Neonatology, Unidade Local de Saúde de Coimbra, 3004-561 Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), 3004-561 Coimbra, Portugal
- Univ Coimbra, Universitary Clinic of Gynecology, Faculty of Medicine, 3004-561 Coimbra, Portugal
| | - Mafalda Laranjo
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Institute of Biophysics, Faculty of Medicine, 3000-548 Coimbra, Portugal
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), 3004-561 Coimbra, Portugal
| |
Collapse
|
11
|
Novais AA, Tamarindo GH, Melo LMM, Balieiro BC, Nóbrega D, dos Santos G, Saldanha SF, de Souza FF, Chuffa LGDA, Bracha S, Zuccari DAPDC. Exploring Canine Mammary Cancer through Liquid Biopsy: Proteomic Profiling of Small Extracellular Vesicles. Cancers (Basel) 2024; 16:2562. [PMID: 39061201 PMCID: PMC11275101 DOI: 10.3390/cancers16142562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
(Background). Canine mammary tumors (CMTs) have emerged as an important model for understanding pathophysiological aspects of human disease. Liquid biopsy (LB), which relies on blood-borne biomarkers and offers minimal invasiveness, holds promise for reflecting the disease status of patients. Small extracellular vesicles (SEVs) and their protein cargo have recently gained attention as potential tools for disease screening and monitoring. (Objectives). This study aimed to isolate SEVs from canine patients and analyze their proteomic profile to assess their diagnostic and prognostic potential. (Methods). Plasma samples were collected from female dogs grouped into CMT (malignant and benign), healthy controls, relapse, and remission groups. SEVs were isolated and characterized using ultracentrifugation (UC), nanoparticle tracking analysis (NTA) and transmission electron microscopy (TEM). Proteomic analysis of circulating SEVs was conducted using liquid chromatography-mass spectrometry (LC-MS). (Results). While no significant differences were observed in the concentration and size of exosomes among the studied groups, proteomic profiling revealed important variations. Mass spectrometry identified exclusive proteins that could serve as potential biomarkers for mammary cancer. These included Inter-alpha-trypsin inhibitor heavy chain (ITIH2 and ITI4), phosphopyruvate hydratase or alpha enolase (ENO1), eukaryotic translation elongation factor 2 (eEF2), actin (ACTB), transthyretin (TTR), beta-2-glycoprotein 1 (APOH) and gelsolin (GSN) found in female dogs with malignant tumors. Additionally, vitamin D-binding protein (VDBP), also known as group-specific component (GC), was identified as a protein present during remission. (Conclusions). The results underscore the potential of proteins found in SEVs as valuable biomarkers in CMTs. Despite the lack of differences in vesicle concentration and size between the groups, the analysis of protein content revealed promising markers with potential applications in CMT diagnosis and monitoring. These findings suggest a novel approach in the development of more precise and effective diagnostic tools for this challenging clinical condition.
Collapse
Affiliation(s)
- Adriana Alonso Novais
- Institute of Health Science (ICS), Universidade Federal de Mato Grosso (UFMT), Sinop 78550-728, MT, Brazil; (A.A.N.); (L.M.M.M.)
| | - Guilherme Henrique Tamarindo
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-100, SP, Brazil;
| | - Luryan Mikaelly Minotti Melo
- Institute of Health Science (ICS), Universidade Federal de Mato Grosso (UFMT), Sinop 78550-728, MT, Brazil; (A.A.N.); (L.M.M.M.)
| | - Beatriz Castilho Balieiro
- Molecular Investigation of Cancer Laboratory (MICL), Department of Molecular Biology, Faculdade de Medicina de São José do Rio Preto/(FAMERP), São José do Rio Preto 15090-000, SP, Brazil;
| | - Daniela Nóbrega
- Pat Animal Laboratory, São José do Rio Preto 15070-000, SP, Brazil;
| | - Gislaine dos Santos
- Laboratory of Molecular Morphophysiology and Development (LMMD/ZMV), University of São Paulo, Pirassununga 13635-900, SP, Brazil; (G.d.S.); (S.F.S.)
| | - Schaienni Fontoura Saldanha
- Laboratory of Molecular Morphophysiology and Development (LMMD/ZMV), University of São Paulo, Pirassununga 13635-900, SP, Brazil; (G.d.S.); (S.F.S.)
| | - Fabiana Ferreira de Souza
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, FMVZ, São Paulo State University (UNESP), Botucatu 18618-681, SP, Brazil;
| | - Luiz Gustavo de Almeida Chuffa
- Department of Structural and Functional Biology, Institute of Biosciences, UNESP—São Paulo State University, Botucatu 18618-689, SP, Brazil;
| | - Shay Bracha
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Ohio State University, Columbus, OH 43210, USA;
| | - Debora Aparecida Pires de Campos Zuccari
- Molecular Investigation of Cancer Laboratory (MICL), Department of Molecular Biology, Faculdade de Medicina de São José do Rio Preto/(FAMERP), São José do Rio Preto 15090-000, SP, Brazil;
| |
Collapse
|
12
|
Yu H, Li S, Li X, Liu Y, Wang Z, Cui M, Jin F, Yu X. Apolipoprotein L3 inhibits breast cancer proliferation and modulates cell cycle via the P53 pathway. J Cancer 2024; 15:4623-4635. [PMID: 39006089 PMCID: PMC11242351 DOI: 10.7150/jca.96903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/06/2024] [Indexed: 07/16/2024] Open
Abstract
Background: Breast cancer is the second most common cause of cancer-related mortality globally. Apolipoprotein L3 (APOL3), a member of the apolipoprotein family, has been implicated in the pathogenesis of cardiovascular diseases. Nevertheless, the functions and underlying mechanisms of APOL3 in breast cancer have yet to be elucidated. Methods: The patient data were sourced from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database. Quantitative real-time PCR (qRT-PCR), western blotting, and immunohistochemistry (IHC) assays were used to assess expression of APOL3. Cell proliferation rates were determined by Cell Counting Kit-8 (CCK-8) and colony formation assays. Flow cytometry was used to examine cell cycle distribution. Western blotting was conducted to investigate the expression of cell cycle related proteins. A xenograft model was used to evaluate the effect of APOL3 in vivo. APOL3-binding proteins were identified through mass spectrometry, co-immunoprecipitation (CO-IP) assay and immunofluorescence assay. Results: APOL3 expression was significantly downregulated in breast cancer, and its low expression was correlated with poor prognostic outcomes. Overexpression of APOL3 suppressed breast cancer cell proliferation, induced cell cycle disruption. Conversely, knockdown of APOL3 promoted cell proliferation. In vivo animal experiments demonstrated that APOL3 overexpression can inhibit tumor proliferation. Mass spectrometry, CO-IP and immunofluorescence assay confirmed the interaction between APOL3 and Y-box binding protein 1 (YBX1). Furthermore, YBX1 knockdown following APOL3 knockdown mitigated the enhanced proliferation. These results provide new ideas for clinically targeting APOL3 to inhibit proliferation in breast cancer. Conclusions: Our findings indicate that APOL3 inhibits breast cancer cell proliferation and cell cycle modulating P53 pathway through the interaction of YBX1.
Collapse
Affiliation(s)
- Hao Yu
- Department of Breast Surgery, The 1st Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Siyan Li
- Department of Breast Surgery, The 1st Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xing Li
- Department of Breast Surgery, The 1st Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yanbiao Liu
- Department of Breast Surgery, The 1st Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Zhaobu Wang
- Department of Breast Surgery, The 1st Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Mengyao Cui
- Department of Breast Surgery, The 1st Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Feng Jin
- Department of Breast Surgery, The 1st Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xinmiao Yu
- Department of Breast Surgery, The 1st Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
13
|
Vellan CJ, Islam T, De Silva S, Mohd Taib NA, Prasanna G, Jayapalan JJ. Exploring novel protein-based biomarkers for advancing breast cancer diagnosis: A review. Clin Biochem 2024; 129:110776. [PMID: 38823558 DOI: 10.1016/j.clinbiochem.2024.110776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/26/2024] [Accepted: 05/29/2024] [Indexed: 06/03/2024]
Abstract
This review provides a contemporary examination of the evolving landscape of breast cancer (BC) diagnosis, focusing on the pivotal role of novel protein-based biomarkers. The overview begins by elucidating the multifaceted nature of BC, exploring its prevalence, subtypes, and clinical complexities. A critical emphasis is placed on the transformative impact of proteomics, dissecting the proteome to unravel the molecular intricacies of BC. Navigating through various sources of samples crucial for biomarker investigations, the review underscores the significance of robust sample processing methods and their validation in ensuring reliable outcomes. The central theme of the review revolves around the identification and evaluation of novel protein-based biomarkers. Cutting-edge discoveries are summarised, shedding light on emerging biomarkers poised for clinical application. Nevertheless, the review candidly addresses the challenges inherent in biomarker discovery, including issues of standardisation, reproducibility, and the complex heterogeneity of BC. The future direction section envisions innovative strategies and technologies to overcome existing challenges. In conclusion, the review summarises the current state of BC biomarker research, offering insights into the intricacies of proteomic investigations. As precision medicine gains momentum, the integration of novel protein-based biomarkers emerges as a promising avenue for enhancing the accuracy and efficacy of BC diagnosis. This review serves as a compass for researchers and clinicians navigating the evolving landscape of BC biomarker discovery, guiding them toward transformative advancements in diagnostic precision and personalised patient care.
Collapse
Affiliation(s)
- Christina Jane Vellan
- Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Tania Islam
- Department of Surgery, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Sumadee De Silva
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, Colombo 03, Sri Lanka
| | - Nur Aishah Mohd Taib
- Department of Surgery, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Galhena Prasanna
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, Colombo 03, Sri Lanka
| | - Jaime Jacqueline Jayapalan
- Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia; Universiti Malaya Centre for Proteomics Research (UMCPR), Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
14
|
Xu F, Wang W, Li Q, Zou L, Miao H. The roles and mechanisms of APOL1 in the development of colorectal cancer. J Gastrointest Oncol 2024; 15:974-986. [PMID: 38989412 PMCID: PMC11231876 DOI: 10.21037/jgo-24-275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/28/2024] [Indexed: 07/12/2024] Open
Abstract
Background Research has demonstrated that apolipoprotein L1 (APOL1) has a role in the emergence and progression of a number of malignant cancers. It is unclear, however, how APOL1 functions in colorectal cancer (CRC). In this study, we examined the possible molecular processes underlying APOL1's biological role in CRC. Methods Quantitative real-time polymerase chain reaction (qRT-PCR) was used to identify APOL1 expression in patients with CRC and the cell line of cancer tissue. Following transfection of human colon carcinoma cells (HCT116) and human colon adenocarcinoma cells (SW1116) with sh-APOL1, the effects of APOL1 on the biological behavior of CRC cell lines were examined. In nude mice, the effect of APOL1 on tumor growth was noted. The protein interaction between APOL1 and RUNX1 was detected via coimmunoprecipitation. The expression of relevant proteins and cell biological behaviors were examined to confirm the APOL1-RUNX1 pathway in CRC cell lines. Results The CRC tissues and cells exhibited elevated expression of APOL1. HCT116 and SW1116 cells' proliferation, migration, and invasion were suppressed by sh-APOL1, and sh-APOL1 also increased the expression of E-cadherin and decreased the expression of RUNX1, cyclin D1, β-catenin, N-cadherin, and vimentin. APOL1 bound to the RUNX1 protein and regulated its protein levels. The counteractive effect of sh-APOL1 epithelial-mesenchymal transition (EMT), proliferation, migration, and invasion of CRC cells was counteracted by the overexpression of RUNX1. By silencing APOL1, the Wnt-β-catenin pathway was able to restrain EMT and regulate the biological behavior processes in CRC cells. Conclusions APOL1 has potential as a diagnostic biomarker for CRC. By preventing the Wnt-β-catenin pathway from being activated, the sh-APOL1-binding protein RUNX1 inhibited the EMT and biological behavior of CRC cells.
Collapse
Affiliation(s)
- Feipeng Xu
- Department of General Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, China
- Department of Gastrointestinal Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Weiwei Wang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Qidong Li
- Department of Gastrointestinal Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Lirui Zou
- Department of Gastrointestinal Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Huilai Miao
- Department of General Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, China
- Department of Gastrointestinal Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
15
|
Zeng W, Hou Y, Gu W, Chen Z. Proteomic Biomarkers of Intrahepatic Cholestasis of Pregnancy. Reprod Sci 2024; 31:1573-1585. [PMID: 38177949 PMCID: PMC11111573 DOI: 10.1007/s43032-023-01437-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/14/2023] [Indexed: 01/06/2024]
Abstract
Intrahepatic cholestasis of pregnancy (ICP) is a pregnancy-specific liver disease, which can lead to adverse fetal outcomes, including preterm labor and intrauterine death. The pathogenesis of ICP is still unclear. We hypothesized that pathological index leads to abnormal placenta changes in ICP. Investigation of these differences in protein expression in parallel profiling is essential to understand the comprehensive pathophysiological mechanism underlying ICP. The present study screened differentially expressed proteins (DEPs) as novel diagnostic markers for ICP. Proteomic profiles of placental tissues from 32 ICP patients and 24 healthy volunteers (controls) were analyzed. Our founding was valid by following western blotting and immunohistochemistry staining, respectively. The association of the key protein expression with clinicopathological features of ICP was further analyzed. A total of 178 DEPs were identified between the ICP and control groups. Functional enrichment analysis showed these proteins were significantly enriched in the PPAR singling pathway by KEGG and PPARα/RXRα activation by IPA. Apolipoprotein A2 (APOA2) was the only upregulated protein, which uniquely identified in ICP groups and related to both pathways. Validation of western blotting and immunohistochemical staining analysis showed significantly higher APOA2 expression in the ICP group than in the control group. Furthermore, the expression of APOA2 is associated with clinicopathological features in ICP groups. Receiver operating characteristic (ROC) curve analyses showed that the AUC of APOA2 was 0.8984 (95% confidence interval (CI): 0.772-1.000). This study has identified up-regulated APOA2 associated with PPAR singling pathway and PPARα/RXRα activation in ICP. Thus, APOA2 may be involved in ICP pathogenesis, serving as a novel biomarker for its diagnosis.
Collapse
Affiliation(s)
- Weijian Zeng
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Yanyan Hou
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Wei Gu
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China.
- Shanghai Key Laboratory of Embryo Original Diseases, The International Peace Maternity and Child Health Hospital, Shanghai, 200030, China.
- Shanghai Municipal Key Clinical Specialty, The International Peace Maternity and Child Health Hospital, Shanghai, 200030, China.
| | - Zheng Chen
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China.
| |
Collapse
|
16
|
Luo Y, Yang J, Wang Y. Quantitative proteomics assay reveals G protein-coupled receptor kinase 4-induced HepG2 cell growth inhibition. Heliyon 2024; 10:e29514. [PMID: 38638965 PMCID: PMC11024620 DOI: 10.1016/j.heliyon.2024.e29514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 04/09/2024] [Accepted: 04/09/2024] [Indexed: 04/20/2024] Open
Abstract
Background and aim To investigate the biological effects and putative biological mechanism of G protein-coupled receptor kinase 4 (GRK4) on HepG2 cells. Materials and methods Cell proliferation, cycle, and apoptosis were evaluated by Cell Counting Kit-8 and flow cytometry (FCM) in HepG2 cells infected with either the GRK4-overexpressing lentivirus vector (OE) or the negative control lentivirus vector (NC). The protein profiles and differentially expressed proteins (DEPs) of the OE and NC cells were analyzed and compared using the quantitative proteomics technique, and their function, expression, and probable mechanism were investigated using bioinformatic assays and parallel reaction monitoring (PRM). Results HepG2 cells that received the OE grew more slowly than those that received the NC. FCM revealed that, when compared to the NC cells, the OE cells had undergone S-phase cycle arrest, and neither the OE nor NC cells underwent apoptosis. Among the 7006 proteins that were identified by quantitative proteomics, 403 DEPs were examined based on the filtering parameters, with the expressions of 135 being downregulated and 268 being upregulated. In addition to being involved in the peroxisome proliferator-activated receptor (PPAR) signaling pathway, the DEPs were implicated in the biological processes of cell proliferation, cycle, and metabolism. PRM verified the expressions of DEPs that were connected to the PPAR pathway. Conclusions This study shows that GRK4 prevents HepG2 cells from proliferating and causes cell cycle arrest in the S-phase, while the PPAR pathway is involved in the regulation of HepG2 cells via GRK4.
Collapse
Affiliation(s)
- Yunxiu Luo
- Hainan Cancer Hospital, Affiliated Cancer Hospital of Hainan Medical University, Department of Radiotherapy Oncology, Haikou, 570311, China
- Hainan Clinical Research Center for Hepatopathy and Liver Critical Illness, Haikou, 570311, China
| | - Jing Yang
- Guilin Medical University, Center for Science Research, Guilin, 541004, China
| | - Yan Wang
- Central South University, The Second Xiangya Hospital, Department of Surgery, Changsha, 410011, China
| |
Collapse
|
17
|
Chang CC, Chang CB, Chen CJ, Tung CL, Hung CF, Lai WH, Shen CH, Tsai CY, Lai YY, Lee MY, Wu SF, Chen PC. Increased Apolipoprotein A1 Expression Correlates with Tumor-Associated Neutrophils and T Lymphocytes in Upper Tract Urothelial Carcinoma. Curr Issues Mol Biol 2024; 46:2155-2165. [PMID: 38534755 DOI: 10.3390/cimb46030139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/01/2024] [Accepted: 03/05/2024] [Indexed: 03/28/2024] Open
Abstract
An increased neutrophil-to-lymphocyte ratio (NLR) is a poor prognostic biomarker in various types of cancer, because it reflects the inhibition of lymphocytes in the circulation and tumors. In urologic cancers, upper tract urothelial carcinoma (UTUC) is known for its aggressive features and lack of T cell infiltration; however, the association between neutrophils and suppressed T lymphocytes in UTUC is largely unknown. In this study, we examined the relationship between UTUC-derived factors and tumor-associated neutrophils or T lymphocytes. The culture supernatant from UTUC tumor tissue modulated neutrophils to inhibit T cell proliferation. Among the dominant factors secreted by UTUC tumor tissue, apolipoprotein A1 (Apo-A1) exhibited a positive correlation with NLR. Moreover, tumor-infiltrating neutrophils were inversely correlated with tumor-infiltrating T cells. Elevated Apo-A1 levels in UTUC were also inversely associated with the population of tumor-infiltrating T cells. Our findings indicate that elevated Apo-A1 expression in UTUC correlates with tumor-associated neutrophils and T cells. This suggests a potential immunomodulatory effect on neutrophils and T cells within the tumor microenvironment, which may represent therapeutic targets for UTUC treatment.
Collapse
Affiliation(s)
- Chih-Chia Chang
- Department of Radiation Therapy and Oncology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 600566, Taiwan
| | - Chia-Bin Chang
- Department of Urology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 600566, Taiwan
| | - Chiung-Ju Chen
- Department of Laboratory Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 600566, Taiwan
- Department of Human Biobank, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 600566, Taiwan
| | - Chun-Liang Tung
- Department of Pathology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 600566, Taiwan
| | - Chi-Feng Hung
- Department of Urology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 600566, Taiwan
| | - Wei-Hong Lai
- Department of Urology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 600566, Taiwan
| | - Cheng-Huang Shen
- Department of Urology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 600566, Taiwan
- Department of Biomedical Sciences, Institute of Molecular Biology, National Chung Cheng University, Chiayi 621301, Taiwan
| | - Chang-Yu Tsai
- Department of Urology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 600566, Taiwan
| | - Ya-Yan Lai
- Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 600566, Taiwan
| | - Ming-Yang Lee
- Department of Hematology and Oncology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 600566, Taiwan
| | - Shu-Fen Wu
- Department of Biomedical Sciences, Epigenomics and Human Disease Research Center, National Chung Cheng University, Minhsiung, Chiayi 621301, Taiwan
| | - Pi-Che Chen
- Department of Urology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 600566, Taiwan
| |
Collapse
|
18
|
Bekmurzayeva A, Nurlankyzy M, Abdossova A, Myrkhiyeva Z, Tosi D. All-fiber label-free optical fiber biosensors: from modern technologies to current applications [Invited]. BIOMEDICAL OPTICS EXPRESS 2024; 15:1453-1473. [PMID: 38495725 PMCID: PMC10942689 DOI: 10.1364/boe.515563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/16/2024] [Accepted: 01/26/2024] [Indexed: 03/19/2024]
Abstract
Biosensors are established as promising analytical tools for detecting various analytes important in biomedicine and environmental monitoring. Using fiber optic technology as a sensing element in biosensors offers low cost, high sensitivity, chemical inertness, and immunity to electromagnetic interference. Optical fiber sensors can be used in in vivo applications and multiplexed to detect several targets simultaneously. Certain configurations of optical fiber technology allow the detection of analytes in a label-free manner. This review aims to discuss recent advances in label-free optical fiber biosensors from a technological and application standpoint. First, modern technologies used to build label-free optical fiber-based sensors will be discussed. Then, current applications where these technologies are applied are elucidated. Namely, examples of detecting soluble cancer biomarkers, hormones, viruses, bacteria, and cells are presented.
Collapse
Affiliation(s)
- Aliya Bekmurzayeva
- National Laboratory Astana, Nazarbayev University, Astana, 010000, Kazakhstan
| | - Marzhan Nurlankyzy
- National Laboratory Astana, Nazarbayev University, Astana, 010000, Kazakhstan
- School of Engineering and Digital Sciences, Nazarbayev University, Astana, 010000, Kazakhstan
| | - Albina Abdossova
- School of Engineering and Digital Sciences, Nazarbayev University, Astana, 010000, Kazakhstan
| | - Zhuldyz Myrkhiyeva
- National Laboratory Astana, Nazarbayev University, Astana, 010000, Kazakhstan
- School of Sciences and Humanities, Nazarbayev University, Astana, 010000, Kazakhstan
| | - Daniele Tosi
- National Laboratory Astana, Nazarbayev University, Astana, 010000, Kazakhstan
- School of Engineering and Digital Sciences, Nazarbayev University, Astana, 010000, Kazakhstan
| |
Collapse
|
19
|
Liu X, Yu H, Yan G, Xu B, Sun M, Feng M. Causal relationships between coffee intake, apolipoprotein B and gastric, colorectal, and esophageal cancers: univariable and multivariable Mendelian randomization. Eur J Nutr 2024; 63:469-483. [PMID: 38040849 DOI: 10.1007/s00394-023-03281-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 11/08/2023] [Indexed: 12/03/2023]
Abstract
PURPOSE Coffee intake and apolipoprotein B levels have been linked to gastric, colorectal, and esophageal cancers in numerous recent studies. However, whether these associations are all causal remains unestablished. This study aimed to assess the potential causal associations of apolipoprotein B and coffee intake with the risk of gastric, colorectal, and esophageal cancers using Mendelian randomization analysis. METHODS In this study, we utilized a two-sample Mendelian randomization analysis to access the causal effects of coffee intake and apolipoprotein B on gastric, colorectal, and esophageal cancers. The summary statistics of coffee intake (n = 428,860) and apolipoprotein B (n = 439,214) were obtained from the UK Biobank. In addition, the summary statistics of gastric cancer, colorectal cancer, and esophageal cancer were obtained from the FinnGen biobank (n = 218,792). Inverse variance weighted, MR-Egger, weighted median, and weighted mode were applied to examine the causal relationship between coffee intake, apolipoprotein B and gastric, colorectal, and esophageal cancers. MR-Egger intercept test, Cochran's Q test, and leave-one-out analysis were performed to evaluate possible heterogeneity and pleiotropy. Steiger filtering and bidirectional mendelian randomization analysis were performed to evaluate the possible reverse causality. RESULTS The result of the inverse variance weighted method indicated that apolipoprotein B levels were significantly associated with a higher risk of gastric cancer (OR = 1.392, 95% CI 1.027-1.889, P = 0.0333) and colorectal cancer (OR = 1.188, 95% CI 1.001-1.411, P = 0.0491). Furthermore, multivariable Mendelian randomization analysis also revealed a positive association between apolipoprotein B levels and colorectal cancer risk, but the effect of apolipoprotein B on gastric cancer risk disappeared after adjustment of coffee intake, body mass index or lipid-related traits. However, we did not discover any conclusive evidence linking coffee intake to gastric, colorectal, or esophageal cancers. CONCLUSIONS This study suggested a causal association between genetically increased apolipoprotein B levels and higher risk of colorectal cancer. No causal relationship was observed between coffee intake and gastric, colorectal, or esophageal cancers.
Collapse
Affiliation(s)
- Xingwu Liu
- Department of Gastroenterology, The First Hospital of China Medical University, Shenyang, China
| | - Han Yu
- School of Health Management, China Medical University, Shenyang, China
| | - Guanyu Yan
- Department of Gastroenterology, The First Hospital of China Medical University, Shenyang, China
| | - Boyang Xu
- Department of Gastroenterology, The First Hospital of China Medical University, Shenyang, China
| | - Mingjun Sun
- Department of Gastroenterology, The First Hospital of China Medical University, Shenyang, China
| | - Mingliang Feng
- Department of Endoscopy, The First Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
20
|
Tao TP, Brandmair K, Gerlach S, Przibilla J, Schepky A, Marx U, Hewitt NJ, Maschmeyer I, Kühnl J. Application of a skin and liver Chip2 microphysiological model to investigate the route-dependent toxicokinetics and toxicodynamics of consumer-relevant doses of genistein. J Appl Toxicol 2024; 44:287-300. [PMID: 37700462 DOI: 10.1002/jat.4540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/25/2023] [Accepted: 08/27/2023] [Indexed: 09/14/2023]
Abstract
The HUMMIC skin-liver Chip2 microphysiological system using EpiDerm™ and HepaRG and stellate liver spheroids was used to evaluate the route-specific metabolism and toxicodynamic effects of genistein. Human-relevant exposure levels were compared: 60 nM representing the plasma concentration expected after topical application of a cosmetic product and 1 μM representing measured plasma concentrations after ingesting soya products. Genistein was applied as single and repeated topical and/or systemic doses. The kinetics of genistein and its metabolites were measured over 5 days. Toxicodynamic effects were measured using transcriptional analyses of skin and liver organoids harvested on Days 2 and 5. Route-specific differences in genistein's bioavailability were observed, with first-pass metabolism (sulfation) occurring in the skin after topical application. Only repeated application of 1 μM, resembling daily oral intake of soya products, induced statistically significant changes in gene expression in liver organoids only. This was concomitant with a much higher systemic concentration of genistein which was not reached in any other dosing scenario. This suggests that single or low doses of genistein are rapidly metabolised which limits its toxicodynamic effects on the liver and skin. Therefore, by facilitating longer and/or repeated applications, the Chip2 can support safety assessments by linking relevant gene modulation with systemically available parent or metabolite(s). The rate of metabolism was in accordance with the short half-life observed in in vivo in humans, thus supporting the relevance of the findings. In conclusion, the skin-liver Chip2 provides route-specific information on metabolic fate and toxicodynamics that may be relevant to safety assessment.
Collapse
|
21
|
Tan SH, Guan CA, Bujang MA, Lai WH, Voon PJ, Sim EUH. Identification of phenomic data in the pathogenesis of cancers of the gastrointestinal (GI) tract in the UK biobank. Sci Rep 2024; 14:1997. [PMID: 38263244 PMCID: PMC10805853 DOI: 10.1038/s41598-024-52421-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/18/2024] [Indexed: 01/25/2024] Open
Abstract
Gastrointestinal (GI) cancers account for a significant incidence and mortality rates of cancers globally. Utilization of a phenomic data approach allows researchers to reveal the mechanisms and molecular pathogenesis of these conditions. We aimed to investigate the association between the phenomic features and GI cancers in a large cohort study. We included 502,369 subjects aged 37-73 years in the UK Biobank recruited since 2006, followed until the date of the first cancer diagnosis, date of death, or the end of follow-up on December 31st, 2016, whichever occurred first. Socio-demographic factors, blood chemistry, anthropometric measurements and lifestyle factors of participants collected at baseline assessment were analysed. Unvariable and multivariable logistic regression were conducted to determine the significant risk factors for the outcomes of interest, based on the odds ratio (OR) and 95% confidence intervals (CI). The analysis included a total of 441,141 participants, of which 7952 (1.8%) were incident GI cancer cases and 433,189 were healthy controls. A marker, cystatin C was associated with total and each gastrointestinal cancer (adjusted OR 2.43; 95% CI 2.23-2.64). In this cohort, compared to Asians, the Whites appeared to have a higher risk of developing gastrointestinal cancers. Several other factors were associated with distinct GI cancers. Cystatin C and race appear to be important features in GI cancers, suggesting some overlap in the molecular pathogenesis of GI cancers. Given the small proportion of Asians within the UK Biobank, the association between race and GI cancers requires further confirmation.
Collapse
Affiliation(s)
- Shirin Hui Tan
- Clinical Research Centre, Sarawak General Hospital, Ministry of Health Malaysia, Jalan Hospital, 93586, Kuching, Sarawak, Malaysia.
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300, Kota Samarahan, Malaysia.
| | - Catherina Anak Guan
- Clinical Research Centre, Sarawak General Hospital, Ministry of Health Malaysia, Jalan Hospital, 93586, Kuching, Sarawak, Malaysia
| | - Mohamad Adam Bujang
- Clinical Research Centre, Sarawak General Hospital, Ministry of Health Malaysia, Jalan Hospital, 93586, Kuching, Sarawak, Malaysia
| | - Wei Hong Lai
- Clinical Research Centre, Sarawak General Hospital, Ministry of Health Malaysia, Jalan Hospital, 93586, Kuching, Sarawak, Malaysia
| | - Pei Jye Voon
- Department of Radiotherapy, Oncology and Palliative Care, Sarawak General Hospital, Ministry of Health Malaysia, Jalan Hospital, 93586, Kuching, Sarawak, Malaysia
| | - Edmund Ui Hang Sim
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300, Kota Samarahan, Malaysia
| |
Collapse
|
22
|
Abstract
Extracellular vesicles and lipoproteins are lipid-based biological nanoparticles that play important roles in (patho)physiology. Recent evidence suggests that extracellular vesicles and lipoproteins can interact to form functional complexes. Such complexes have been observed in biofluids from healthy human donors and in various in vitro disease models such as breast cancer and hepatitis C infection. Lipoprotein components can also form part of the biomolecular corona that surrounds extracellular vesicles and contributes to biological identity. Potential mechanisms and the functional relevance of extracellular vesicle-lipoprotein complexes remain poorly understood. This Review addresses the current knowledge of the extracellular vesicle-lipoprotein interface while drawing on pre-existing knowledge of liposome interactions with biological nanoparticles. There is an urgent need for further research on the lipoprotein-extracellular vesicle interface, which could return important mechanistic, therapeutic, and diagnostic findings.
Collapse
Affiliation(s)
- Raluca E. Ghebosu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane 4072, Australia
| | - Jenifer Pendiuk Goncalves
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane 4072, Australia
| | - Joy Wolfram
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane 4072, Australia
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
| |
Collapse
|
23
|
Ekim Kocabey A, Schneiter R. Human lipocalins bind and export fatty acids through the secretory pathway of yeast cells. Front Microbiol 2024; 14:1309024. [PMID: 38328584 PMCID: PMC10849133 DOI: 10.3389/fmicb.2023.1309024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 12/12/2023] [Indexed: 02/09/2024] Open
Abstract
The activation of fatty acids to their acyl-CoA derivatives is a crucial step for their integration into more complex lipids or their degradation via beta-oxidation. Yeast cells employ five distinct acyl-CoA synthases to facilitate this ATP-dependent activation of acyl chains. Notably, mutant cells that are deficient in two of these fatty acid-activating (FAA) enzymes, namely, Faa1 and Faa4, do not take up free fatty acids but rather export them out of the cell. This unique fatty acid export pathway depends on small, secreted pathogenesis-related yeast proteins (Pry). In this study, we investigate whether the expression of human fatty acid-binding proteins, including Albumin, fatty acid-binding protein 4 (Fabp4), and three distinct lipocalins (ApoD, Lcn1, and Obp2a), could promote fatty acid secretion in yeast. To optimize the expression and secretion of these proteins, we systematically examined various signal sequences in both low-copy and high-copy number plasmids. Our findings reveal that directing these fatty-acid binding proteins into the secretory pathway effectively promotes fatty acid secretion from a sensitized quadruple mutant model strain (faa1∆ faa4∆ pry1∆ pry3∆). Furthermore, the level of fatty acid secretion exhibited a positive correlation with the efficiency of protein secretion. Importantly, the expression of all human lipid-binding proteins rescued Pry-dependent fatty acid secretion, resulting in the secretion of both long-chain saturated and unsaturated fatty acids. These results not only affirm the in vitro binding capabilities of lipocalins to fatty acids but also present a novel avenue for enhancing the secretion of valuable lipidic compounds. Given the growing interest in utilizing yeast as a cellular factory for producing poorly soluble compounds and the potential of lipocalins as platforms for engineering substrate-binding specificity, our model is considered as a powerful tool for promoting the secretion of high-value lipid-based molecules.
Collapse
Affiliation(s)
| | - Roger Schneiter
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
24
|
Lih TM, Cao L, Minoo P, Omenn GS, Hruban RH, Chan DW, Bathe OF, Zhang H. Detection of Pancreatic Ductal Adenocarcinoma-Associated Proteins in Serum. Mol Cell Proteomics 2024; 23:100687. [PMID: 38029961 PMCID: PMC10792492 DOI: 10.1016/j.mcpro.2023.100687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 11/14/2023] [Accepted: 11/24/2023] [Indexed: 12/01/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancer types, partly because it is frequently identified at an advanced stage, when surgery is no longer feasible. Therefore, early detection using minimally invasive methods such as blood tests may improve outcomes. However, studies to discover molecular signatures for the early detection of PDAC using blood tests have only been marginally successful. In the current study, a quantitative glycoproteomic approach via data-independent acquisition mass spectrometry was utilized to detect glycoproteins in 29 patient-matched PDAC tissues and sera. A total of 892 N-linked glycopeptides originating from 141 glycoproteins had PDAC-associated changes beyond normal variation. We further evaluated the specificity of these serum-detectable glycoproteins by comparing their abundance in 53 independent PDAC patient sera and 65 cancer-free controls. The PDAC tissue-associated glycoproteins we have identified represent an inventory of serum-detectable PDAC-associated glycoproteins as candidate biomarkers that can be potentially used for the detection of PDAC using blood tests.
Collapse
Affiliation(s)
- T Mamie Lih
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| | - Liwei Cao
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Parham Minoo
- Department of Pathology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Gilbert S Omenn
- Departments of Computational Medicine & Bioinformatics, Internal Medicine, Human Genetics, and School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Ralph H Hruban
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA; The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University, Baltimore, Maryland, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Daniel W Chan
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Oliver F Bathe
- Departments of Surgery and Oncology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Hui Zhang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
25
|
Whitham D, Bruno P, Haaker N, Arcaro KF, Pentecost BT, Darie CC. Deciphering a proteomic signature for the early detection of breast cancer from breast milk: the role of quantitative proteomics. Expert Rev Proteomics 2024; 21:81-98. [PMID: 38376826 PMCID: PMC11694492 DOI: 10.1080/14789450.2024.2320158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/26/2023] [Indexed: 02/21/2024]
Abstract
INTRODUCTION Breast cancer is one of the most prevalent cancers among women in the United States. Current research regarding breast milk has been focused on the composition and its role in infant growth and development. There is little information about the proteins, immune cells, and epithelial cells present in breast milk which can be indicative of the emergence of BC cells and tumors. AREAS COVERED We summarize all breast milk studies previously done in our group using proteomics. These studies include 1D-PAGE and 2D-PAGE analysis of breast milk samples, which include within woman and across woman comparisons to identify dysregulated proteins in breast milk and the roles of these proteins in both the development of BC and its diagnosis. Our projected outlook for the use of milk for cancer detection is also discussed. EXPERT OPINION Analyzing the samples by multiple methods allows one to interrogate a set of samples with various biochemical methods that complement each other, thus providing a more comprehensive proteome. Complementing methods like 1D-PAGE, 2D-PAGE, in-solution digestion and proteomics analysis with PTM-omics, peptidomics, degradomics, or interactomics will provide a better understanding of the dysregulated proteins, but also the modifications or interactions between these proteins.
Collapse
Affiliation(s)
- Danielle Whitham
- Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY, USA
| | - Pathea Bruno
- Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY, USA
| | - Norman Haaker
- Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY, USA
| | - Kathleen F. Arcaro
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Brian T. Pentecost
- Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY, USA
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Costel C. Darie
- Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY, USA
| |
Collapse
|
26
|
Yang Z, Yang L, Sun Z, Rong Y, Bai C, Dong Q, Jian L. miRNA-660-3p inhibits malignancy in glioblastoma via negative regulation of APOC1-TGFβ2 signaling pathway. Cancer Biol Ther 2023; 24:2281459. [PMID: 37981873 PMCID: PMC10783846 DOI: 10.1080/15384047.2023.2281459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 11/06/2023] [Indexed: 11/21/2023] Open
Abstract
Glioblastoma as the most common and aggressive central nervous system tumor in adults. Its prognosis and therapeutic outcome are poor due to the limited understanding of its molecular mechanism. Apolipoprotein C-1 (APOC1) as a member of the apolipoprotein family that acts as a tumor promoter in various cancers. MicroRNA (miRNA) can silence gene expression and suppress tumor progression. However, the role of APOC1 and its upstream miRNA has not been explored in glioblastoma. Two glioblastoma cell lines (U87 and U251) were used to explore the role of APOC1 and its upstream miRNA-660-3p in glioblastoma tumorigenesis in vitro. Cells with APOC1/miRNA-660-3p overexpression or knockdown were assessed for their proliferation, migration, and invasion in vitro, and tumorigenesis in vivo. Gene and protein expression was assessed by qRT-PCR and western blot, respectively. Cell proliferation was assessed by the MTT assay and the EdU and Ki67 staining. Cell migration and invasion were assessed by the transwell assay. Tumorigenesis in vivo was assessed in U87 cells with a xenograft mouse model. APOC1 was overexpressed in glioblastoma compared with normal peritumoral tissue and was inversely related to patient prognosis. APOC1 overexpression promotes cell proliferation, migration, and invasion in vitro. APOC1 inhibition reduced tumor growth in vivo. miRNA-660-3p inhibits tumorigenesis by directly targeting APOC1. Mechanistically, APOC1 drives the malignancy of glioblastoma by activating the TGFβ2 signaling pathway. miRNA-660-3p suppresses tumorigenesis by targeting APOC1. Therefore, miRNA-660-3p/APOC1 axis can serve as potential intervention targets in managing glioblastoma progression.
Collapse
Affiliation(s)
- Zelin Yang
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Liang Yang
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
| | - Zhenkai Sun
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yuxi Rong
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
| | - Chenglian Bai
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Qiaoxiang Dong
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - Lin Jian
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
27
|
Winz C, Zong WX, Suh N. Endocrine-disrupting compounds and metabolomic reprogramming in breast cancer. J Biochem Mol Toxicol 2023; 37:e23506. [PMID: 37598318 PMCID: PMC10840637 DOI: 10.1002/jbt.23506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/23/2023] [Accepted: 08/11/2023] [Indexed: 08/21/2023]
Abstract
Endocrine-disrupting chemicals pose a growing threat to human health through their increasing presence in the environment and their potential interactions with the mammalian endocrine systems. Due to their structural similarity to hormones like estrogen, these chemicals can interfere with endocrine signaling, leading to many deleterious effects. Exposure to estrogenic endocrine-disrupting compounds (EDC) is a suggested risk factor for the development of breast cancer, one of the most frequently diagnosed cancers in women. However, the mechanisms through which EDCs contribute to breast cancer development remain elusive. To rapidly proliferate, cancer cells undertake distinct metabolic programs to utilize existing nutrients in the tumor microenvironment and synthesize macromolecules de novo. EDCs are known to dysregulate cell signaling pathways related to cellular metabolism, which may be an important mechanism through which they exert their cancer-promoting effects. These altered pathways can be studied via metabolomic analysis, a new advancement in -omics technologies that can interrogate molecular pathways that favor cancer development and progression. This review will summarize recent discoveries regarding EDCs and the metabolic reprogramming that they may induce to facilitate the development of breast cancer.
Collapse
Affiliation(s)
- Cassandra Winz
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Department of Pharmacology and Toxicology, Environmental and Occupational Health Sciences Institute, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Wei-Xing Zong
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Nanjoo Suh
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| |
Collapse
|
28
|
Wahab R, Hasan MM, Azam Z, Grippo PJ, Al-Hilal TA. The role of coagulome in the tumor immune microenvironment. Adv Drug Deliv Rev 2023; 200:115027. [PMID: 37517779 PMCID: PMC11099942 DOI: 10.1016/j.addr.2023.115027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/01/2023]
Abstract
The rising incidence and persistent thrombosis in multiple cancers including those that are immunosuppressive highlight the need for understanding the tumor coagulome system and its role beyond hemostatic complications. Immunotherapy has shown significant benefits in solid organ tumors but has been disappointing in the treatment of hypercoagulable cancers, such as glioblastoma and pancreatic ductal adenocarcinomas. Thus, targeting thrombosis to prevent immunosuppression seems a clinically viable approach in cancer treatment. Hypercoagulable tumors often develop fibrin clots within the tumor microenvironment (TME) that dictates the biophysical characteristics of the tumor tissue. The application of systems biology and single-cell approaches highlight the potential role of coagulome or thrombocytosis in shaping the tumor immune microenvironment (TIME). In-depth knowledge of the tumor coagulome would provide unprecedented opportunities to better predict the hemostatic complications, explore how thrombotic stroma modulates tumor immunity, reexamine the significance of clinical biomarkers, and enable steering the stromal versus systemic immune response for boosting the effectiveness of immune checkpoint inhibitors in cancer treatment. We focus on the role of coagulation factors in priming a suppressive TIME and the huge potential of existing anticoagulant drugs in the clinical settings of cancer immunotherapy.
Collapse
Affiliation(s)
- Riajul Wahab
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Md Mahedi Hasan
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX 79968, USA; Department of Environmental Science & Engineering, College of Science, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Zulfikar Azam
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Paul J Grippo
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Taslim A Al-Hilal
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX 79968, USA; Department of Environmental Science & Engineering, College of Science, University of Texas at El Paso, El Paso, TX 79968, USA.
| |
Collapse
|
29
|
Li Y, Luo X, Hua Z, Xue X, Wang X, Pang M, Wang T, Lyu A, Liu Y. Apolipoproteins as potential communicators play an essential role in the pathogenesis and treatment of early atherosclerosis. Int J Biol Sci 2023; 19:4493-4510. [PMID: 37781031 PMCID: PMC10535700 DOI: 10.7150/ijbs.86475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/15/2023] [Indexed: 10/03/2023] Open
Abstract
Atherosclerosis as the leading cause of the cardiovascular disease is closely related to cholesterol deposition within subendothelial areas of the arteries. Significantly, early atherosclerosis intervention is the critical phase for its reversal. As atherosclerosis progresses, early foam cells formation may evolve into fibrous plaques and atheromatous plaque, ulteriorly rupture of atheromatous plaque increases risks of myocardial infarction and ischemic stroke, resulting in high morbidity and mortality worldwide. Notably, amphiphilic apolipoproteins (Apos) can concomitantly combine with lipids to form soluble lipoproteins that have been demonstrated to associate with atherosclerosis. Apos act as crucial communicators of lipoproteins, which not only can mediate lipids metabolism, but also can involve in pro-atherogenic and anti-atherogenic processes of atherosclerosis via affecting subendothelial retention and aggregation of low-density lipoprotein (LDL), oxidative modification of LDL, foam cells formation and reverse cholesterol transport (RCT) in macrophage cells. Correspondingly, Apos can be used as endogenous and/or exogenous targeting agents to effectively attenuate the development of atherosclerosis. The article reviews the classification, structure, and relationship between Apos and lipids, how Apos serve as communicators of lipoproteins to participate in the pathogenesis progression of early atherosclerosis, as well as how Apos as the meaningful targeting mass is used in early atherosclerosis treatment.
Collapse
Affiliation(s)
- Yang Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xinyi Luo
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zhenglai Hua
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiaoxia Xue
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiangpeng Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Mingshi Pang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Tieshan Wang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Aiping Lyu
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong 999077, China
| | - Yuanyan Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| |
Collapse
|
30
|
Marin AM, Batista M, Korte de Azevedo AL, Bombardelli Gomig TH, Soares Caldeira Brant R, Chammas R, Uno M, Dias Araújo D, Zanette DL, Nóbrega Aoki M. Screening of Exosome-Derived Proteins and Their Potential as Biomarkers in Diagnostic and Prognostic for Pancreatic Cancer. Int J Mol Sci 2023; 24:12604. [PMID: 37628784 PMCID: PMC10454563 DOI: 10.3390/ijms241612604] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/11/2023] [Accepted: 07/18/2023] [Indexed: 08/27/2023] Open
Abstract
In the oncological area, pancreatic cancer is one of the most lethal diseases, with 5-year survival rising just 10% in high-development countries. This disease is genetically characterized by KRAS as a driven mutation followed by SMAD4, CDKN2, and TP53-associated mutations. In clinical aspects, pancreatic cancer presents unspecific clinical symptoms with the absence of screening and early plasmatic biomarker, being that CA19-9 is the unique plasmatic biomarker having specificity and sensitivity limitations. We analyzed the plasmatic exosome proteomic profile of 23 patients with pancreatic cancer and 10 healthy controls by using Nanoscale liquid chromatography coupled to tandem mass spectrometry (NanoLC-MS/MS). The pancreatic cancer patients were subdivided into IPMN and PDAC. Our findings show 33, 34, and 7 differentially expressed proteins when comparing the IPMN vs. control, PDAC-No treatment vs. control, and PDAC-No treatment vs. IPMN groups, highlighting proteins of the complement system and coagulation, such as C3, APOB, and SERPINA. Additionally, PDAC with no treatment showed 11 differentially expressed proteins when compared to Folfirinox neoadjuvant therapy or Gemcitabine adjuvant therapy. So here, we found plasmatic exosome-derived differentially expressed proteins among cancer patients (IPMN, PDAC) when comparing with healthy controls, which could represent alternative biomarkers for diagnostic and prognostic evaluation, supporting further scientific and clinical studies on pancreatic cancer.
Collapse
Affiliation(s)
- Anelis Maria Marin
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Curitiba 81350-010, Brazil; (A.M.M.); (M.B.); (D.L.Z.)
| | - Michel Batista
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Curitiba 81350-010, Brazil; (A.M.M.); (M.B.); (D.L.Z.)
- Mass Spectrometry Facility RPT02H, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Curitiba 81350-010, Brazil
| | - Alexandre Luiz Korte de Azevedo
- Laboratory of Human Cytogenetics and Oncogenetics, Genetic Department, University of Parana State (UFPR), Curitiba 80060-000, Brazil; (A.L.K.d.A.); (T.H.B.G.)
| | - Talita Helen Bombardelli Gomig
- Laboratory of Human Cytogenetics and Oncogenetics, Genetic Department, University of Parana State (UFPR), Curitiba 80060-000, Brazil; (A.L.K.d.A.); (T.H.B.G.)
| | - Rodrigo Soares Caldeira Brant
- Mass Spectrometry Facility RPT02H, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Curitiba 81350-010, Brazil
| | - Roger Chammas
- Center for Translational Research in Oncology (LIM24), Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo (HCFMUSP), Comprehensive Center for Precision Oncology (C2PO), Universidade de São Paulo, São Paulo 05508-220, Brazil; (R.C.); (M.U.); (D.D.A.)
| | - Miyuki Uno
- Center for Translational Research in Oncology (LIM24), Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo (HCFMUSP), Comprehensive Center for Precision Oncology (C2PO), Universidade de São Paulo, São Paulo 05508-220, Brazil; (R.C.); (M.U.); (D.D.A.)
| | - Diogo Dias Araújo
- Center for Translational Research in Oncology (LIM24), Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo (HCFMUSP), Comprehensive Center for Precision Oncology (C2PO), Universidade de São Paulo, São Paulo 05508-220, Brazil; (R.C.); (M.U.); (D.D.A.)
| | - Dalila Luciola Zanette
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Curitiba 81350-010, Brazil; (A.M.M.); (M.B.); (D.L.Z.)
| | - Mateus Nóbrega Aoki
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Curitiba 81350-010, Brazil; (A.M.M.); (M.B.); (D.L.Z.)
| |
Collapse
|
31
|
Yap J, Yuan J, Ng WH, Chen GB, Sim YRM, Goh KC, Teo J, Lim TYH, Goay SM, Teo JHJ, Lao Z, Lam P, Sabapathy K, Hu J. BRAF(V600E) mutation together with loss of Trp53 or pTEN drives the origination of hairy cell leukemia from B-lymphocytes. Mol Cancer 2023; 22:125. [PMID: 37543582 PMCID: PMC10403926 DOI: 10.1186/s12943-023-01817-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/04/2023] [Indexed: 08/07/2023] Open
Abstract
Hairy cell leukemia (HCL) is a B-lymphoma induced by BRAF(V600E) mutation. However, introducing BRAF(V600E) in B-lymphocytes fails to induce hematological malignancy, suggesting that BRAF(V600E) needs concurrent mutations to drive HCL ontogeny. To resolve this issue, here we surveyed human HCL genomic sequencing data. Together with previous reports, we speculated that the tumor suppressor TP53, P27, or PTEN restrict the oncogenicity of BRAF(V600E) in B-lymphocytes, and therefore that their loss-of-function facilitates BRAF(V600E)-driven HCL ontogeny. Using genetically modified mouse models, we demonstrate that indeed BRAF(V600E)KI together with Trp53KO or pTENKO in B-lymphocytes induces chronic lymphoma with pathological features of human HCL. To further understand the cellular programs essential for HCL ontogeny, we profiled the gene expression of leukemic cells isolated from BRAF(V600E)KI and Trp53KO or pTENKO mice, and found that they had similar but different gene expression signatures that resemble that of M2 or M1 macrophages. In addition, we examined the expression signature of transcription factors/regulators required for germinal center reaction and memory B cell versus plasma cell differentiation in these leukemic cells and found that most transcription factors/regulators essential for these programs were severely inhibited, illustrating why hairy cells are arrested at a transitional stage between activated B cells and memory B cells. Together, our study has uncovered concurrent mutations required for HCL ontogeny, revealed the B cell origin of hairy cells and investigated the molecular basis underlying the unique pathological features of the disease, with important implications for HCL research and treatment.
Collapse
Affiliation(s)
- Jiajun Yap
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, 30 Hospital Boulevard, 168583, Singapore, Singapore
- Cancer and Stem Cell Program, Duke-NUS Medical School, 8 College Road, 169857, Singapore, Singapore
| | - Jimin Yuan
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, 30 Hospital Boulevard, 168583, Singapore, Singapore
- Cancer and Stem Cell Program, Duke-NUS Medical School, 8 College Road, 169857, Singapore, Singapore
- Department of Urology, The Second Clinical Medical College, The First Affiliated Hospital, Shenzhen People's Hospital, Jinan University, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China
- Geriatric Department, The Second Clinical Medical College, The First Affiliated Hospital, Shenzhen People's Hospital, Jinan University, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China
| | - Wan Hwa Ng
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, 30 Hospital Boulevard, 168583, Singapore, Singapore
| | - Gao Bin Chen
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, 30 Hospital Boulevard, 168583, Singapore, Singapore
| | - Yuen Rong M Sim
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, 30 Hospital Boulevard, 168583, Singapore, Singapore
| | - Kah Chun Goh
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, 30 Hospital Boulevard, 168583, Singapore, Singapore
| | - Joey Teo
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, 30 Hospital Boulevard, 168583, Singapore, Singapore
| | - Trixie Y H Lim
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, 30 Hospital Boulevard, 168583, Singapore, Singapore
| | - Shee Min Goay
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, 30 Hospital Boulevard, 168583, Singapore, Singapore
| | - Jia Hao Jackie Teo
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, 30 Hospital Boulevard, 168583, Singapore, Singapore
| | - Zhentang Lao
- Department of Hematology, Singapore General Hospital, Blk7 Outram Road, 169608, Singapore, Singapore
| | - Paula Lam
- Cancer and Stem Cell Program, Duke-NUS Medical School, 8 College Road, 169857, Singapore, Singapore
- Department of Physiology, National University of Singapore, 2 Medical Drive, 117597, Singapore, Singapore
- Cellvec Pte. Ltd, 100 Pasir Panjang Road, 118518, Singapore, Singapore
| | - Kanaga Sabapathy
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, 30 Hospital Boulevard, 168583, Singapore, Singapore
- Cancer and Stem Cell Program, Duke-NUS Medical School, 8 College Road, 169857, Singapore, Singapore
| | - Jiancheng Hu
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, 30 Hospital Boulevard, 168583, Singapore, Singapore.
- Cancer and Stem Cell Program, Duke-NUS Medical School, 8 College Road, 169857, Singapore, Singapore.
| |
Collapse
|
32
|
Erazo-Oliveras A, Muñoz-Vega M, Mlih M, Thiriveedi V, Salinas ML, Rivera-Rodríguez JM, Kim E, Wright RC, Wang X, Landrock KK, Goldsby JS, Mullens DA, Roper J, Karpac J, Chapkin RS. Mutant APC reshapes Wnt signaling plasma membrane nanodomains by altering cholesterol levels via oncogenic β-catenin. Nat Commun 2023; 14:4342. [PMID: 37468468 PMCID: PMC10356786 DOI: 10.1038/s41467-023-39640-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 06/21/2023] [Indexed: 07/21/2023] Open
Abstract
Although the role of the Wnt pathway in colon carcinogenesis has been described previously, it has been recently demonstrated that Wnt signaling originates from highly dynamic nano-assemblies at the plasma membrane. However, little is known regarding the role of oncogenic APC in reshaping Wnt nanodomains. This is noteworthy, because oncogenic APC does not act autonomously and requires activation of Wnt effectors upstream of APC to drive aberrant Wnt signaling. Here, we demonstrate the role of oncogenic APC in increasing plasma membrane free cholesterol and rigidity, thereby modulating Wnt signaling hubs. This results in an overactivation of Wnt signaling in the colon. Finally, using the Drosophila sterol auxotroph model, we demonstrate the unique ability of exogenous free cholesterol to disrupt plasma membrane homeostasis and drive Wnt signaling in a wildtype APC background. Collectively, these findings provide a link between oncogenic APC, loss of plasma membrane homeostasis and CRC development.
Collapse
Affiliation(s)
- Alfredo Erazo-Oliveras
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX, 77843, USA
- Department of Nutrition, Texas A&M University, College Station, TX, 77843, USA
- CPRIT Regional Center of Excellence in Cancer Research, Texas A&M University, College Station, TX, 77843, USA
| | - Mónica Muñoz-Vega
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX, 77843, USA
- Department of Nutrition, Texas A&M University, College Station, TX, 77843, USA
- CPRIT Regional Center of Excellence in Cancer Research, Texas A&M University, College Station, TX, 77843, USA
| | - Mohamed Mlih
- Department of Cell Biology and Genetics, Texas A&M University, School of Medicine, Bryan, TX, 77807, USA
| | - Venkataramana Thiriveedi
- Department of Medicine, Division of Gastroenterology, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Michael L Salinas
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX, 77843, USA
- Department of Nutrition, Texas A&M University, College Station, TX, 77843, USA
- CPRIT Regional Center of Excellence in Cancer Research, Texas A&M University, College Station, TX, 77843, USA
| | - Jaileen M Rivera-Rodríguez
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX, 77843, USA
- Department of Nutrition, Texas A&M University, College Station, TX, 77843, USA
- CPRIT Regional Center of Excellence in Cancer Research, Texas A&M University, College Station, TX, 77843, USA
| | - Eunjoo Kim
- Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Denver, CO, 80045, USA
| | - Rachel C Wright
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX, 77843, USA
- Department of Nutrition, Texas A&M University, College Station, TX, 77843, USA
| | - Xiaoli Wang
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX, 77843, USA
- Department of Nutrition, Texas A&M University, College Station, TX, 77843, USA
| | - Kerstin K Landrock
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX, 77843, USA
- Department of Nutrition, Texas A&M University, College Station, TX, 77843, USA
| | - Jennifer S Goldsby
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX, 77843, USA
- Department of Nutrition, Texas A&M University, College Station, TX, 77843, USA
- CPRIT Regional Center of Excellence in Cancer Research, Texas A&M University, College Station, TX, 77843, USA
| | - Destiny A Mullens
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX, 77843, USA
- Department of Nutrition, Texas A&M University, College Station, TX, 77843, USA
- CPRIT Regional Center of Excellence in Cancer Research, Texas A&M University, College Station, TX, 77843, USA
| | - Jatin Roper
- Department of Medicine, Division of Gastroenterology, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Jason Karpac
- Department of Cell Biology and Genetics, Texas A&M University, School of Medicine, Bryan, TX, 77807, USA
| | - Robert S Chapkin
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX, 77843, USA.
- Department of Nutrition, Texas A&M University, College Station, TX, 77843, USA.
- CPRIT Regional Center of Excellence in Cancer Research, Texas A&M University, College Station, TX, 77843, USA.
- Center for Environmental Health Research, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
33
|
Shi X, Feng D, Li D, Han P, Yang L, Wei W. A pan-cancer analysis of the oncogenic and immunological roles of apolipoprotein F (APOF) in human cancer. Eur J Med Res 2023; 28:190. [PMID: 37312170 DOI: 10.1186/s40001-023-01156-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 06/03/2023] [Indexed: 06/15/2023] Open
Abstract
BACKGROUND Apolipoprotein F (APOF) has been less studied in cancers. Thus, we aimed to perform a pan-cancer analysis of the oncogenic and immunological effects of APOF on human cancer. METHODS A standardized TCGA pan-cancer dataset was downloaded. Differential expression, clinical prognosis, genetic mutations, immune infiltration, epigenetic modifications, tumor stemness and heterogeneity were analyzed. We conducted all analyses through software R (version 3.6.3) and its suitable packages. RESULTS Overall, we found that the common cancers differentially expressed between tumor and normal samples and prognostic-associated were BRCA, PRAD, KIRP, and LIHC in terms of overall survival (OS), disease-free survival (DFS) and progression-free survival (PFS). The pan-cancer Spearman analysis showed that the mRNA expression of APOF was negatively correlated with four tumor stemness indexes (DMPss, DNAss, ENHss, and EREG-METHss) with statistical significance for PRAD and was positively correlated for LIHC. In terms of BRCA and PRAD patients, we found negative correlation of APOF with TMB, MSI, neo, HRD and LOH. The mutation frequencies of BRCA and LIHC were 0.3%. APOF expression was negatively correlated with immune infiltration and positively correlated with tumor purity for PRAD patients. The mRNA expression of APOF was negatively associated with most TILs for LIHC, B cells, CD4+ T cells, neutrophils, macrophages and dendritic cells, but was positively associated with CD8+ T cells. CONCLUSIONS Our pan-cancer study offered a relatively comprehensive understanding of the roles of APOF on BRCA, PRAD, KIRP, and LIHC.
Collapse
Affiliation(s)
- Xu Shi
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Guoxue Xiang #37, Chengdu, 610041, China
| | - Dechao Feng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Guoxue Xiang #37, Chengdu, 610041, China
| | - Dengxiong Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Guoxue Xiang #37, Chengdu, 610041, China
| | - Ping Han
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Guoxue Xiang #37, Chengdu, 610041, China
| | - Lu Yang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Guoxue Xiang #37, Chengdu, 610041, China
| | - Wuran Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Guoxue Xiang #37, Chengdu, 610041, China.
| |
Collapse
|
34
|
Ma J, Wang G, Ding X, Wang F, Zhu C, Rong Y. Carbon-Based Nanomaterials as Drug Delivery Agents for Colorectal Cancer: Clinical Preface to Colorectal Cancer Citing Their Markers and Existing Theranostic Approaches. ACS OMEGA 2023; 8:10656-10668. [PMID: 37008124 PMCID: PMC10061522 DOI: 10.1021/acsomega.2c06242] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 02/23/2023] [Indexed: 06/19/2023]
Abstract
Colorectal cancer (CRC) is one of the universally established cancers with a higher incidence rate. Novel progression toward cancer prevention and cancer care among countries in transition should be considered seriously for controlling CRC. Hence, several cutting edge technologies are ongoing for high performance cancer therapeutics over the past few decades. Several drug-delivery systems of the nanoregime are relatively new in this arena compared to the previous treatment modes such as chemo- or radiotherapy to mitigate cancer. Based on this background, the epidemiology, pathophysiology, clinical presentation, treatment possibilities, and theragnostic markers for CRC were revealed. Since the use of carbon nanotubes (CNTs) for the management of CRC has been less studied, the present review analyzes the preclinical studies on the application of carbon nanotubes for drug delivery and CRC therapy owing to their inherent properties. It also investigates the toxicity of CNTs on normal cells for safety testing and the clinical use of carbon nanoparticles (CNPs) for tumor localization. To conclude, this review recommends the clinical application of carbon-based nanomaterials further for the management of CRC in diagnosis and as carriers or therapeutic adjuvants.
Collapse
Affiliation(s)
- Jiheng Ma
- Department
of Oncology, Danyang Hospital of Traditional
Chinese Medicine, Zhenjiang 212300, Jiangsu Province, China
| | - Guofang Wang
- Department
of Oncology, Danyang Hospital of Traditional
Chinese Medicine, Zhenjiang 212300, Jiangsu Province, China
| | - Xiaoyu Ding
- Department
of Oncology, Danyang Hospital of Traditional
Chinese Medicine, Zhenjiang 212300, Jiangsu Province, China
| | - Fulin Wang
- Department
of Oncology, Danyang Hospital of Traditional
Chinese Medicine, Zhenjiang 212300, Jiangsu Province, China
| | - Chunning Zhu
- Department
of Oncology, Danyang Hospital of Traditional
Chinese Medicine, Zhenjiang 212300, Jiangsu Province, China
| | - Yunxia Rong
- Department
of Oncology, Danyang Hospital of Traditional
Chinese Medicine, Zhenjiang 212300, Jiangsu Province, China
| |
Collapse
|
35
|
Ng PY, Nafi SNM, Jalil NAC, Kueh YC, Lee YY, Zin AAM. Immunohistochemical expression of apolipoprotein B and 4-hydroxynonenal proteins in colorectal carcinoma patients: a retrospective study. Croat Med J 2023; 64. [PMID: 36864816 PMCID: PMC10028567 DOI: 10.3325/cmj.2023.64.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023] Open
Abstract
AIM To assess the association of the expression of apolipoprotein B (apoB) and 4-hydroxynonenal (4HNE) with the clinicopathological data of patients with colorectal cancer (CRC). METHODS We obtained 80 CRC histopathological specimens sent to the Pathology Laboratory of Hospital Universiti Sains Malaysia from 2015 to 2019. Data on demographic factors, body mass index (BMI), and clinicopathological characteristics were also collected. Formalin-fixed paraffin-embedded tissues were stained by using an optimized immunohistochemical protocol. RESULTS Patients were mostly older than 50 years, male, Malay, and overweight or obese. A high apoB expression was observed in 87.5% CRC samples (70/80), while a high 4HNE expression was observed in only 17.5% (14/80) of CRCs. The expression of apoB was significantly associated with the sigmoid and rectosigmoid tumor sites (p =0.001) and tumor size 3-5 cm (p =0.005). 4HNE expression was significantly associated with tumor size 3-5 cm (p =0.045). Other variables were not significantly associated with the expression of either marker. CONCLUSION ApoB and 4HNE proteins may play a role in promoting CRC carcinogenesis.
Collapse
Affiliation(s)
| | - Siti Norasikin Mohd Nafi
- Siti Norasikin Mohd Nafi, Department of Pathology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia,
| | | | | | | | | |
Collapse
|
36
|
Ng PY, Nafi SNM, Jalil NAC, Kueh YC, Lee YY, Zin AAM. Immunohistochemical expression of apolipoprotein B and 4-hydroxynonenal proteins in colorectal carcinoma patients: a retrospective study. Croat Med J 2023; 64:29-36. [PMID: 36864816 PMCID: PMC10028567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023] Open
Abstract
AIM To assess the association of the expression of apolipoprotein B (apoB) and 4-hydroxynonenal (4HNE) with the clinicopathological data of patients with colorectal cancer (CRC). METHODS We obtained 80 CRC histopathological specimens sent to the Pathology Laboratory of Hospital Universiti Sains Malaysia from 2015 to 2019. Data on demographic factors, body mass index (BMI), and clinicopathological characteristics were also collected. Formalin-fixed paraffin-embedded tissues were stained by using an optimized immunohistochemical protocol. RESULTS Patients were mostly older than 50 years, male, Malay, and overweight or obese. A high apoB expression was observed in 87.5% CRC samples (70/80), while a high 4HNE expression was observed in only 17.5% (14/80) of CRCs. The expression of apoB was significantly associated with the sigmoid and rectosigmoid tumor sites (p =0.001) and tumor size 3-5 cm (p =0.005). 4HNE expression was significantly associated with tumor size 3-5 cm (p =0.045). Other variables were not significantly associated with the expression of either marker. CONCLUSION ApoB and 4HNE proteins may play a role in promoting CRC carcinogenesis.
Collapse
Affiliation(s)
| | - Siti Norasikin Mohd Nafi
- Siti Norasikin Mohd Nafi, Department of Pathology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia,
| | | | | | | | | |
Collapse
|
37
|
Murakami K, Harada A, Toh R, Kubo T, Miwa K, Kim J, Kiriyama M, Iino T, Nishikawa Y, Uno SN, Akatsuchi K, Nagao M, Ishida T, Hirata KI. Fully automated immunoassay for cholesterol uptake capacity to assess high-density lipoprotein function and cardiovascular disease risk. Sci Rep 2023; 13:1899. [PMID: 36732570 PMCID: PMC9895055 DOI: 10.1038/s41598-023-28953-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
High-density lipoprotein (HDL) cholesterol efflux capacity (CEC), which is a conventional metric of HDL function, has been associated with coronary heart disease risk. However, the CEC assay requires cultured cells and takes several days to perform. We previously established a cell-free assay to evaluate cholesterol uptake capacity (CUC) as a novel measure of HDL functionality and demonstrated its utility in coronary risk stratification. To apply this concept clinically, we developed a rapid and sensitive assay system based on a chemiluminescent magnetic particle immunoassay. The system is fully automated, providing high reproducibility. Measurement of CUC in serum is completed within 20 min per sample without HDL isolation, a notably higher throughput than that of the conventional CEC assay. CUC decreased with myeloperoxidase-mediated oxidation of HDL or in the presence of N-ethylmaleimide, an inhibitor of lecithin: cholesterol acyltransferase (LCAT), whereas CUC was enhanced by the addition of recombinant LCAT. Furthermore, CUC correlated with CEC even after being normalized by ApoA1 concentration and was significantly associated with the requirement for revascularization due to the recurrence of coronary lesions. Therefore, our new assay system shows potential for the accurate measurement of CUC in serum and permits assessing cardiovascular health.
Collapse
Affiliation(s)
- Katsuhiro Murakami
- Central Research Laboratories, Sysmex Corporation, 4-4-4 Takatsukadai, Nishi-Ku, Kobe, 651-2271, Japan
| | - Amane Harada
- Central Research Laboratories, Sysmex Corporation, 4-4-4 Takatsukadai, Nishi-Ku, Kobe, 651-2271, Japan.
| | - Ryuji Toh
- Division of Evidence-Based Laboratory Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-Cho, Chuo-Ku, Kobe, 650-0017, Japan.
| | - Takuya Kubo
- Central Research Laboratories, Sysmex Corporation, 4-4-4 Takatsukadai, Nishi-Ku, Kobe, 651-2271, Japan
| | - Keiko Miwa
- Central Research Laboratories, Sysmex Corporation, 4-4-4 Takatsukadai, Nishi-Ku, Kobe, 651-2271, Japan
| | - Jeeeun Kim
- Central Research Laboratories, Sysmex Corporation, 4-4-4 Takatsukadai, Nishi-Ku, Kobe, 651-2271, Japan
| | - Maria Kiriyama
- Central Research Laboratories, Sysmex Corporation, 4-4-4 Takatsukadai, Nishi-Ku, Kobe, 651-2271, Japan
| | - Takuya Iino
- Central Research Laboratories, Sysmex Corporation, 4-4-4 Takatsukadai, Nishi-Ku, Kobe, 651-2271, Japan
| | - Youichi Nishikawa
- Central Research Laboratories, Sysmex Corporation, 4-4-4 Takatsukadai, Nishi-Ku, Kobe, 651-2271, Japan
| | - Shin-Nosuke Uno
- Central Research Laboratories, Sysmex Corporation, 4-4-4 Takatsukadai, Nishi-Ku, Kobe, 651-2271, Japan
| | | | - Manabu Nagao
- Division of Evidence-Based Laboratory Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-Cho, Chuo-Ku, Kobe, 650-0017, Japan
| | - Tatsuro Ishida
- Division of Cardiovascular Medicine, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan
| | - Ken-Ichi Hirata
- Division of Evidence-Based Laboratory Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-Cho, Chuo-Ku, Kobe, 650-0017, Japan.,Division of Cardiovascular Medicine, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan
| |
Collapse
|
38
|
Pathway-guided monitoring of the disease course in bladder cancer with longitudinal urine proteomics. COMMUNICATIONS MEDICINE 2023; 3:8. [PMID: 36646893 PMCID: PMC9842762 DOI: 10.1038/s43856-023-00238-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 01/06/2023] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Monitoring bladder cancer over time requires invasive and costly procedures. Less invasive approaches are required using readily available biological samples such as urine. In this study, we demonstrate a method for longitudinal analysis of the urine proteome to monitor the disease course in patients with bladder cancer. METHODS We compared the urine proteomes of patients who experienced recurrence and/or progression (n = 13) with those who did not (n = 17). We identified differentially expressed proteins within various pathways related to the hallmarks of cancer. The variation of such pathways during the disease course was determined using our differential personal pathway index (dPPi) calculation, which could indicate disease progression and the need for medical intervention. RESULTS Seven hallmark pathways are used to develop the dPPi. We demonstrate that we can successfully longitudinally monitor the disease course in bladder cancer patients through a combination of urine proteomic analysis and the dPPi calculation, over a period of 62 months. CONCLUSIONS Using the information contained in the patient's urinary proteome, the dPPi reflects the individual's course of bladder cancer, and helps to optimise the use of more invasive procedures such as cystoscopy.
Collapse
|
39
|
Lee KK, Norris ET, Rishishwar L, Conley AB, Mariño-Ramírez L, McDonald JF, Jordan IK. Ethnic disparities in mortality and group-specific risk factors in the UK Biobank. PLOS GLOBAL PUBLIC HEALTH 2023; 3:e0001560. [PMID: 36963080 PMCID: PMC10021328 DOI: 10.1371/journal.pgph.0001560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 01/09/2023] [Indexed: 02/25/2023]
Abstract
Despite a substantial overall decrease in mortality, disparities among ethnic minorities in developed countries persist. This study investigated mortality disparities and their associated risk factors for the three largest ethnic groups in the United Kingdom: Asian, Black, and White. Study participants were sampled from the UK Biobank (UKB), a prospective cohort enrolled between 2006 and 2010. Genetics, biological samples, and health information and outcomes data of UKB participants were downloaded and data-fields were prioritized based on participants with death registry records. Kaplan-Meier method was used to evaluate survival differences among ethnic groups; survival random forest feature selection followed by Cox proportional-hazard modeling was used to identify and estimate the effects of shared and ethnic group-specific mortality risk factors. The White ethnic group showed significantly worse survival probability than the Asian and Black groups. In all three ethnic groups, endoscopy and colonoscopy procedures showed significant protective effects on overall mortality. Asian and Black women show lower relative risk of mortality than men, whereas no significant effect of sex was seen for the White group. The strongest ethnic group-specific mortality associations were ischemic heart disease for Asians, COVID-19 for Blacks, and cancers of respiratory/intrathoracic organs for Whites. Mental health-related diagnoses, including substance abuse, anxiety, and depression, were a major risk factor for overall mortality in the Asian group. The effect of mental health on Asian mortality, particularly for digestive cancers, was exacerbated by an observed hesitance to answer mental health questions, possibly related to cultural stigma. C-reactive protein (CRP) serum levels were associated with both overall and cause-specific mortality due to COVID-19 and digestive cancers in the Black group, where elevated CRP has previously been linked to psychosocial stress due to discrimination. Our results point to mortality risk factors that are group-specific and modifiable, supporting targeted interventions towards greater health equity.
Collapse
Affiliation(s)
- Kara Keun Lee
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States of America
- Integrated Cancer Research Center, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States of America
| | - Emily T Norris
- IHRC-Georgia Tech Applied Bioinformatics Laboratory, Atlanta, GA, United States of America
| | - Lavanya Rishishwar
- IHRC-Georgia Tech Applied Bioinformatics Laboratory, Atlanta, GA, United States of America
| | - Andrew B Conley
- IHRC-Georgia Tech Applied Bioinformatics Laboratory, Atlanta, GA, United States of America
| | - Leonardo Mariño-Ramírez
- National Institute on Minority Health and Health Disparities, National Institutes of Health, Bethesda, MD, United States of America
| | - John F McDonald
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States of America
- Integrated Cancer Research Center, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States of America
| | - I King Jordan
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States of America
- Integrated Cancer Research Center, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States of America
- IHRC-Georgia Tech Applied Bioinformatics Laboratory, Atlanta, GA, United States of America
| |
Collapse
|
40
|
Shi TT, Zhao RX, Xin Z, Hou ZJ, Wang H, Xie RR, Li DM, Yang JK. Tear-derived exosomal biomarkers of Graves' ophthalmopathy. Front Immunol 2022; 13:1088606. [PMID: 36561758 PMCID: PMC9763563 DOI: 10.3389/fimmu.2022.1088606] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 11/15/2022] [Indexed: 12/12/2022] Open
Abstract
Graves' ophthalmopathy (GO), the most frequent extrathyroidal manifestation of Graves' disease (GD), can lead to a significant decline in the quality of life in patients. Exosomes, which contain proteins, lipids and DNA, play important roles in the pathological processes of various diseases. However, their roles in Graves' ophthalmopathy are still unclear. We aimed to isolate exosomes and analyze the different exosomal proteins. Tear fluids were collected from twenty-four GO patients, twenty-four GD patients and sixteen control subjects. The numbers of tear exosomes were assayed using nanoparticle tracking analysis. A Luminex 200 kit and ELISA kit were used to confirm the different cytokine concentrations in serum. Extraocular muscle from GO patients and controls was extracted, and western blotting was used to assay the levels of Caspase-3 and complement C4A. Our study demonstrated that the number of tear exosomes differ from GD patients and control. The expression levels of cytokines, including IL-1 and IL-18, were significantly increased in the tear exosomes and serum from GO patients compared with GD patients and controls. The levels of the exosomal proteins Caspase-3, complement C4A and APOA-IV were significantly increased in GO patients compared to GD patients and controls. Orbital fibroblasts from GO patients showed significantly higher levels of Caspase-3 and complement C4A than those from controls. The levels of serum APOA-IV in GO patients were significantly higher than those in GD patients and controls. Specific proteins showed elevated expression in tear exosomes from GO patients, indicating that they may play important roles in GO pathogenesis.
Collapse
Affiliation(s)
- Ting-Ting Shi
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Ru-Xuan Zhao
- Beijing Key Laboratory of Diabetes Research and Care, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Zhong Xin
- Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Zhi-Jia Hou
- Department of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Hua Wang
- Department of Emergency, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Rong-Rong Xie
- Beijing Key Laboratory of Diabetes Research and Care, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Dong-Mei Li
- Department of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing, China,*Correspondence: Dong-Mei Li, ; Jin-Kui Yang,
| | - Jin-Kui Yang
- Beijing Key Laboratory of Diabetes Research and Care, Beijing Tongren Hospital, Capital Medical University, Beijing, China,*Correspondence: Dong-Mei Li, ; Jin-Kui Yang,
| |
Collapse
|
41
|
Yang Z, Huo Y, Zhou S, Guo J, Ma X, Li T, Fan C, Wang L. Cancer cell-intrinsic XBP1 drives immunosuppressive reprogramming of intratumoral myeloid cells by promoting cholesterol production. Cell Metab 2022; 34:2018-2035.e8. [PMID: 36351432 DOI: 10.1016/j.cmet.2022.10.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 08/24/2022] [Accepted: 10/14/2022] [Indexed: 11/09/2022]
Abstract
A hostile microenvironment in tumor tissues disrupts endoplasmic reticulum homeostasis and induces the unfolded protein response (UPR). A chronic UPR in both cancer cells and tumor-infiltrating leukocytes could facilitate the evasion of immune surveillance. However, how the UPR in cancer cells cripples the anti-tumor immune response is unclear. Here, we demonstrate that, in cancer cells, the UPR component X-box binding protein 1 (XBP1) favors the synthesis and secretion of cholesterol, which activates myeloid-derived suppressor cells (MDSCs) and causes immunosuppression. Cholesterol is delivered in the form of small extracellular vesicles and internalized by MDSCs through macropinocytosis. Genetic or pharmacological depletion of XBP1 or reducing the tumor cholesterol content remarkably decreases MDSC abundance and triggers robust anti-tumor responses. Thus, our data unravel the cell-non-autonomous role of XBP1/cholesterol signaling in the regulation of tumor growth and suggest its inhibition as a useful strategy for improving the efficacy of cancer immunotherapy.
Collapse
Affiliation(s)
- Zaili Yang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yazhen Huo
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Shixin Zhou
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingya Guo
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Infection and Immunity of CAS, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaotu Ma
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Protein and Peptide Pharmaceuticals, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Tao Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Congli Fan
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Likun Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
42
|
He Y, Chen J, Ma Y, Chen H. Apolipoproteins: New players in cancers. Front Pharmacol 2022; 13:1051280. [PMID: 36506554 PMCID: PMC9732396 DOI: 10.3389/fphar.2022.1051280] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/15/2022] [Indexed: 11/26/2022] Open
Abstract
Apolipoproteins (APOs), the primary protein moiety of lipoproteins, are known for their crucial role in lipid traffic and metabolism. Despite extensive exploration of APOs in cardiovascular diseases, their roles in cancers did not attract enough attention. Recently, research focusing on the roles of APOs in cancers has flourished. Multiple studies demonstrate the interaction of APOs with classical pathways of tumorigenesis. Besides, the dysregulation of APOs may indicate cancer occurrence and progression, thus serving as potential biomarkers for cancer patients. Herein, we summarize the mechanisms of APOs involved in the development of various cancers, their applications as cancer biomarkers and their genetic polymorphism associated with cancer risk. Additionally, we also discuss the potential anti-cancer therapies by virtue of APOs. The comprehensive review of APOs in cancers may advance the understanding of the roles of APOs in cancers and their potential mechanisms. We hope that it will provide novel clues and new therapeutic strategies for cancers.
Collapse
Affiliation(s)
- Yingcheng He
- Department of Histology and Embryology, Medical College of Nanchang University, Nanchang, Jiangxi, China,Medical Department, Queen Mary School, Nanchang University, Nanchang, Jiangxi, China
| | - Jianrui Chen
- Department of Histology and Embryology, Medical College of Nanchang University, Nanchang, Jiangxi, China,Medical Department, Queen Mary School, Nanchang University, Nanchang, Jiangxi, China
| | - Yanbing Ma
- Department of Histology and Embryology, Medical College of Nanchang University, Nanchang, Jiangxi, China,Medical Department, Queen Mary School, Nanchang University, Nanchang, Jiangxi, China
| | - Hongping Chen
- Department of Histology and Embryology, Medical College of Nanchang University, Nanchang, Jiangxi, China,Jiangxi Key Laboratory of Experimental Animals, Nanchang University, Nanchang, Jiangxi, China,*Correspondence: Hongping Chen,
| |
Collapse
|
43
|
Galardi A, Stathopoulos C, Colletti M, Lavarello C, Russo I, Cozza R, Romanzo A, Carcaboso AM, Locatelli F, Petretto A, Munier FL, Di Giannatale A. Proteomics of Aqueous Humor as a Source of Disease Biomarkers in Retinoblastoma. Int J Mol Sci 2022; 23:ijms232113458. [PMID: 36362243 PMCID: PMC9659039 DOI: 10.3390/ijms232113458] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/07/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
Aqueous humor (AH) can be easily and safely used to evaluate disease-specific biomarkers in ocular disease. The aim of this study was to identify specific proteins biomarkers in the AH of retinoblastoma (RB) patients at various stages of the disease. We analyzed the proteome of 53 AH samples using high-resolution mass spectrometry. We grouped the samples according to active vitreous seeding (Group 1), active aqueous seeding (Group 2), naive RB (group 3), inactive RB (group 4), and congenital cataracts as the control (Group 5). We found a total of 889 proteins in all samples. Comparative parametric analyses among the different groups revealed three additional proteins expressed in the RB groups that were not expressed in the control group. These were histone H2B type 2-E (HISTH2B2E), InaD-like protein (PATJ), and ubiquitin conjugating enzyme E2 V1 (UBE2V1). Upon processing the data of our study with the OpenTarget Tool software, we found that glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and CD44 were more highly expressed in the RB groups. Our results provide a proteome database regarding AH related to RB disease that may be used as a source of biomarkers. Further prospective studies should validate our finding in a large cohort of RB patients.
Collapse
Affiliation(s)
- Angela Galardi
- Department of Pediatric Hematology/Oncology and Cell and Gene Therapy, IRCCS, Ospedale Pediatrico Bambino Gesù, Piazza di Sant’ Onofrio 4, 00165 Rome, Italy
| | - Christina Stathopoulos
- Jules Gonin Eye Hospital, Fondation Asile des Aveugles, University of Lausanne, 1002 Lausanne, Switzerland
| | - Marta Colletti
- Department of Pediatric Hematology/Oncology and Cell and Gene Therapy, IRCCS, Ospedale Pediatrico Bambino Gesù, Piazza di Sant’ Onofrio 4, 00165 Rome, Italy
| | - Chiara Lavarello
- Core Facilities-Clinical Proteomics and Metabolomics, IRCCS, Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147 Genoa, Italy
| | - Ida Russo
- Department of Pediatric Hematology/Oncology and Cell and Gene Therapy, IRCCS, Ospedale Pediatrico Bambino Gesù, Piazza di Sant’ Onofrio 4, 00165 Rome, Italy
| | - Raffaele Cozza
- Department of Pediatric Hematology/Oncology and Cell and Gene Therapy, IRCCS, Ospedale Pediatrico Bambino Gesù, Piazza di Sant’ Onofrio 4, 00165 Rome, Italy
| | - Antonino Romanzo
- Ophtalmology Unit, IRCCS, Ospedale Pediatrico Bambino Gesù, Piazza Sant’Onofrio 4, 00165 Rome, Italy
| | - Angel M. Carcaboso
- SJD Pediatric Cancer Center Barcelona, Hospital Sant Joan de Deu, Institut de Recerca Sant Joan de Deu, Esplugues de Llobregat, 08950 Barcelona, Spain
| | - Franco Locatelli
- Department of Pediatric Hematology/Oncology and Cell and Gene Therapy, IRCCS, Ospedale Pediatrico Bambino Gesù, Piazza di Sant’ Onofrio 4, 00165 Rome, Italy
- Department of Life Sciences and Public Health, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Andrea Petretto
- Core Facilities-Clinical Proteomics and Metabolomics, IRCCS, Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147 Genoa, Italy
| | - Francis L. Munier
- Jules Gonin Eye Hospital, Fondation Asile des Aveugles, University of Lausanne, 1002 Lausanne, Switzerland
| | - Angela Di Giannatale
- Department of Pediatric Hematology/Oncology and Cell and Gene Therapy, IRCCS, Ospedale Pediatrico Bambino Gesù, Piazza di Sant’ Onofrio 4, 00165 Rome, Italy
- Correspondence:
| |
Collapse
|
44
|
Yang BY, Sakharkar MK. Alterations in Gene Pair Correlations as Potential Diagnostic Markers for Colon Cancer. Int J Mol Sci 2022; 23:ijms232012463. [PMID: 36293321 PMCID: PMC9604343 DOI: 10.3390/ijms232012463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/14/2022] [Accepted: 10/16/2022] [Indexed: 11/16/2022] Open
Abstract
Colorectal cancer (CRC) is a leading cause of death from cancer in Canada. Early detection of CRC remains crucial in managing disease prognosis and improving patient survival. It can also facilitate prevention, screening, and treatment before the disease progresses to a chronic stage. In this study, we developed a strategy for identifying colon cancer biomarkers from both gene expression and gene pair correlation. Using the RNA-Seq dataset TCGA-COAD, a panel of 71 genes, including the 20 most upregulated genes, 20 most downregulated genes and 31 genes involved in the most significantly altered gene pairs, were selected as potential biomarkers for colon cancer. This signature set of genes could be used for early diagnosis. Furthermore, this strategy could be applied to other types of cancer.
Collapse
Affiliation(s)
- Bonnie Yang Yang
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada
| | - Meena Kishore Sakharkar
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
- Correspondence:
| |
Collapse
|
45
|
Naryzhny S, Ronzhina N, Zorina E, Kabachenko F, Klopov N, Zgoda V. Construction of 2DE Patterns of Plasma Proteins: Aspect of Potential Tumor Markers. Int J Mol Sci 2022; 23:ijms231911113. [PMID: 36232415 PMCID: PMC9569744 DOI: 10.3390/ijms231911113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/16/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
The use of tumor markers aids in the early detection of cancer recurrence and prognosis. There is a hope that they might also be useful in screening tests for the early detection of cancer. Here, the question of finding ideal tumor markers, which should be sensitive, specific, and reliable, is an acute issue. Human plasma is one of the most popular samples as it is commonly collected in the clinic and provides noninvasive, rapid analysis for any type of disease including cancer. Many efforts have been applied in searching for “ideal” tumor markers, digging very deep into plasma proteomes. The situation in this area can be improved in two ways—by attempting to find an ideal single tumor marker or by generating panels of different markers. In both cases, proteomics certainly plays a major role. There is a line of evidence that the most abundant, so-called “classical plasma proteins”, may be used to generate a tumor biomarker profile. To be comprehensive these profiles should have information not only about protein levels but also proteoform distribution for each protein. Initially, the profile of these proteins in norm should be generated. In our work, we collected bibliographic information about the connection of cancers with levels of “classical plasma proteins”. Additionally, we presented the proteoform profiles (2DE patterns) of these proteins in norm generated by two-dimensional electrophoresis with mass spectrometry and immunodetection. As a next step, similar profiles representing protein perturbations in plasma produced in the case of different cancers will be generated. Additionally, based on this information, different test systems can be developed.
Collapse
Affiliation(s)
- Stanislav Naryzhny
- Institute of Biomedical Chemistry, Pogodinskaya, 10, 119121 Moscow, Russia
- Petersburg Institute of Nuclear Physics (PNPI) of National Research Center “Kurchatov Institute”, 188300 Gatchina, Russia
- Correspondence: ; Tel.: +7-911-176-4453
| | - Natalia Ronzhina
- Petersburg Institute of Nuclear Physics (PNPI) of National Research Center “Kurchatov Institute”, 188300 Gatchina, Russia
| | - Elena Zorina
- Institute of Biomedical Chemistry, Pogodinskaya, 10, 119121 Moscow, Russia
| | - Fedor Kabachenko
- Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| | - Nikolay Klopov
- Petersburg Institute of Nuclear Physics (PNPI) of National Research Center “Kurchatov Institute”, 188300 Gatchina, Russia
| | - Victor Zgoda
- Institute of Biomedical Chemistry, Pogodinskaya, 10, 119121 Moscow, Russia
| |
Collapse
|
46
|
Ren L, Yi J, Yang Y, Li W, Zheng X, Liu J, Li S, Yang H, Zhang Y, Ge B, Zhang S, Fu W, Dong D, Du G, Wang X, Wang J. Systematic pan-cancer analysis identifies APOC1 as an immunological biomarker which regulates macrophage polarization and promotes tumor metastasis. Pharmacol Res 2022; 183:106376. [PMID: 35914680 DOI: 10.1016/j.phrs.2022.106376] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/24/2022] [Accepted: 07/28/2022] [Indexed: 10/16/2022]
Abstract
Apolipoprotein C1 (APOC1) has been found to play an essential part in proliferation and metastasis of numerous cancers, but related mechanism has not been elucidated, especially its function and role in tumor immunity. Through systematic pan-cancer analysis, we identified that APOC1 was closely associated with the infiltration of various immune cells in multiple cancers. Besides, APOC1 was significantly co-expressed with the immune checkpoints, major histocompatibility complex (MHC) molecules, chemokines and other immune-related genes. Furthermore, single-cell sequencing analysis suggested that the vast majority of APOC1 was expressed in macrophages or tumor-associated macrophages (TAMs). Additionally, the expression of APOC1 was significantly related to the prognosis of different cancers. Since APOC1 was most significantly abnormally expressed in renal cell cancer (RCC), subsequent experiments were carried out in RCC to explore the role of APOC1 in tumor immunity. The expression of APOC1 was significantly elevated in the tumor and serum of RCC patients. Besides, APOC1 was mainly expressed in the macrophage and it was closely related to the immune cell infiltration of RCC. Co-culture with RCC cells could induce the generation of TAMs with M2 phenotype which be blocked by silencing APOC1. The expression of APOC1 was elevated in the M2 or TAMs and APOC1 promoted M2 polarization of macrophages through interacting with CD163 and CD206. Furthermore, macrophages overexpressing APOC1 promoted the metastasis of RCC cells via secreting CCL5. Together, these data indicate that APOC1 is an immunological biomarker which regulates macrophage polarization and promotes tumor metastasis.
Collapse
Affiliation(s)
- Liwen Ren
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Jie Yi
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Beijing 100730, China
| | - Yihui Yang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Wan Li
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Xiangjin Zheng
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Jinyi Liu
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Sha Li
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Hong Yang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Yizhi Zhang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Binbin Ge
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Sen Zhang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Weiqi Fu
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Dexin Dong
- Department of Urology, Peking Union Medical College Hospital, Beijing 100730, China
| | - Guanhua Du
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Xifu Wang
- Department of Emergency and Critical Care Center, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China.
| | - Jinhua Wang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
47
|
Abstract
Apolipoproteins, the protein component of lipoproteins, play an important role in lipid transport, lipoprotein assembly, and receptor recognition. Apolipoproteins are glycosylated and the glycan moieties play an integral role in apolipoprotein function. Changes in apolipoprotein glycosylation correlate with several diseases manifesting in dyslipidemias. Despite their relevance in apolipoprotein function and diseases, the total glycan repertoire of most apolipoproteins remains undefined. This review summarizes the current knowledge and knowledge gaps regarding human apolipoprotein glycan composition, structure, glycosylation site, and functions. Given the relevance of glycosylation to apolipoprotein function, we expect that future studies of apolipoprotein glycosylation will contribute new understanding of disease processes and uncover relevant biomarkers and therapeutic targets. Considering these future efforts, we also provide a brief overview of current mass spectrometry based technologies that can be applied to define detailed glycan structures, site-specific compositions, and the role of emerging approaches for clinical applications in biomarker discovery and personalized medicine.
Collapse
|
48
|
The Role of ApoE Serum Levels and ApoE Gene Polymorphisms in Patients with Laryngeal Squamous Cell Carcinoma. Biomolecules 2022; 12:biom12081013. [PMID: 35892323 PMCID: PMC9331506 DOI: 10.3390/biom12081013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/13/2022] [Accepted: 07/19/2022] [Indexed: 11/17/2022] Open
Abstract
Recent studies have revealed that the inflammatory ApoE effect may play a significant role in various cancer development. However, this effect has still not been analyzed in patients with laryngeal squamous cell carcinoma (LSCC). In the present study, we evaluated two single nucleotide polymorphisms (SNPs) of ApoE (rs7412 and rs429358) and determined their associations with LSCC development and the LSCC patients’ five-year survival rate. Additionally, we analyzed serum ApoE levels using an enzyme-linked immunosorbent assay. A total of 602 subjects (291 histologically verified LSCC patients and 311 healthy controls) were involved in this study. The genotyping was carried out using the real-time PCR. We revealed that ApoE ε3/ε3 was associated with a 1.7-fold higher probability of developing LSCC (p = 0.001), with 1.7-fold increased odds of developing LSCC without metastasis to the lymph nodes (p = 0.002) and with a 2.0-fold increased odds of developing well-differentiated LSCC (p = 0.008), as well as 1.6-fold increased odds of developing poorly differentiated LSCC development (p = 0.012). The ApoE ε2/ε4 and ε3/ε4 genotypes were associated with a 2.9-fold and 1.5-fold decrease in the likelihood of developing LSCC (p = 0.042; p = 0.037, respectively). ApoE ε3/ε4 was found associated with a 2.4-fold decreased likelihood of developing well-differentiated LSCC (p = 0.013). Conclusion: ApoE ε2/ε4 and ε3/ε4 were found to play a protective role in LSCC development, while ApoE ε3/ε3 may have a risk position in LSCC development.
Collapse
|
49
|
Apolipoprotein A-II, a Player in Multiple Processes and Diseases. Biomedicines 2022; 10:biomedicines10071578. [PMID: 35884883 PMCID: PMC9313276 DOI: 10.3390/biomedicines10071578] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/21/2022] [Accepted: 06/28/2022] [Indexed: 11/26/2022] Open
Abstract
Apolipoprotein A-II (apoA-II) is the second most abundant apolipoprotein in high-density lipoprotein (HDL) particles, playing an important role in lipid metabolism. Human and murine apoA-II proteins have dissimilar properties, partially because human apoA-II is dimeric whereas the murine homolog is a monomer, suggesting that the role of apoA-II may be quite different in humans and mice. As a component of HDL, apoA-II influences lipid metabolism, being directly or indirectly involved in vascular diseases. Clinical and epidemiological studies resulted in conflicting findings regarding the proatherogenic or atheroprotective role of apoA-II. Human apoA-II deficiency has little influence on lipoprotein levels with no obvious clinical consequences, while murine apoA-II deficiency causes HDL deficit in mice. In humans, an increased plasma apoA-II concentration causes hypertriglyceridemia and lowers HDL levels. This dyslipidemia leads to glucose intolerance, and the ensuing high blood glucose enhances apoA-II transcription, generating a vicious circle that may cause type 2 diabetes (T2D). ApoA-II is also used as a biomarker in various diseases, such as pancreatic cancer. Herein, we provide a review of the most recent findings regarding the roles of apoA-II and its functions in various physiological processes and disease states, such as cardiovascular disease, cancer, amyloidosis, hepatitis, insulin resistance, obesity, and T2D.
Collapse
|
50
|
Høiem TS, Andersen MK, Martin‐Lorenzo M, Longuespée R, Claes BS, Nordborg A, Dewez F, Balluff B, Giampà M, Sharma A, Hagen L, Heeren RM, Bathen TF, Giskeødegård GF, Krossa S, Tessem M. An optimized MALDI MSI protocol for spatial detection of tryptic peptides in fresh frozen prostate tissue. Proteomics 2022; 22:e2100223. [PMID: 35170848 PMCID: PMC9285595 DOI: 10.1002/pmic.202100223] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 01/19/2022] [Accepted: 02/07/2022] [Indexed: 11/29/2022]
Abstract
MALDI MS imaging (MSI) is a powerful analytical tool for spatial peptide detection in heterogeneous tissues. Proper sample preparation is crucial to achieve high quality, reproducible measurements. Here we developed an optimized protocol for spatially resolved proteolytic peptide detection with MALDI time-of-flight MSI of fresh frozen prostate tissue sections. The parameters tested included four different tissue washes, four methods of protein denaturation, four methods of trypsin digestion (different trypsin densities, sprayers, and incubation times), and five matrix deposition methods (different sprayers, settings, and matrix concentrations). Evaluation criteria were the number of detected and excluded peaks, percentage of high mass peaks, signal-to-noise ratio, spatial localization, and average intensities of identified peptides, all of which were integrated into a weighted quality evaluation scoring system. Based on these scores, the optimized protocol included an ice-cold EtOH+H2 O wash, a 5 min heating step at 95°C, tryptic digestion incubated for 17h at 37°C and CHCA matrix deposited at a final amount of 1.8 μg/mm2 . Including a heat-induced protein denaturation step after tissue wash is a new methodological approach that could be useful also for other tissue types. This optimized protocol for spatial peptide detection using MALDI MSI facilitates future biomarker discovery in prostate cancer and may be useful in studies of other tissue types.
Collapse
Affiliation(s)
- Therese S. Høiem
- Department of Circulation and Medical ImagingNTNU ‐ Norwegian University of Science and TechnologyTrondheimNorway
| | - Maria K. Andersen
- Department of Circulation and Medical ImagingNTNU ‐ Norwegian University of Science and TechnologyTrondheimNorway
| | - Marta Martin‐Lorenzo
- Maastricht MultiModal Molecular Imaging Institute (M4I)Maastricht UniversityMaastrichtNetherlands
| | - Rémi Longuespée
- Department of Clinical Pharmacology and PharmacoepidemiologyHeidelberg University HospitalHeidelbergGermany
| | - Britt S.R. Claes
- Maastricht MultiModal Molecular Imaging Institute (M4I)Maastricht UniversityMaastrichtNetherlands
| | - Anna Nordborg
- Department of Biotechnology and NanomedicineSINTEF IndustryTrondheimNorway
| | - Frédéric Dewez
- Maastricht MultiModal Molecular Imaging Institute (M4I)Maastricht UniversityMaastrichtNetherlands
| | - Benjamin Balluff
- Maastricht MultiModal Molecular Imaging Institute (M4I)Maastricht UniversityMaastrichtNetherlands
| | - Marco Giampà
- Department of Clinical and Molecular MedicineNTNU ‐ Norwegian University of Science and TechnologyTrondheimNorway
| | - Animesh Sharma
- Department of Clinical and Molecular MedicineNTNU ‐ Norwegian University of Science and TechnologyTrondheimNorway
- PROMEC Core Facility for Proteomics and ModomicsNTNU ‐ Norwegian University of Science and Technology and the Central Norway Regional Health Authority NorwayTrondheimNorway
| | - Lars Hagen
- Department of Clinical and Molecular MedicineNTNU ‐ Norwegian University of Science and TechnologyTrondheimNorway
- PROMEC Core Facility for Proteomics and ModomicsNTNU ‐ Norwegian University of Science and Technology and the Central Norway Regional Health Authority NorwayTrondheimNorway
- Clinic of Laboratory MedicineSt. Olavs HospitalTrondheim University HospitalTrondheimNorway
| | - Ron M.A. Heeren
- Maastricht MultiModal Molecular Imaging Institute (M4I)Maastricht UniversityMaastrichtNetherlands
| | - Tone F. Bathen
- Department of Circulation and Medical ImagingNTNU ‐ Norwegian University of Science and TechnologyTrondheimNorway
- Department of radiology and nuclear medicineSt. Olavs HospitalTrondheim University HospitalTrondheimNorway
| | - Guro F. Giskeødegård
- K.G. Jebsen Center for Genetic EpidemiologyDepartment of Public Health and NursingNTNU ‐ Norwegian University of Science and TechnologyTrondheimNorway
| | - Sebastian Krossa
- Department of Circulation and Medical ImagingNTNU ‐ Norwegian University of Science and TechnologyTrondheimNorway
| | - May‐Britt Tessem
- Department of Circulation and Medical ImagingNTNU ‐ Norwegian University of Science and TechnologyTrondheimNorway
- Department of SurgerySt. Olavs HospitalTrondheim University HospitalTrondheimNorway
| |
Collapse
|