1
|
Li R, Gong L, Sun J, Liang Z, He J, Huang J, Ning X, Song H, Li R, Zhang Q, Lin Z, Yin Y. Discovery of 2,4-diarylaminopyrimidine derivatives bearing sulfonamide moiety as novel FAK inhibitors. Bioorg Chem 2024; 144:107134. [PMID: 38237389 DOI: 10.1016/j.bioorg.2024.107134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/29/2023] [Accepted: 01/12/2024] [Indexed: 02/17/2024]
Abstract
Two series of 2,4-diarylaminopyrimidine derivatives containing sulfonamide moiety were designed and synthesized for screening as inhibitors of focal adhesion kinase (FAK). Most compounds significantly inhibited the enzymatic activities of FAK, and the best compound was 7b (IC50 = 0.27 nM). A majority of aminoethyl sulfonamide derivatives could effectively inhibit the proliferation of human cancer cell lines (HCT116, A549, MDA-MB-231 and Hela) expressing high levels of FAK. Particularly, compounds 7b, 7c, and 7o exhibited more significant efficacy against all of four cancer cell lines within concentrations of 1.5 μM. Furthermore, these three compounds displayed higher selectivity of cancer cells over normal cells (SI value > 14), compared to the positive control TAE226 (SI value = 1.63). Interestingly, introduction of dithiocarbamate moiety to the aminoethyl sulfonamide derivatives can indeed improve the antiproliferative activities against A549 cells. Especially, compound 8d demonstrated most significant cytotoxicity activity against A549 cells with an IC50 value of 0.08 μM, which is 20-fold superior to parent compound 7k. Additionally, compound 7b, which display the best anti-FAK potency, can inhibit the clone formation and migration of HCT-116 cells, and cause cell cycle arrest at G2/M phase, inducing apoptosis by promoting ROS production. Overall, these results suggest that 7b is a valuable FAK inhibitor that deserves further optimization to improve its druggability.
Collapse
Affiliation(s)
- Ridong Li
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, PR China.
| | - Lidong Gong
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, PR China
| | - Jiawei Sun
- Department of Pharmaceutics, College of Pharmacy, Inner Mongolia Medical University, Hohhot 010110, PR China
| | - Zichao Liang
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, PR China
| | - Jianan He
- MindRank AI Ltd., Kejiyuan Road, Hangzhou, Zhejiang 310000, PR China
| | - Junjie Huang
- MindRank AI Ltd., Kejiyuan Road, Hangzhou, Zhejiang 310000, PR China
| | - Xianling Ning
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, PR China
| | - Huajie Song
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, PR China
| | - Runtao Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, PR China
| | - Qiang Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, PR China
| | - Zhiqiang Lin
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, PR China.
| | - Yuxin Yin
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, PR China; Peking-Tsinghua Center for Life Sciences, Peking University Health Science Center, Beijing 100191, PR China.
| |
Collapse
|
2
|
Nadar S, Borkar MR, Khan T. Identification of potential focal adhesion kinase (FAK) inhibitors: a molecular modeling approach. J Biomol Struct Dyn 2024:1-11. [PMID: 38356145 DOI: 10.1080/07391102.2024.2314266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/30/2024] [Indexed: 02/16/2024]
Abstract
Focal adhesion kinase (FAK) is an enzyme of paramount importance as it is involved in several critical roles, which are linked to proliferation of cancer cells. FAK is quintessential for cancer cell mitigation, adhesion and survival, downregulation of which interferes with the growth of cancer cells. The expression of FAK is elevated in breast cancer, hepatocellular carcinomas, neuroblastoma cells, demonstrating the need for FAK inhibitors as a potential treatment. Based on an in silico drug screen, the study aimed to identify potential FAK inhibitors. 3180 molecules retrieved from the Zinc database comprising biogenic molecules, FDA-approved drugs and compounds in clinical trials were screened against the FAK enzyme (PDB:2ETM). The XP docking study of the best 51 ligands revealed that ZINC02033589 (Silymarin) showed good binding to FAK with -10.97 kcal/mol dock score followed by ZINC00518397 with -8.23 kcal/mol and ZINC03831112 - 8.07 kcal/mol. The interactions of the top three ligands with FAK were further validated by molecular dynamic simulation study of 100 ns and MM-GBSA calculations. The ΔG of binding of ZINC02033589, ZINC00518397 and ZINC03831112 was found to be -59.09, -45.08 and -48.53 kcal/mol respectively. The study established the fact that among the three molecules, ZINC02033589 showed good stability and binding towards FAK. These results could usher in the development of potential FAK inhibitor entities, that could be persuaded and substantiated by the molecules identified in this study for subsequent synthetic and bioactivity research studies.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sahaya Nadar
- Department of Pharmaceutical Chemistry, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
- Department of Pharmaceutical Chemistry, St. John Institute of Pharmacy and Research, Palghar, India
| | - Maheshkumar R Borkar
- Department of Pharmaceutical Chemistry, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Tabassum Khan
- Department of Pharmaceutical Chemistry, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| |
Collapse
|
3
|
Huang Y, Liao J, Vlashi R, Chen G. Focal adhesion kinase (FAK): its structure, characteristics, and signaling in skeletal system. Cell Signal 2023; 111:110852. [PMID: 37586468 DOI: 10.1016/j.cellsig.2023.110852] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/29/2023] [Accepted: 08/13/2023] [Indexed: 08/18/2023]
Abstract
Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase and distributes important regulatory functions in skeletal system. Mesenchymal stem cell (MSC) possesses significant migration and differentiation capacity, is an important source of distinctive bone cells production and a prominent bone development pathway. MSC has a wide range of applications in tissue bioengineering and regenerative medicine, and is frequently employed for hematopoietic support, immunological regulation, and defect repair, although current research is insufficient. FAK has been identified to cross-link with many other keys signaling pathways in bone biology and is considered as a fundamental "crossroad" on the signal transduction pathway and a "node" in the signal network to mediate MSC lineage development in skeletal system. In this review, we summarized the structure, characteristics, cellular signaling, and the interactions of FAK with other signaling pathways in the skeletal system. The discovery of FAK and its mediated molecules will lead to a new knowledge of bone development and bone construction as well as considerable potential for therapeutic use in the treatment of bone-related disorders such as osteoporosis, osteoarthritis, and osteosarcoma.
Collapse
Affiliation(s)
- Yuping Huang
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Junguang Liao
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Rexhina Vlashi
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Guiqian Chen
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
4
|
Benjamin M, Malakar P, Sinha RA, Nasser MW, Batra SK, Siddiqui JA, Chakravarti B. Molecular signaling network and therapeutic developments in breast cancer brain metastasis. ADVANCES IN CANCER BIOLOGY - METASTASIS 2023; 7:100079. [PMID: 36536947 PMCID: PMC7613958 DOI: 10.1016/j.adcanc.2022.100079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Breast cancer (BC) is one of the most frequently diagnosed cancers in women worldwide. It has surpassed lung cancer as the leading cause of cancer-related death. Breast cancer brain metastasis (BCBM) is becoming a major clinical concern that is commonly associated with ER-ve and HER2+ve subtypes of BC patients. Metastatic lesions in the brain originate when the cancer cells detach from a primary breast tumor and establish metastatic lesions and infiltrate near and distant organs via systemic blood circulation by traversing the BBB. The colonization of BC cells in the brain involves a complex interplay in the tumor microenvironment (TME), metastatic cells, and brain cells like endothelial cells, microglia, and astrocytes. BCBM is a significant cause of morbidity and mortality and presents a challenge to developing successful cancer therapy. In this review, we discuss the molecular mechanism of BCBM and novel therapeutic strategies for patients with brain metastatic BC.
Collapse
Affiliation(s)
- Mercilena Benjamin
- Lab Oncology, Dr. B.R.A.I.R.C.H. All India Institute of Medical Sciences, New Delhi, India
| | - Pushkar Malakar
- Department of Biomedical Science and Technology, School of Biological Sciences, Ramakrishna Mission Vivekananda Educational and Research Institute, Narendrapur, West Bengal, 700103, India
| | - Rohit Anthony Sinha
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, 226014, India
| | - Mohd Wasim Nasser
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68108, USA
| | - Surinder K. Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68108, USA
| | - Jawed Akhtar Siddiqui
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68108, USA
| | - Bandana Chakravarti
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, 226014, India
| |
Collapse
|
5
|
Vaezi MA, Eghtedari AR, Safizadeh B, Babaheidarian P, Salimi V, Adjaminezhad-Fard F, Yarahmadi S, Mirzaei A, Rahbar M, Tavakoli-Yaraki M. Evaluating the local expression pattern of IGF-1R in tumor tissues and the circulating levels of IGF-1, IGFBP-1, and IGFBP-3 in the blood of patients with different primary bone tumors. Front Oncol 2023; 12:1096438. [PMID: 36713521 PMCID: PMC9880312 DOI: 10.3389/fonc.2022.1096438] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 12/13/2022] [Indexed: 01/14/2023] Open
Abstract
Introduction The present study tried to provide insights into the expression pattern and diagnostic significance of the IGF-1 axis main mediators in three main primary bone tumor types with different degrees of severity. Methods The real-time qRT-PCR (to analyze IGF-1R gene expression), the immunohistochemistry (to measure IGF-1R protein), and the ELISA assay (to assess the circulating level of IGF-1, IGFBP-1, and IGFBP-3) were applied to confirm this hypothesis. A total number of 180 bone tissues (90 tumors and 90 noncancerous adjacent tissues) and 120 blood samples drained from 90 patients with bone tumors and 30 healthy controls were enrolled in the study. The association of insulin-like growth factor (IGF)-1 axis expression pattern with the patient's clinical pathological characteristics and tumor aggressive features, the diagnostic and predictive values were assessed for all tumor groups. Results A significantly elevated level of IGF-1R gene and protein was detected in bone tumors compared to the noncancerous bone tissues that were prominent in osteosarcoma and Ewing sarcoma compared to the GCT group. The positive association of the IGF-1R gene and protein level with tumor grade, metastasis, and recurrence was detected in the osteosarcoma and Ewing sarcoma groups. The circulating level of IGF-1, IGFPB-1, and IGFBP-3 were increased in osteosarcoma and Ewing sarcoma and GCT groups that were correlated significantly to the tumor severity. The ability of the IGF-1 axis to discriminate between bone tumors also malignant and benign tumors was considerable. Discussion In summary, our data suggested that IGF-1R, IGF-1, IGFBP-1, and IGFBP-3 levels are associated with bone tumor malignancy, metastasis, and recurrence that might serve as biomarkers for osteosarcoma and Ewing sarcoma recurrence.
Collapse
Affiliation(s)
- Mohammad Amin Vaezi
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Reza Eghtedari
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Banafsheh Safizadeh
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Pegah Babaheidarian
- Department of Pathology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Vahid Salimi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Adjaminezhad-Fard
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sahar Yarahmadi
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Mirzaei
- Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Mahtab Rahbar
- Department of Pathology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Tavakoli-Yaraki
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran,*Correspondence: Masoumeh Tavakoli-Yaraki, ;
| |
Collapse
|
6
|
Yang L, Qiao P, Zhang J, Huang S, Hu A. Rho-associated kinase1 promotes laryngeal squamous cell carcinoma tumorigenesis and progression via the FAK signaling pathway. Discov Oncol 2022; 13:100. [PMID: 36197602 PMCID: PMC9535064 DOI: 10.1007/s12672-022-00561-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/08/2022] [Indexed: 11/04/2022] Open
Abstract
Laryngeal squamous cell carcinoma (LSCC) is one of the most common head and neck squamous cell carcinomas (HNSCC). Rho-associated kinase1 (ROCK1) is considered to promote progression of numerous cancers, however, its role in LSCC is still unknown. Here, the expression level of ROCK1 is higher in LSCC tissues than non-tumor tissues, and the expression level of ROCK1 is positively correlated with advanced stage and poor survival prognosis. ROCK1 knockdown in TU686 and TU212 cells dramatically inhibits cellular proliferation, migration and invasion. Whereas the overexpression of ROCK1 reversed these changes. FAK signaling pathway plays an essential role in promoting LSCC progression. Inhibiting FAK activity with TAE226 observably impairs the tumor-promoting effects. In conclusion, ROCK1 promotes LSCC tumorigenesis and progression via the FAK signaling pathway, targeting the ROCK1 molecule may represent potential targets for clinical LSCC treatment.
Collapse
Affiliation(s)
- Liyun Yang
- Department of Otolaryngology, Gongli Hospital, The Second Military Medical University, Shanghai, 200135, China
| | - Peipei Qiao
- Department of Otolaryngology, Gongli Hospital, The Second Military Medical University, Shanghai, 200135, China
| | - Jianwei Zhang
- Department of Otolaryngology, Gongli Hospital, The Second Military Medical University, Shanghai, 200135, China
| | - Shuixian Huang
- Department of Otolaryngology, Gongli Hospital, The Second Military Medical University, Shanghai, 200135, China.
| | - An Hu
- Department of Otolaryngology, Gongli Hospital, The Second Military Medical University, Shanghai, 200135, China.
| |
Collapse
|
7
|
Wu X, Wang J, Liang Q, Tong R, Huang J, Yang X, Xu Y, Wang W, Sun M, Shi J. Recent progress on FAK inhibitors with dual targeting capabilities for cancer treatment. Biomed Pharmacother 2022; 151:113116. [PMID: 35598365 DOI: 10.1016/j.biopha.2022.113116] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/30/2022] [Accepted: 05/10/2022] [Indexed: 02/08/2023] Open
Abstract
Focal adhesion kinase (FAK, also known as PTK2) is a tyrosine kinase that regulates integrin and growth factor signaling pathways and is involved in the migration, proliferation and survival of cancer cells. FAK is a promising target for cancer treatment. Many small molecule FAK inhibitors have been identified and proven in both preclinical and clinical studies to be effective inhibitors of tumor growth and metastasis. There are many signaling pathways, such as those involving FAK, Src, AKT, MAPK, PI3K, and EGFR/HER-2, that provide survival signals in cancer cells. Dual inhibitors that simultaneously block FAK and another factor can significantly improve efficacy and overcome some of the shortcomings of single-target inhibitors, including drug resistance. In this review, the antitumor mechanisms and research status of dual inhibitors of FAK and other targets, such as Pyk2, IGF-IR, ALK, VEGFR-3, JAK2, EGFR, S6K1, and HDAC2, are summarized, providing new ideas for the development of effective FAK dual-target preparations.
Collapse
Affiliation(s)
- Xianbo Wu
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, Sichuan 610041, China
| | - Jie Wang
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550002, China
| | - Qi Liang
- College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Rongsheng Tong
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Jianli Huang
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550002, China
| | - Xinwei Yang
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, Sichuan 610041, China
| | - Yihua Xu
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Wenjing Wang
- State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China.
| | - Minghan Sun
- Central of Reproductive Medicine, Department of Obstetrics and Gynecology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.
| | - Jianyou Shi
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China.
| |
Collapse
|
8
|
Wang X, Zhou P, Lin L, Wu B, Fu Z, Huang X, Zhu D. Effective natural inhibitors targeting IGF-1R by computational study. Aging (Albany NY) 2022; 14:4874-4887. [PMID: 35680570 PMCID: PMC9217697 DOI: 10.18632/aging.204117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 05/10/2022] [Indexed: 11/25/2022]
Abstract
IGF-1R belongs to a tyrosine kinase family and is currently a newly discovered drug target. IGF-1R inhibitors can bind directly to IGF-1R to achieve the effect of inhibiting the function of IGF-1R. At present, IGF-1R inhibitors have good clinical effects on Ewing sarcoma in the clinic. In this article, we screened compounds capable of inhibiting IGF-1R function through computer-aided virtual technology. First, some molecules with good docking properties for IGF-1R can be screened by LibDock. Then, ADME analysis (adsorption, distribution, metabolism, and excretion) and toxicity indicators were performed. The mechanism of binding and the binding affinity in the middle of IGF-1R and ligand were verified using molecular docking. Ultimately, the stability of ligand-receptor complex was evaluated using molecular dynamics simulations. In line with the results, two natural compounds ZINC000014946303 and ZINC000006003042 were found in the ZINC database, potential effective inhibitors of IGF-1R. ZINC000014946303 and ZINC000006003042 can bind to IGF-1R with high binding affinity as predicted by molecular docking. It was also found that they are not hepatotoxic, with less developmental toxicity potential, rodent carcinogenicity, Ames mutagenicity, and high tolerance to cytochrome P4502D6. Hereby, this study aimed to screen out ideal compounds that have inhibitory effects on IGF-1R from the drug library and, at the same time, provide a direction for the future development of IGF-1R inhibitors.
Collapse
Affiliation(s)
- Xinyu Wang
- Department of Orthopaedics, The First Bethune Hospital of Jilin University, Changchun, China
| | - Pengcheng Zhou
- Department of Orthopaedics, The First Bethune Hospital of Jilin University, Changchun, China
| | - Liangxin Lin
- Department of Orthopaedics, The First Bethune Hospital of Jilin University, Changchun, China
| | - Bo Wu
- Department of Orthopaedics, The First Bethune Hospital of Jilin University, Changchun, China
| | - Zhaoyu Fu
- Department of Orthopaedics, The First Bethune Hospital of Jilin University, Changchun, China
| | - Xing Huang
- Department of Radiology, Jilin Province People's Hospital, Changchun, China
| | - Dong Zhu
- Department of Orthopaedics, The First Bethune Hospital of Jilin University, Changchun, China
| |
Collapse
|
9
|
Gunn SA, Kreps LM, Zhao H, Landon K, Ilacqua JS, Addison CL. Focal Adhesion Kinase Inhibitors Prevent Osteoblast Mineralization in Part Due to Suppression of Akt-mediated stabilization of Osterix. J Bone Oncol 2022; 34:100432. [PMID: 35620245 PMCID: PMC9126966 DOI: 10.1016/j.jbo.2022.100432] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 04/06/2022] [Accepted: 04/19/2022] [Indexed: 11/17/2022] Open
Abstract
Pharmacological blockade of FAK results in reduced ALP expression and mineralization by differentiated osteoblasts. Although FAK inhibition resulted in increased levels of BMP2, Wnt3a and Mdm2, and decreased p53, alteration of these pathways was unable to restore mineralization in the presence of FAK tyrosine kinase inhibitors. FAK tyrosine kinase inhibitors resulted in decreased levels of phospho-S473 Akt which led to increased levels of active GSK3β which in turn inhibited Runx2 activity that could contribute to the observed reduced ALP levels. FAK tyrosine kinase inhibitors blocked Akt-mediated stabilization of osterix leading to decreased overall levels of osterix and impaired mineralization in MC3T3-E1 cells differentiated into osteoblasts.
Focal Adhesion Kinase (FAK) is an important regulator of tumor cell proliferation, survival and metastasis. As such it has become a therapeutic target of interest in cancer. Previous studies suggested that use of FAK tyrosine kinase inhibitors (TKIs) blocks osteolysis in in vivo models of bone metastasis. However, from these studies it was not clear whether FAK TKIs blocked bone degradation by osteoclasts or also promoted bone formation by osteoblasts. In this study we evaluated whether use of the FAK TKI PF-562,271 affected the differentiation of pre-osteoblasts, or activity of mature differentiated osteoblasts. MC3T3-E1 pre-osteoblastic cells were treated with various doses of PF-562,271 following 3 or 10 days of differentiation which led to the inhibition of alkaline phosphatase (ALP) expression and reduced viable cell numbers in a dose-dependent manner. MC3T3-E1 cells which had been differentiated for 21 days prior to treatment with PF-562,271 showed a dose dependent decrease in mineralization as assessed by Alizarin Red staining, with concomitant decreased expression of ALP which is known to facilitate the bone mineralization activity of osteoblasts, however mRNA levels of the transcription factors RUNX2 and osterix which are important for osteoblast maturation and mineralization appeared unaffected at this time point. We speculated that this may be due to altered function of RUNX2 protein due to inhibitory phosphorylation by GSK3β. We found treatment with PF-562,271 resulted in increased GSK3β activity as measured by reduced levels of phospho-Ser9-GSK3β which would result in phosphorylation and inhibition of RUNX2. Treatment of 21 day differentiated MC3T3-E1 cells with PF-562,271 in combination with GSK3β inhibitors partially restored mineralization however this was not statistically significant. As we observed that FAK TKI also resulted in suppression of Akt, which is known to alter osterix protein stability downstream of RUNX2, we examined protein levels by western blot and found a dose-dependent decrease in osterix in FAK TKI treated differentiated MC3T3-E1 cells which is likely responsible for the reduced mineralization observed. Taken together our results suggest that use of FAK TKIs as therapeutics in the bone metastatic setting may block new bone formation as an off-target effect and thereby exacerbate the defective bone regulation that is characteristic of the bone metastatic environment.
Collapse
|
10
|
Pomella S, Cassandri M, Braghini MR, Marampon F, Alisi A, Rota R. New Insights on the Nuclear Functions and Targeting of FAK in Cancer. Int J Mol Sci 2022; 23:ijms23041998. [PMID: 35216114 PMCID: PMC8874710 DOI: 10.3390/ijms23041998] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/03/2022] [Accepted: 02/09/2022] [Indexed: 02/01/2023] Open
Abstract
Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase over-expressed and activated in both adult and pediatric cancers, where it plays important roles in the regulation of pathogenesis and progression of the malignant phenotype. FAK exerts its functions in cancer by two different ways: a kinase activity in the cytoplasm, mainly dependent on the integrin signaling, and a scaffolding activity into the nucleus by networking with different gene expression regulators. For this reason, FAK has to be considered a target with high therapeutic values. Indeed, evidence suggests that FAK targeting could be effective, either alone or in combination, with other already available treatments. Here, we propose an overview of the novel insights about FAK’s structure and nuclear functions, with a special focus on the recent findings concerning the roles of this protein in cancer. Additionally, we provide a recent update on FAK inhibitors that are currently in clinical trials for patients with cancer, and discuss the challenge and future directions of drug-based anti-FAK targeted therapies.
Collapse
Affiliation(s)
- Silvia Pomella
- Department of Oncohematology, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (S.P.); (M.C.)
| | - Matteo Cassandri
- Department of Oncohematology, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (S.P.); (M.C.)
- Department of Radiotherapy, Policlinico Umberto I, Sapienza University of Rome, 00185 Rome, Italy;
| | - Maria Rita Braghini
- Unit of Molecular Genetics of Complex Phenotypes, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy;
| | - Francesco Marampon
- Department of Radiotherapy, Policlinico Umberto I, Sapienza University of Rome, 00185 Rome, Italy;
| | - Anna Alisi
- Unit of Molecular Genetics of Complex Phenotypes, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy;
- Correspondence: (A.A.); (R.R.); Tel.: +39-06-68592186 (A.A.); +39-06-68592648 (R.R.)
| | - Rossella Rota
- Department of Oncohematology, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (S.P.); (M.C.)
- Correspondence: (A.A.); (R.R.); Tel.: +39-06-68592186 (A.A.); +39-06-68592648 (R.R.)
| |
Collapse
|
11
|
Wu Y, Li N, Ye C, Jiang X, Luo H, Zhang B, Zhang Y, Zhang Q. Focal adhesion kinase inhibitors, a heavy punch to cancer. Discov Oncol 2021; 12:52. [PMID: 35201485 PMCID: PMC8777493 DOI: 10.1007/s12672-021-00449-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/11/2021] [Indexed: 01/02/2023] Open
Abstract
Kinases are the ideal druggable targets for diseases and especially were highlighted on cancer therapy. Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase and its aberrant signaling extensively implicates in the progression of most cancer types, involving in cancer cell growth, adhesion, migration, and tumor microenvironment (TME) remodeling. FAK is commonly overexpressed and activated in a variety of cancers and plays as a targetable kinase in cancer therapy. FAK inhibitors already exhibited promising performance in preclinical and early-stage clinical trials. Moreover, substantial evidence has implied that targeting FAK is more effective in combination strategy, thereby reversing the failure of chemotherapies or targeted therapies in solid tumors. In the current review, we summarized the drug development progress, chemotherapy strategy, and perspective view for FAK inhibitors.
Collapse
Affiliation(s)
- Yueling Wu
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
- Graduate School of Guangdong Medical University, Zhanjiang, 524023, China
| | - Ning Li
- Graduate School of Guangdong Medical University, Zhanjiang, 524023, China
| | - Chengfeng Ye
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
- Graduate School of Guangdong Medical University, Zhanjiang, 524023, China
| | - Xingmei Jiang
- Graduate School of Guangdong Medical University, Zhanjiang, 524023, China
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, 524023, China
| | - Hui Luo
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, 524023, China
| | - Baoyuan Zhang
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Ying Zhang
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China.
| | - Qingyu Zhang
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China.
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, 524023, China.
| |
Collapse
|
12
|
Brullo C, Tasso B. New Insights on Fak and Fak Inhibitors. Curr Med Chem 2021; 28:3318-3338. [PMID: 33143618 DOI: 10.2174/0929867327666201103162239] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/08/2020] [Accepted: 09/19/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Focal adhesion kinase (Fak) is a cytoplasmic protein tyrosine kinase overexpressed and activated in different solid cancers; it has shown an important role in metastasis formation, cell migration, invasion and angiogenesis and consequently it has been proposed as a potential target in cancer therapy, particularly in a metastatic phase. In recent years, different investigations have highlighted the importance of new Fak inhibitors as potential anti-cancer drugs, but other studies evidenced its role in different pathologies related to the cardiac function or viral infection. METHODS An extensive bibliographic research (104 references) has been done concerning the structure of Fak, its importance in tumor development, but also in other pathologies currently under study. The compounds currently subjected to clinical studies were therefore treated using the appropriate databases. Finally, the main chemical scaffolds currently under preclinical investigation were analyzed, focusing on their molecular structures and on the activity structure relationships (SAR). RESULTS At the moment, only a few reversible ATP-competitive inhibitors are under investigation in pre-clinical studies and clinical trials. Other compounds, with different chemical scaffolds, are investigated to obtain more active and selective Fak inhibitors. This mini-review is a summary of different Fak functions in cancer and other pathologies; the compounds today in clinical trials and the recent chemical scaffolds (also included in patents) giving the most interesting results are investigated. In addition, PROTAC molecules are reported. CONCLUSION All reported results evidenced that additional studies are necessary to design and synthesize new selective and more active compounds, although promising information has been obtained from associations between Fak inhibitors and other different anti- cancer drugs. In addition, the other important roles evidenced, both at the nuclear level and in non-cancerous cells, make this protein an increasingly important target in pharmaceutical chemistry.
Collapse
Affiliation(s)
- Chiara Brullo
- Department of Pharmacy, University of Genova, Viale Benedetto XV, 3-I16132 Genova, Italy
| | - Bruno Tasso
- Department of Pharmacy, University of Genova, Viale Benedetto XV, 3-I16132 Genova, Italy
| |
Collapse
|
13
|
Tzanakakis GN, Giatagana EM, Berdiaki A, Spyridaki I, Hida K, Neagu M, Tsatsakis AM, Nikitovic D. The Role of IGF/IGF-IR-Signaling and Extracellular Matrix Effectors in Bone Sarcoma Pathogenesis. Cancers (Basel) 2021; 13:cancers13102478. [PMID: 34069554 PMCID: PMC8160938 DOI: 10.3390/cancers13102478] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/27/2021] [Accepted: 05/18/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Bone sarcomas are mesenchymal origin tumors. Bone sarcoma patients show a variable response or do not respond to chemotherapy. Notably, improving efficient chemotherapy approaches, dealing with chemoresistance, and preventing metastasis pose unmet challenges in sarcoma therapy. Insulin-like growth factors 1 and 2 (IGF-1 and -2) and their respective receptors are a multifactorial system that significantly contributes to bone sarcoma pathogenesis. Most clinical trials aiming at the IGF pathway have had limited success. Developing combinatorial strategies to enhance antitumor responses and better classify the patients that could best benefit from IGF-axis targeting therapies is in order. A plausible approach for developing a combinatorial strategy is to focus on the tumor microenvironment (TME) and processes executed therein. Herewith, we will discuss how the interplay between IGF-signaling and the TME constituents affects bone sarcomas’ basal functions and their response to therapy. Potential direct and adjunct therapeutical implications of the extracellular matrix (ECM) effectors will also be summarized. Abstract Bone sarcomas, mesenchymal origin tumors, represent a substantial group of varying neoplasms of a distinct entity. Bone sarcoma patients show a limited response or do not respond to chemotherapy. Notably, developing efficient chemotherapy approaches, dealing with chemoresistance, and preventing metastasis pose unmet challenges in sarcoma therapy. Insulin-like growth factors 1 and 2 (IGF-1 and -2) and their respective receptors are a multifactorial system that significantly contributes to bone sarcoma pathogenesis. Whereas failures have been registered in creating novel targeted therapeutics aiming at the IGF pathway, new agent development should continue, evaluating combinatorial strategies for enhancing antitumor responses and better classifying the patients that could best benefit from these therapies. A plausible approach for developing a combinatorial strategy is to focus on the tumor microenvironment (TME) and processes executed therein. Herewith, we will discuss how the interplay between IGF-signaling and the TME constituents affects sarcomas’ basal functions and their response to therapy. This review highlights key studies focusing on IGF signaling in bone sarcomas, specifically studies underscoring novel properties that make this system an attractive therapeutic target and identifies new relationships that may be exploited. Potential direct and adjunct therapeutical implications of the extracellular matrix (ECM) effectors will also be summarized.
Collapse
Affiliation(s)
- George N. Tzanakakis
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, 71003 Heraklion, Greece; (G.N.T.); (E.-M.G.); (A.B.); (I.S.)
- Laboratory of Anatomy, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Eirini-Maria Giatagana
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, 71003 Heraklion, Greece; (G.N.T.); (E.-M.G.); (A.B.); (I.S.)
| | - Aikaterini Berdiaki
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, 71003 Heraklion, Greece; (G.N.T.); (E.-M.G.); (A.B.); (I.S.)
| | - Ioanna Spyridaki
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, 71003 Heraklion, Greece; (G.N.T.); (E.-M.G.); (A.B.); (I.S.)
| | - Kyoko Hida
- Department of Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Sapporo 060-8586, Japan;
| | - Monica Neagu
- Department of Immunology, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania;
| | - Aristidis M. Tsatsakis
- Laboratory of Toxicology, School of Medicine, University of Crete, 71003 Heraklion, Greece;
| | - Dragana Nikitovic
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, 71003 Heraklion, Greece; (G.N.T.); (E.-M.G.); (A.B.); (I.S.)
- Correspondence:
| |
Collapse
|
14
|
Ghafouri-Fard S, Abak A, Mohaqiq M, Shoorei H, Taheri M. The Interplay Between Non-coding RNAs and Insulin-Like Growth Factor Signaling in the Pathogenesis of Neoplasia. Front Cell Dev Biol 2021; 9:634512. [PMID: 33768092 PMCID: PMC7985092 DOI: 10.3389/fcell.2021.634512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/02/2021] [Indexed: 12/11/2022] Open
Abstract
The insulin-like growth factors (IGFs) are polypeptides with similar sequences with insulin. These factors regulate cell growth, development, maturation, and aging via different processes including the interplay with MAPK, Akt, and PI3K. IGF signaling participates in the pathogenesis of neoplasia, insulin resistance, diabetes mellitus, polycystic ovarian syndrome, cerebral ischemic injury, fatty liver disease, and several other conditions. Recent investigations have demonstrated the interplay between non-coding RNAs and IGF signaling. This interplay has fundamental roles in the development of the mentioned disorders. We designed the current study to search the available data about the role of IGF-associated non-coding RNAs in the evolution of neoplasia and other conditions. As novel therapeutic strategies have been designed for modification of IGF signaling, identification of the impact of non-coding RNAs in this pathway is necessary for the prediction of response to these modalities.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atefe Abak
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Mohaqiq
- School of Advancement, Centennial College, Ashtonbee Campus, Toronto, ON, Canada
- Wake Forest Institute for Regenerative Medicine, School of Medicine, Wake Forest University, Winston-Salem, NC, United States
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Biranjd University of Medical Sciences, Birjand, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Zhang Y, Liu S, Zhou S, Yu D, Gu J, Qin Q, Cheng Y, Sun X. Focal adhesion kinase: Insight into its roles and therapeutic potential in oesophageal cancer. Cancer Lett 2020; 496:93-103. [PMID: 33038490 DOI: 10.1016/j.canlet.2020.10.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/10/2020] [Accepted: 10/02/2020] [Indexed: 12/26/2022]
Abstract
Oesophageal cancer is associated with high morbidity and mortality rates because it is highly invasive and prone to recurrence and metastasis, with a five-year survival rate of <20%. Therefore, there is an urgent need for new methods aimed at improving therapeutic intervention. Several studies have shown that targeted therapy may be effective for the treatment of oesophageal cancer. Focal adhesion kinase (FAK), a non-receptor tyrosine kinase with kinase activity and scaffolding function, could be overexpressed in a variety of solid tumours, including oesophageal cancer. FAK participates in survival, proliferation, progression, adhesion, invasion, migration, epithelial-to-mesenchymal transition, angiogenesis, DNA damage repair, and other biological processes through multiple signalling pathways in cancer cells. It plays an important role in the occurrence and development of tumours and has been linked to the prognosis of oesophageal cancer. FAK has been suggested as a potential therapeutic target in oesophageal cancer; thus, the combination of FAK inhibitors with chemotherapy, radiotherapy, and immunotherapy is expected to prolong the survival of patients. This paper presents a brief overview of the structure of FAK and its potential role in oesophageal cancer, providing a rationale for the future application of FAK inhibitors in the treatment of the disease.
Collapse
Affiliation(s)
- Yumeng Zhang
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu province, China; The First School of Clinical Medicine, Nanjing Medical University, Nanjing, 210029, Jiangsu province, China
| | - Shu Liu
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu province, China
| | - Shu Zhou
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu province, China
| | - Dandan Yu
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu province, China
| | - Junjie Gu
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu province, China; The First School of Clinical Medicine, Nanjing Medical University, Nanjing, 210029, Jiangsu province, China
| | - Qin Qin
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu province, China
| | - Yu Cheng
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu province, China; The First School of Clinical Medicine, Nanjing Medical University, Nanjing, 210029, Jiangsu province, China
| | - Xinchen Sun
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu province, China.
| |
Collapse
|
16
|
Lorusso G, Rüegg C, Kuonen F. Targeting the Extra-Cellular Matrix-Tumor Cell Crosstalk for Anti-Cancer Therapy: Emerging Alternatives to Integrin Inhibitors. Front Oncol 2020; 10:1231. [PMID: 32793493 PMCID: PMC7387567 DOI: 10.3389/fonc.2020.01231] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 06/16/2020] [Indexed: 12/11/2022] Open
Abstract
The extracellular matrix (ECM) is a complex network composed of a multitude of different macromolecules. ECM components typically provide a supportive structure to the tissue and engender positional information and crosstalk with neighboring cells in a dynamic reciprocal manner, thereby regulating tissue development and homeostasis. During tumor progression, tumor cells commonly modify and hijack the surrounding ECM to sustain anchorage-dependent growth and survival, guide migration, store pro-tumorigenic cell-derived molecules and present them to enhance receptor activation. Thereby, ECM potentially supports tumor progression at various steps from initiation, to local growth, invasion, and systemic dissemination and ECM-tumor cells interactions have long been considered promising targets for cancer therapy. Integrins represent key surface receptors for the tumor cell to sense and interact with the ECM. Yet, attempts to therapeutically impinge on these interactions using integrin inhibitors have failed to deliver anticipated results, and integrin inhibitors are still missing in the emerging arsenal of drugs for targeted therapies. This paradox situation should urge the field to reconsider the role of integrins in cancer and their targeting, but also to envisage alternative strategies. Here, we review the therapeutic targets implicated in tumor cell adhesion to the ECM, whose inhibitors are currently in clinical trials and may offer alternatives to integrin inhibition.
Collapse
Affiliation(s)
- Girieca Lorusso
- Experimental and Translational Oncology, Department of Oncology Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Curzio Rüegg
- Experimental and Translational Oncology, Department of Oncology Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - François Kuonen
- Department of Dermatology and Venereology, Hôpital de Beaumont, Lausanne University Hospital Center, Lausanne, Switzerland
| |
Collapse
|
17
|
Jin W. The Role of Tyrosine Kinases as a Critical Prognostic Parameter and Its Targeted Therapies in Ewing Sarcoma. Front Cell Dev Biol 2020; 8:613. [PMID: 32754598 PMCID: PMC7381324 DOI: 10.3389/fcell.2020.00613] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 06/22/2020] [Indexed: 12/12/2022] Open
Abstract
Ewing sarcoma (ES) is a rare, highly aggressive, bone, or soft tissue-associated tumor. Although this sarcoma often responds well to initial chemotherapy, 40% of the patients develop a lethal recurrence of the disease, with death recorded in 75-80% of patients with metastatic ES within 5 years, despite receiving high-dose chemotherapy. ES is genetically well-characterized, as indicated by the EWS-FLI1 fusion protein encoded as a result of chromosomal translocation in 80-90% of patients with ES, as well as in ES-related cancer cell lines. Recently, tyrosine kinases have been identified in the pathogenesis of ES. These tyrosine kinases, acting as oncoproteins, are associated with the clinical pathogenesis, metastasis, acquisition of self-renewal traits, and chemoresistance of ES, through the activation of various intracellular signaling pathways. This review describes the recent progress related to cellular and molecular functional roles of tyrosine kinases in the progression of ES.
Collapse
Affiliation(s)
- Wook Jin
- Laboratory of Molecular Disease and Cell Regulation, Department of Biochemistry, School of Medicine, Gachon University, Incheon, South Korea
| |
Collapse
|
18
|
Steinestel K, Trautmann M, Jansen EP, Dirksen U, Rehkämper J, Mikesch JH, Gerke JS, Orth MF, Sannino G, Arteaga MF, Rossig C, Wardelmann E, Grünewald TGP, Hartmann W. Focal adhesion kinase confers pro-migratory and antiapoptotic properties and is a potential therapeutic target in Ewing sarcoma. Mol Oncol 2019; 14:248-260. [PMID: 31811703 PMCID: PMC6998388 DOI: 10.1002/1878-0261.12610] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 11/10/2019] [Accepted: 12/05/2019] [Indexed: 12/21/2022] Open
Abstract
Oncogenesis of Ewing sarcoma (EwS), the second most common malignant bone tumor of childhood and adolescence, is dependent on the expression of chimeric EWSR1‐ETS fusion oncogenes, most often EWSR1‐FLI1 (E/F). E/F expression leads to dysregulation of focal adhesions (FAs) enhancing the migratory capacity of EwS cells. Here, we show that, in EwS cell lines and tissue samples, focal adhesion kinase (FAK) is expressed and phosphorylated at Y397 in an E/F‐dependent way involving Ezrin. Employing different EwS cell lines as in vitro models, we found that key malignant properties of E/F are mediated via substrate‐independent autophosphorylation of FAK on Y397. This phosphorylation results in enhanced FA formation, Rho‐dependent cell migration, and impaired caspase‐3‐mediated apoptosis in vitro. Conversely, treatment with the FAK inhibitor 15 (1,2,4,5‐benzenetetraamine tetrahydrochloride (Y15) enhanced caspase‐mediated apoptosis and EwS cell migration, independent from the respective EWSR1‐ETS fusion type, mimicking an anoikis‐like phenotype and paralleling the effects of FAK siRNA knockdown. Our findings were confirmed in vivo using an avian chorioallantoic membrane model and provide a first rationale for the therapeutic use of FAK inhibitors to impair metastatic dissemination of EwS.
Collapse
Affiliation(s)
- Konrad Steinestel
- Gerhard Domagk Institute of Pathology, University Hospital Münster, Germany.,Institute of Pathology and Molecular Pathology, Bundeswehrkrankenhaus Ulm, Germany
| | - Marcel Trautmann
- Gerhard Domagk Institute of Pathology, University Hospital Münster, Germany.,Division of Translational Pathology, Gerhard-Domagk-Institute of Pathology, University Hospital Münster, Germany
| | - Esther-Pia Jansen
- Gerhard Domagk Institute of Pathology, University Hospital Münster, Germany
| | - Uta Dirksen
- Pediatrics III, West German Cancer Centre, University Hospital Essen, Germany
| | - Jan Rehkämper
- Institute of Pathology, University Hospital Cologne, Germany
| | | | - Julia S Gerke
- Max Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Germany
| | - Martin F Orth
- Max Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Germany
| | - Giuseppina Sannino
- Max Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Germany
| | | | - Claudia Rossig
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Germany
| | - Eva Wardelmann
- Gerhard Domagk Institute of Pathology, University Hospital Münster, Germany
| | - Thomas G P Grünewald
- Max Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology, Faculty of Medicine, LMU Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Institute of Pathology, Faculty of Medicine, LMU Munich, Germany
| | - Wolfgang Hartmann
- Gerhard Domagk Institute of Pathology, University Hospital Münster, Germany.,Division of Translational Pathology, Gerhard-Domagk-Institute of Pathology, University Hospital Münster, Germany
| |
Collapse
|
19
|
Moritake H, Saito Y, Sawa D, Sameshima N, Yamada A, Kinoshita M, Kamimura S, Konomoto T, Nunoi H. TAE226, a dual inhibitor of focal adhesion kinase and insulin-like growth factor-I receptor, is effective for Ewing sarcoma. Cancer Med 2019; 8:7809-7821. [PMID: 31692287 PMCID: PMC6912025 DOI: 10.1002/cam4.2647] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 09/18/2019] [Accepted: 10/10/2019] [Indexed: 12/17/2022] Open
Abstract
The outcomes for relapsed and metastatic Ewing sarcoma (EWS) is extremely poor. Therefore, it is important to identify the tumor‐specific targets in these intractable diseases. High focal adhesion kinase (FAK) transcript expression levels in EWS cell lines are known. TAE226 is a dual inhibitor of FAK and insulin‐like growth factor‐I receptor (IGF‐IR), while PF‐562,271 is a dual inhibitor of FAK and proline‐rich tyrosine kinase 2. We compared the cytotoxicity of TAE226 and PF‐562,271 toward three EWS cell lines. TAE226 strongly inhibited proliferation of three cell lines when compared with PF‐562,271. Furthermore, we investigated the efficacy of TAE226 as well as its mechanism of action against EWS. A stable EWS cell line with FAK and IGF‐IR knocked down was established, and microarray analysis revealed dysregulated expression in various pathways. TAE226 treatment of EWS cell lines induced cell cycle arrest, apoptosis, AKT dephosphorylation, and inhibition of invasion. We demonstrated that TAE226 drastically inhibits the local growth of primary tumors and metastasis in EWS using mouse models. Furthermore, the combination of TAE226 and conventional chemotherapy proved to exert synergistic effects. TAE226 may be a candidate single agent or combined therapy drug to be developed for patients who have relapse and metastatic EWS tumors in future.
Collapse
Affiliation(s)
- Hiroshi Moritake
- Division of Pediatrics, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Yusuke Saito
- Division of Pediatrics, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Daisuke Sawa
- Division of Pediatrics, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Naoki Sameshima
- Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Ai Yamada
- Division of Pediatrics, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Mariko Kinoshita
- Division of Pediatrics, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Sachiyo Kamimura
- Division of Pediatrics, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Takao Konomoto
- Division of Pediatrics, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Hiroyuki Nunoi
- Division of Pediatrics, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| |
Collapse
|