1
|
Liu G, Lin W, Zhang K, Chen K, Niu G, Zhu Y, Liu Y, Li P, Li Z, An Y. Elucidating the prognostic and therapeutic significance of TOP2A in various malignancies. Cancer Genet 2024; 288-289:68-81. [PMID: 39454521 DOI: 10.1016/j.cancergen.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/26/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024]
Abstract
Topoisomerase IIα (TOP2A) is a crucial enzyme that plays a vital role in DNA replication and transcription mechanisms. Dysregulated expression of TOP2A has been associated with various malignancies, including hepatocellular carcinoma, prostate cancer, colon cancer, lung cancer and breast cancer. In this review, we summarized the prognostic relevances of TOP2A in various types of cancer. The increased expression of TOP2A has been linked to resistance to therapy and reduced survival rates. Therefore, evaluating TOP2A levels could assist in identifying patients who may derive advantages from molecular targeted therapy. The amplification of TOP2A has been linked to a positive response to chemotherapy regimens that contain anthracycline. Nevertheless, the overexpression of TOP2A also indicates a heightened likelihood of disease recurrence and unfavorable prognosis. The prognostic significance of TOP2A has been extensively studied in various types of cancer. The increased expression of TOP2A is associated with poor clinical outcomes, indicating its potential as a valuable biomarker for assessing risk and stratifying treatment in these malignancies. However, further investigation is needed to elucidate the underlying mechanisms by which TOP2A influences cancer progression and to explore its potential as a therapeutic target.
Collapse
Affiliation(s)
- Guangchao Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; School of Stomatology, Henan University, Kaifeng, 475004, China
| | - Wenlong Lin
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; School of Stomatology, Henan University, Kaifeng, 475004, China
| | - Kaifeng Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; School of Stomatology, Henan University, Kaifeng, 475004, China
| | - Kangxu Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; School of Stomatology, Henan University, Kaifeng, 475004, China
| | - Guanglin Niu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; School of Stomatology, Henan University, Kaifeng, 475004, China
| | - Yonghao Zhu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; School of Stomatology, Henan University, Kaifeng, 475004, China
| | - Yixuan Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key laboratory of cell signal transduction, Henan University, Kaifeng, 475004, China
| | - Pengkun Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key laboratory of cell signal transduction, Henan University, Kaifeng, 475004, China
| | - Zhihao Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key laboratory of cell signal transduction, Henan University, Kaifeng, 475004, China
| | - Yang An
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key laboratory of cell signal transduction, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
2
|
Khalouei A, Masoumi-Ardakani Y, Jafarzaheh A, Kalantari Khandani B, Sedghy F, Khosravi Mashizi A, Yaghoobi MM, Zangouey M, Shahouzehi B. Association of ERCC1 Gene Polymorphisms (rs3212986 and rs11615) With the Risk of Lung Cancer in a Population From Southeast Iran. J Res Health Sci 2024; 24:e00631. [PMID: 39431656 PMCID: PMC11492521 DOI: 10.34172/jrhs.2024.166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/11/2024] [Accepted: 08/23/2024] [Indexed: 10/22/2024] Open
Abstract
BACKGROUND Polymorphisms within the excision repair cross-complementation group 1 (ERCC1), an essential component of DNA repair mechanisms, have been associated with various malignancies. This study aimed to evaluate the association of the single-nucleotide polymorphisms (SNPs) rs3212986 and rs11615 within the ERCC1 gene in non-small cell lung cancer (NSCLC) patients. Study Design: A case-control study. METHODS Genomic DNA was extracted from the peripheral blood samples of 83 NSCLC patients and 119 healthy individuals. The genetic diversity of SNPs rs3212986 and rs11615 was determined using the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. The RFLP results were confirmed through sequencing. RESULTS The TT genotype of the rs11615 SNP was associated with a higher risk of NSCLC development (odds ratio: 3.900, 95% confidence interval: 0.603, 22.866, P=0.050). Furthermore, the AA genotype of rs3212986 was related to a higher risk of NSCLC development (OR: 2.531, 95% CI: 1.017, 6.300, P=0.046). A significant association was observed between smoking and lung cancer (OR: 3.072, 95% CI: 1.715, 5.503, P<0.001). Moreover, among non-smokers, there was an association between lung cancer risk and the AA (OR: 6.825, 95% CI: 1.722, 27.044, P=0.006) and AC (OR: 2.503, 95% CI: 0.977, 6.412, P=0.056) genotypes of rs3212986. However, no correlation was found between the genotypes of these SNPs and patients' sensitivity to cisplatin and carboplatin (P ˃ 0.05). CONCLUSION The rs11615-related TT genotype and the rs3212986-related AA genotype may be associated with a higher risk of lung cancer development.
Collapse
Affiliation(s)
- Ali Khalouei
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Abdollah Jafarzaheh
- Department of Immunology, Medical School, Kerman University of Medical Sciences, Kerman, Iran
| | - Behjat Kalantari Khandani
- Department of Hematology and Oncology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Farnaz Sedghy
- Department of Immunology, Medical School, Kerman University of Medical Sciences, Kerman, Iran
| | - Arezu Khosravi Mashizi
- Department of Immunology, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Mehdi Yaghoobi
- Research Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Mohammadreza Zangouey
- Department of Immunology, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Beydolah Shahouzehi
- Cardiovascular Research Center, Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
3
|
Zhang Y, Wang Y, Zhang X, Liu J. Identification of potential core genes in lung cancer and therapeutic traditional Chinese medicine compounds using bioinformatics analysis. Medicine (Baltimore) 2024; 103:e39862. [PMID: 39331864 PMCID: PMC11441908 DOI: 10.1097/md.0000000000039862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/29/2024] Open
Abstract
Lung cancer (LC) remains the leading cause of cancer-related death. We identified potential therapeutic targets and traditional Chinese medicine (TCM) compounds for LC treatment. GSE43346 and GSE18842 were derived from the Gene Expression Omnibus (GEO) database and used to identify differentially expressed genes (DEGs). Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were performed using The Database for Annotation, Visualization and Integrated Discovery (DAVID). Protein-protein interactions were analyzed using STRING and Cytoscape software. Hub gene expression was validated using Gene Expression Profiling Interactive Analysis and the Human Protein Atlas. Kaplan-Meier survival analysis was conducted to evaluate the prognostic value of hub genes in patients with LC. Therapeutic TCM compounds were screened using the Comparative Toxicogenomics Database, and DEGs were largely enriched in biological processes, including cell division and mitotic nuclear division, such as the cell cycle and p53 signaling pathways. Elevated expression of hub genes was observed in LC samples. Overexpression of CDC20, CCNB2, and TOP2A is an unfavorable prognostic factor for postprogressive survival in patients with LC. Paclitaxel, quercetin, and rotenone have been identified as active substances in TCM. CDC20, CCNB2, and TOP2A are novel hub genes associated with LC. Paclitaxel, quercetin, and rotenone can be used as therapeutic agents in TCM.
Collapse
Affiliation(s)
- Yue Zhang
- The Second Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Yaguang Wang
- Department of Histology and Embryology, College of Basic Medical Science, Jinzhou Medical University, Jinzhou, Liaoning, P.R. China
| | - Xuepu Zhang
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Jiansheng Liu
- Department of Anatomy, College of Basic Medical Sciences, Jinzhou Medical University, Jinzhou, Liaoning, P.R. China
| |
Collapse
|
4
|
Huang X, Li J, Pang X, Zhu J, Pan J, Li Y, Tang J. Gene polymorphism and prediction of toxicity to platinum-based chemotherapy in patients with gynecologic cancer. Clin Transl Sci 2023; 16:2519-2529. [PMID: 38013655 PMCID: PMC10719482 DOI: 10.1111/cts.13642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/28/2023] [Accepted: 08/31/2023] [Indexed: 11/29/2023] Open
Abstract
The relationship between single nucleotide polymorphisms (SNPs) at various loci and adverse drug reactions (ADRs) in patients with gynecologic cancer receiving platinum-based chemotherapy (PPCT) remains unexplored. This research aimed to investigate the correlation between SNPs at several loci (e.g., GSTP1 rs1695, MTHFR rs1801133, XPC rs2228001, TP53 rs1042522, and ERCC1 rs3212986) and ADRs in patients with gynecologic cancer receiving PPCT. A total of 244 patients with gynecologic cancer who received first-line PPCT were included in this retrospective study. Blood fluorescence quantitative polymerase chain reaction was used to detect genotypes. Logistic regression, Pearson's Chi-square test, and Fisher's exact test were used to explore the correlations between these SNPs and the occurrence of ADRs. The logistic regression results showed that different genotypes of the five genes had no statistical significance in the overall grade greater than or equal to 3 ADRs. The results of Pearson's Chi-square test showed the same results. On specific adverse reactions, we found that the rs1042522 GG genotype significantly increased the risk of grade greater than or equal to 3 leucopenia compared with the CG and the CC genotypes (p = 0.002). The rs1695 AG genotype showed higher correlation for grade greater than or equal to 3 neutropenia (p = 0.020). The rs2228001 CC genotype also had a higher risk for grade greater than or equal to 3 neutropenia (p = 0.003). This study found that whereas the overall grade greater than or equal to 3 adverse reactions in patients with gynecologic cancer receiving PPCT were not associated with SNPs, specific SNPs (rs1042522 GG, rs1695 AG, and rs2228001 CC) were linked to higher risks of leucopenia and neutropenia, indicating their potential as predictors of hematotoxicity in PPCT-treated patients with gynecologic cancer.
Collapse
Affiliation(s)
- Xuan Huang
- Department of PharmacyObstetrics & Gynecology Hospital of Fudan UniversityShanghaiChina
| | - Junmin Li
- Department of PharmacyObstetrics & Gynecology Hospital of Fudan UniversityShanghaiChina
| | - Xiaoying Pang
- Department of PharmacyObstetrics & Gynecology Hospital of Fudan UniversityShanghaiChina
| | - Jialei Zhu
- Department of PharmacyObstetrics & Gynecology Hospital of Fudan UniversityShanghaiChina
| | - Jiaqian Pan
- Department of PharmacyObstetrics & Gynecology Hospital of Fudan UniversityShanghaiChina
| | - Yueyan Li
- Department of PharmacyObstetrics & Gynecology Hospital of Fudan UniversityShanghaiChina
| | - Jing Tang
- Department of PharmacyObstetrics & Gynecology Hospital of Fudan UniversityShanghaiChina
| |
Collapse
|
5
|
Zou T, Liu JY, Qin Q, Guo J, Zhou WZ, Li XP, Zhou HH, Chen J, Liu ZQ. Role of rs873601 Polymorphisms in Prognosis of Lung Cancer Patients Treated with Platinum-Based Chemotherapy. Biomedicines 2023; 11:3133. [PMID: 38137354 PMCID: PMC10741124 DOI: 10.3390/biomedicines11123133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/15/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND Lung cancer is still the most lethal malignancy in the world, according to the report of Cancer Statistics in 2021. Platinum-based chemotherapy combined with immunotherapy is the first-line treatment in lung cancer patients. However, the 5-year survival rate is always affected by the adverse reactions and drug resistance caused by platinum-based chemotherapy. DNA damage and repair system is one of the important mechanisms that can affect the response to chemotherapy and clinical outcomes in lung cancer patients. OBJECTIVE The objective of this study is to find the relationship between the polymorphisms of DNA repair genes with the prognosis of platinum-based chemotherapy in lung cancer patients. PATIENTS AND METHODS We performed genotyping in 17 single nucleotide polymorphisms (SNPs) of Excision Repair Cross-Complementation group (ERCC) genes and X-ray Repair Cross-Complementing (XRCC) genes of 345 lung cancer patients via Sequenom MassARRAY. We used Cox proportional hazard models, state, and plink to analyze the associations between SNPs and the prognosis of lung cancer patients. RESULTS We found that the ERCC5 rs873601 was associated with the overall survival time in lung cancer patients treated with platinum-based chemotherapy (p = 0.031). There were some polymorphisms that were related to the prognosis in specific subgroups of lung cancer. Rs873601 showed a great influence on the prognosis of patients more than 55 years, Small Cell Lung Cancer (SCLC), and smoking patients. Rs2444933 was associated with prognosis in age less than 55 years, SCLC, metastasis, and stage III/IV/ED patients. Rs3740051 played an important role in the prognosis of SCLC and metastasis patients. Rs1869641 was involved in the prognosis of SCLC patients. Rs1051685 was related to the prognosis in non-metastasis patients. CONCLUSION The ERCC5 rs873601 (G>A) was a valuable biomarker for predicting the prognosis in lung cancer patients treated with platinum-based chemotherapy.
Collapse
Affiliation(s)
- Ting Zou
- Department of Pharmacy, National Institution of Drug Clinical Trial, Xiangya Hospital, Central South University, Changsha 410008, China; (T.Z.); (Q.Q.); (J.G.); (W.-Z.Z.); (X.-P.L.)
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Xiangya Hospital, Central South University, Changsha 410078, China;
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- International Science and Technology Innovation Cooperation Base for Early Clinical Trials of Biological Agents in Hunan Province, Changsha 410008, China
| | - Jun-Yan Liu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha 410008, China;
| | - Qun Qin
- Department of Pharmacy, National Institution of Drug Clinical Trial, Xiangya Hospital, Central South University, Changsha 410008, China; (T.Z.); (Q.Q.); (J.G.); (W.-Z.Z.); (X.-P.L.)
- International Science and Technology Innovation Cooperation Base for Early Clinical Trials of Biological Agents in Hunan Province, Changsha 410008, China
| | - Jie Guo
- Department of Pharmacy, National Institution of Drug Clinical Trial, Xiangya Hospital, Central South University, Changsha 410008, China; (T.Z.); (Q.Q.); (J.G.); (W.-Z.Z.); (X.-P.L.)
- International Science and Technology Innovation Cooperation Base for Early Clinical Trials of Biological Agents in Hunan Province, Changsha 410008, China
| | - Wen-Zhi Zhou
- Department of Pharmacy, National Institution of Drug Clinical Trial, Xiangya Hospital, Central South University, Changsha 410008, China; (T.Z.); (Q.Q.); (J.G.); (W.-Z.Z.); (X.-P.L.)
- International Science and Technology Innovation Cooperation Base for Early Clinical Trials of Biological Agents in Hunan Province, Changsha 410008, China
| | - Xiang-Ping Li
- Department of Pharmacy, National Institution of Drug Clinical Trial, Xiangya Hospital, Central South University, Changsha 410008, China; (T.Z.); (Q.Q.); (J.G.); (W.-Z.Z.); (X.-P.L.)
| | - Hong-Hao Zhou
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Xiangya Hospital, Central South University, Changsha 410078, China;
| | - Juan Chen
- Department of Pharmacy, National Institution of Drug Clinical Trial, Xiangya Hospital, Central South University, Changsha 410008, China; (T.Z.); (Q.Q.); (J.G.); (W.-Z.Z.); (X.-P.L.)
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Zhao-Qian Liu
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Xiangya Hospital, Central South University, Changsha 410078, China;
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
6
|
Feng J, Wei X, Liu Y, Zhang Y, Li G, Xu Y, Zhou P, Zhang J, Han X, Zhang C, Zhang Y, Wang G. Identification of topoisomerase 2A as a novel bone metastasis-related gene in liver hepatocellular carcinoma. Aging (Albany NY) 2023; 15:13010-13040. [PMID: 37980167 PMCID: PMC10713393 DOI: 10.18632/aging.205216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 10/17/2023] [Indexed: 11/20/2023]
Abstract
BACKGROUND Bone is the second most frequent site of metastasis for Liver hepatocellular carcinoma (LIHC), which leads to an extremely poor prognosis. Identifying novel biomarkers and therapeutic targets for LIHC patients with bone metastasis is urgently needed. METHODS In this study, we used multiple databases for comprehensive bioinformatics analysis, including TCGA, GEO, ICGC, GTEx, TISIDB, and TIMER, to identify key genes related to bone metastasis of LIHC. Clinical tissues and tissue microarray were adopted to assess the expression of TOP2A through qRT-PCR and immunohistochemistry analyses in LIHC. Gene enrichment analysis, DNA methylation, gene mutation, prognosis, and tumor immunity associated with TOP2A in LIHC were investigated. In vitro and in vivo experiments were performed to explore the functional role of TOP2A in LIHC bone metastasis. RESULTS We identified that TOP2A was involved in LIHC bone metastasis. Clinically, TOP2A was highly expressed in LIHC tumoral specimens, with the highest level in the bone metastasis lesions. TOP2A was an independent prognostic factor that higher expression of TOP2A was markedly associated with poorer prognosis in LIHC. Moreover, the abnormal expression of TOP2A might be related to DNA hypomethylation, often accompanied by TP53 mutation, immune escape and immunotherapy failure. Enrichment analysis and validation experiments unveiled that TOP2A stimulated the Hippo-YAP signaling pathway in LIHC. Functional assays confirmed that TOP2A could promote bone-specific metastatic potential and tumor-induced osteolysis in LIHC. CONCLUSIONS These findings unveil that TOP2A might be a novel prognostic biomarker and therapeutic target for LIHC bone metastasis.
Collapse
Affiliation(s)
- Jinyan Feng
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Xianfu Wei
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Yongheng Liu
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Yanting Zhang
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Guanghao Li
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Yao Xu
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Peng Zhou
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
- Department of Orthopedics, Affiliated Hospital of Chifeng University, Chifeng, China
| | - Jin Zhang
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Xiuxin Han
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Chao Zhang
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Yan Zhang
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Guowen Wang
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
7
|
Li S, Wang W, Yu H, Zhang S, Bi W, Sun S, Hong B, Fang Z, Chen X. Characterization of genomic instability-related genes predicts survival and therapeutic response in lung adenocarcinoma. BMC Cancer 2023; 23:1115. [PMID: 37974107 PMCID: PMC10655275 DOI: 10.1186/s12885-023-11580-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 10/27/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) is the most common subtype of non-small cell lung cancer (NSCLC) and is the leading cause of cancer death worldwide. Its progression is characterized by genomic instability. In turn, the level of genomic instability affects the prognosis and immune status of patients with LUAD. However, the impact of molecular features associated with genomic instability on the tumor microenvironment (TME) has not been well characterized. In addition, the effect of the genes related to genomic instability in LUAD on individualized treatment of LUAD is unknown. METHODS The RNA-Sequencing, somatic mutation, and clinical data of LUAD patients were downloaded from publicly available databases. A genetic signature associated with genomic instability (GSAGI) was constructed by univariate Cox regression, Lasso regression, and multivariate Cox regression analysis. Bioinformatics analysis investigated the differences in prognosis, immune characteristics, and the most appropriate treatment strategy among different subtypes of LUAD patients. CCK-8 and colony formation verified the various effects of Etoposide on different subtypes of LUAD cell lines. Cell-to-cell communication analysis was performed using the "CellChat" R package. The expression of the risk factors in the GSAGI was verified using real-time quantitative PCR (qRT-PCR) and Immunohistochemistry (IHC). RESULTS We constructed and validated the GSAGI, consisting of five genes: ANLN, RHOV, KRT6A, SIGLEC6, and KLRG2. The GSAGI was an independent prognostic factor for LUAD patients. Patients in the high-risk group distinguished by the GSAGI are more suitable for chemotherapy. More immune cells are infiltrating the tumor microenvironment of patients in the low-risk group, especially B cells. Low-risk group patients are more suitable for receiving immunotherapy. The single-cell level analysis confirmed the influence of the GSAGI on TME and revealed the Mode of action between tumor cells and other types of cells. qRT-PCR and IHC showed increased ANLN, RHOV, and KRT6A expression in the LUAD cells and tumor tissues. CONCLUSION This study confirms that genes related to genomic instability can affect the prognosis and immune status of LUAD patients. The GSAGI we identified has the potential to guide clinicians in predicting clinical outcomes, assessing immunological status, and even developing personalized treatment plans for LUAD patients.
Collapse
Affiliation(s)
- Shuyang Li
- School of Basic Medicine, Anhui Medical University, No. 81, Meishan Road, Hefei, 230032, Anhui, China
- Hefei Cancer Hospital of CAS, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences (CAS), No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China
| | - Wei Wang
- School of Basic Medicine, Anhui Medical University, No. 81, Meishan Road, Hefei, 230032, Anhui, China
- Hefei Cancer Hospital of CAS, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences (CAS), No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China
| | - Huihan Yu
- School of Basic Medicine, Anhui Medical University, No. 81, Meishan Road, Hefei, 230032, Anhui, China
- Hefei Cancer Hospital of CAS, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences (CAS), No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China
| | - Siyu Zhang
- Hefei Cancer Hospital of CAS, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences (CAS), No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China
| | - Wenxu Bi
- Hefei Cancer Hospital of CAS, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences (CAS), No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China
| | - Suling Sun
- Hefei Cancer Hospital of CAS, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences (CAS), No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China
| | - Bo Hong
- Hefei Cancer Hospital of CAS, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences (CAS), No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China
| | - Zhiyou Fang
- School of Basic Medicine, Anhui Medical University, No. 81, Meishan Road, Hefei, 230032, Anhui, China.
- Hefei Cancer Hospital of CAS, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences (CAS), No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China.
| | - Xueran Chen
- School of Basic Medicine, Anhui Medical University, No. 81, Meishan Road, Hefei, 230032, Anhui, China.
- Hefei Cancer Hospital of CAS, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences (CAS), No. 350, Shushan Hu Road, Hefei, 230031, Anhui, China.
| |
Collapse
|
8
|
Shen R, Li Z, Wu X. The mitotic spindle-related seven-gene predicts the prognosis and immune microenvironment of lung adenocarcinoma. J Cancer Res Clin Oncol 2023; 149:10131-10141. [PMID: 37266661 PMCID: PMC10423164 DOI: 10.1007/s00432-023-04906-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 05/20/2023] [Indexed: 06/03/2023]
Abstract
PURPOSE Abnormalities in the mitotic spindle have been linked to a variety of cancers. Data on their role in the onset, progression, and treatment of lung adenocarcinoma (LUAD) need to be explored. METHODS The data were retrieved from The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), and Molecular Signatures Database (MSigDB), for the training cohort, external validation cohort, and the hallmark mitotic spindle gene set, respectively. Mitotic spindle genes linked to LUAD prognosis were identified and intersected with differentially expressed up-regulated genes in the training cohort. Nomogram prediction models were built based on least absolute shrinkage and selection operator (LASSO) regression, univariate cox, and multivariate cox analyses. The seven-gene immunological score was examined, as well as the correlation of immune checkpoints. The DLGAP5 and KIF15 expression in BEAS-2B, A549, H1299, H1975, and PC-9 cell lines was validated with western blot (WB). RESULTS A total of 965 differentially expressed up-regulated genes in the training cohort intersected with 51 mitotic spindle genes associated with LUAD prognosis. Finally, the seven-gene risk score was determined and integrated with clinical characteristics to construct the nomogram model. Immune cell correlation analysis revealed a negative correlation between seven-gene expression with B cell, endothelial cell (excluding LMNB1), and T cell CD8 + (p < 0.05). However, the seven-gene expression was positively correlated with multiple immune checkpoints (p < 0.05). The expression of DLGAP5 and KIF15 were significantly higher in A549, H1299, H1975, and PC-9 cell lines than that in BEAS-2B cell line. CONCLUSION High expression of the seven genes is positively correlated with poor prognosis of LUAD, and these genes are promising as prospective immunotherapy targets.
Collapse
Affiliation(s)
- Ruxin Shen
- Department of Thoracic Surgery, Affiliated Nantong Hospital of Shanghai University, Nantong, 226000, Jiangsu, China
| | - Zhaoshui Li
- Qingdao Medical College, Qingdao University, Qingdao, 266023, China
| | - Xiaoting Wu
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China.
| |
Collapse
|
9
|
Xu Y, Wang S, Xu B, Lin H, Zhan N, Ren J, Song W, Han R, Cheng L, Zhang M, Zhang X. AURKA, TOP2A and MELK are the key genes identified by WGCNA for the pathogenesis of lung adenocarcinoma. Oncol Lett 2023; 25:238. [PMID: 37153047 PMCID: PMC10161350 DOI: 10.3892/ol.2023.13824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 02/23/2023] [Indexed: 05/09/2023] Open
Abstract
The comprehensive analysis of single or multiple microarray datasets is currently available in Gene Expression Omnibus (GEO) databases, with several studies having identified genes strongly associated with the development of lung adenocarcinoma (LUAD). However, the mechanisms of LUAD development remain largely unknown and has not yet been systematically studied; thus, further studies are required in this field. In the present study, weighted gene co-expression network analysis (WGCNA) was used for the evaluation of key genes with potential high risk of LUAD, and to provide more reliable evidence concerning its pathogenesis. The GSE140797 dataset from the high-throughput GEO database was downloaded and was first analyzed using the Limma package in the R language in order to determine the differentially expressed genes. The dataset was then analyzed using the WGCNA package to analyze the co-expressed genes, and the modular genes with the highest correlation with the clinical phenotype were identified. Subsequently, the pathogenic genes shared in common between the result of the two analyses were imported into the STRING database for protein-protein interaction network analysis. The hub genes were screened out using Cytoscape, and then The Cancer Genome Atlas analysis, receiver operating characteristic analysis and survival analysis were subsequently performed. Finally, the key genes were evaluated using reverse transcription-quantitative PCR and western blot analysis. Bioinformatics analysis of the GSE140797 dataset revealed eight key genes: AURKA, BUB1, CCNB1, CDK1, MELK, NUSAP1, TOP2A and PBK. Finally, the AURKA, TOP2A and MELK genes were evaluated in samples from patients with lung cancer using WGCNA and RT-qPCR, western blot analysis experiments, providing basis for further research on the mechanisms of LUAD development and targeted therapy.
Collapse
Affiliation(s)
- Yunqing Xu
- Department of Oncology, People's Hospital of Huangpi District, Wuhan, Hubei 430000, P.R. China
| | - Sen Wang
- Department of Forensic Medicine, Guangxi Medical University, Nanning, Guanxi 530021, P.R. China
- School of Basic Medicine Sciences, Guangxi Medical University, Nanning, Guanxi 530021, P.R. China
| | - Bin Xu
- Department of Oncology, People's Hospital of Huangpi District, Wuhan, Hubei 430000, P.R. China
| | - Huiqing Lin
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Na Zhan
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Jiacai Ren
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Wenling Song
- Department of Oncology, People's Hospital of Huangpi District, Wuhan, Hubei 430000, P.R. China
| | - Rong Han
- Department of Oncology, People's Hospital of Huangpi District, Wuhan, Hubei 430000, P.R. China
| | - Liping Cheng
- Department of Oncology, People's Hospital of Huangpi District, Wuhan, Hubei 430000, P.R. China
| | - Man Zhang
- Department of Oncology, People's Hospital of Huangpi District, Wuhan, Hubei 430000, P.R. China
| | - Xiuyun Zhang
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
- Correspondence to: Dr Xiuyun Zhang, Department of Pathology, Renmin Hospital of Wuhan University, 238 Jiefang Road, 99 Zhangzhidong Road, Wuchang, Wuhan, Hubei 430060, P.R. China, E-mail:
| |
Collapse
|
10
|
Implementing computational methods in tandem with synonymous gene recoding for therapeutic development. Trends Pharmacol Sci 2023; 44:73-84. [PMID: 36307252 DOI: 10.1016/j.tips.2022.09.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 12/24/2022]
Abstract
Synonymous gene recoding, the substitution of synonymous variants into the genetic sequence, has been used to overcome many production limitations in therapeutic development. However, the safety and efficacy of recoded therapeutics can be difficult to evaluate because synonymous codon substitutions can result in subtle, yet impactful changes in protein features and require sensitive methods for detection. Given that computational approaches have made significant leaps in recent years, we propose that machine-learning (ML) tools may be leveraged to assess gene-recoded therapeutics and foresee an opportunity to adapt codon contexts to enhance some powerful existing tools. Here, we examine how synonymous gene recoding has been used to address challenges in therapeutic development, explain the biological mechanisms underlying its effects, and explore the application of computational platforms to improve the surveillance of functional variants in therapeutic design.
Collapse
|
11
|
The Roles of EXO1 and RPA1 Polymorphisms in Prognosis of Lung Cancer Patients Treated with Platinum-Based Chemotherapy. DISEASE MARKERS 2022; 2022:3306189. [PMID: 36277983 PMCID: PMC9584701 DOI: 10.1155/2022/3306189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 09/29/2022] [Indexed: 12/24/2022]
Abstract
Background. Lung cancer is one of the major causes of cancer-related mortality worldwide. DNA repair and damage response contribute to genomic instability that accompanies tumor progression. In this study, we focus on evaluating association between DNA repair polymorphisms of EXO1, RPA1, and prognosis in lung cancer patients whom received platinum-based chemotherapy. Methods. 593 lung cancer patients were recruited in this study. We performed genotyping of 19 single nucleotide polymorphisms (SNPs) by Sequenom MassARRAY. Cox regression analysis was used to assess overall survival (OS) and progression-free survival (PFS) among SNP genotypes. Results. Significant differences in PFS and OS were observed in RPA1 rs5030740, EXO1 rs1776148, and rs1047840. Results showed that patients with CC genotype in rs5030740 (recessive model:
) had a better PFS. Patients with AA or/and AG genotypes in rs1776148 (additive model:
; dominant model:
) and AA genotype in rs1047840 (recessive model:
) had longer OS. We also demonstrated differences in subgroup analysis between rs5030740, rs1776148, rs1047840, and prognosis. Conclusions. Our results indicated that EXO1 rs1776148, rs1047840, and RPA1 rs5030740 were significantly associated with prognosis of lung cancer. Rs1776148, rs1047840, and rs5030740 may act as prognosis markers in lung cancer patients with platinum-based chemotherapy.
Collapse
|
12
|
Cao P, Guo W, Wang J, Wu S, Huang Y, Wang Y, Liu Y, Zhang Y. Population pharmacokinetic study of pemetrexed in chinese primary advanced non-small cell lung carcinoma patients. Front Pharmacol 2022; 13:954242. [PMID: 36105185 PMCID: PMC9466465 DOI: 10.3389/fphar.2022.954242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
The purposes of this study were to identify physiological and genetic factors that contributed to variability of pemetrexed (PEM) exposure and to optimize the dosing regimens for Chinese non-small cell lung carcinoma patients. A prospective population pharmacokinetics (PPK) research was performed in this population. The PEM concentrations of 192 plasma samples from 116 in-hospital patients were detected. All patients were genotyped for polymorphisms. The PPK model of PEM was developed. The pharmacokinetic behavior of PEM was described by a two-compartment model with first-order elimination. The population typical values were as follows: clearance (CL) 8.29 L/h, intercompartmental clearance (Q) 0.10 L/h, central volume of distribution (V1) 18.94 L and peripheral volume of distribution (V2) 5.12 L. Creatinine clearance (CrCl) was identified as a covariate to CL, and ERCC1 (rs3212986) and CYP3A5 (rs776746) gene polymorphisms as covariates to Q. By using empirical body surface area (BSA)-based dosing strategy, PEM exposure decreased with the elevation of CrCl. Contrarily, CrCl-based dosing strategy exhibited a satisfactory efficacy of achieving the target PEM exposure. BSA-based dosing regimen in current clinic practice is not suitable to achieve the target exposure in PEM chemotherapy of Chinese NSCLC patients. Alternatively, renal function-based dosing strategy is suggested.
Collapse
Affiliation(s)
- Peng Cao
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
| | - Wei Guo
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
| | - Jun Wang
- Department of Clinical Pharmacy, Wuhan Children’s Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sanlan Wu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
| | - Yifei Huang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
| | - Yang Wang
- Department of Clinical Pharmacy, Wuhan Children’s Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Yang Wang, ; Yani Liu, ; Yu Zhang,
| | - Yani Liu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
- *Correspondence: Yang Wang, ; Yani Liu, ; Yu Zhang,
| | - Yu Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
- *Correspondence: Yang Wang, ; Yani Liu, ; Yu Zhang,
| |
Collapse
|
13
|
Kaissarian NM, Meyer D, Kimchi-Sarfaty C. Synonymous Variants: Necessary Nuance in our Understanding of Cancer Drivers and Treatment Outcomes. J Natl Cancer Inst 2022; 114:1072-1094. [PMID: 35477782 PMCID: PMC9360466 DOI: 10.1093/jnci/djac090] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/24/2022] [Accepted: 04/18/2022] [Indexed: 11/13/2022] Open
Abstract
Once called "silent mutations" and assumed to have no effect on protein structure and function, synonymous variants are now recognized to be drivers for some cancers. There have been significant advances in our understanding of the numerous mechanisms by which synonymous single nucleotide variants (sSNVs) can affect protein structure and function by affecting pre-mRNA splicing, mRNA expression, stability, folding, miRNA binding, translation kinetics, and co-translational folding. This review highlights the need for considering sSNVs in cancer biology to gain a better understanding of the genetic determinants of human cancers and to improve their diagnosis and treatment. We surveyed the literature for reports of sSNVs in cancer and found numerous studies on the consequences of sSNVs on gene function with supporting in vitro evidence. We also found reports of sSNVs that have statistically significant associations with specific cancer types but for which in vitro studies are lacking to support the reported associations. Additionally, we found reports of germline and somatic sSNVs that were observed in numerous clinical studies and for which in silico analysis predicts possible effects on gene function. We provide a review of these investigations and discuss necessary future studies to elucidate the mechanisms by which sSNVs disrupt protein function and are play a role in tumorigeneses, cancer progression, and treatment efficacy. As splicing dysregulation is one of the most well recognized mechanisms by which sSNVs impact protein function, we also include our own in silico analysis for predicting which sSNVs may disrupt pre-mRNA splicing.
Collapse
Affiliation(s)
- Nayiri M Kaissarian
- Hemostasis Branch, Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation & Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Douglas Meyer
- Hemostasis Branch, Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation & Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Chava Kimchi-Sarfaty
- Hemostasis Branch, Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation & Research, US Food and Drug Administration, Silver Spring, MD, USA
| |
Collapse
|
14
|
Screening and Validation of Significant Genes with Poor Prognosis in Pathologic Stage-I Lung Adenocarcinoma. JOURNAL OF ONCOLOGY 2022; 2022:3794021. [PMID: 35444699 PMCID: PMC9015852 DOI: 10.1155/2022/3794021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/05/2022] [Indexed: 11/17/2022]
Abstract
Background Although more pathologic stage-I lung adenocarcinoma (LUAD) was diagnosed recently, some relapsed or distantly metastasized shortly after radical resection. The study aimed to identify biomarkers predicting prognosis in the pathologic stage-I LUAD and improve the understanding of the mechanisms involved in tumorigenesis. Methods We obtained the expression profiling data for non-small cell lung cancer (NSCLC) patients from the NCBI-GEO database. Differentially expressed genes (DEGs) between early-stage NSCLC and normal lung tissue were determined. After function enrichment analyses on DEGs, the protein-protein interaction (PPI) network was built and analyzed with the Search Tool for the Retrieval of Interacting Genes (STRING) and Cytoscape. Overall survival (OS) and mRNA levels of genes were performed with Kaplan–Meier analysis and Gene Expression Profiling Interactive Analysis (GEPIA). qPCR and western blot analysis of hub genes in stage-I LUAD patients validated the significant genes with poor prognosis. Results A total of 172 DEGs were identified, which were mainly enriched in terms related to management of extracellular matrix (ECM), receptor signaling pathway, cell adhesion, activity of endopeptidase, and receptor. The PPI network identified 11 upregulated hub genes that were significantly associated with OS in NSCLC and highly expressed in NSCLC tissues compared with normal tissues by GEPIA. Elevated expression of ANLN, EXO1, KIAA0101, RRM2, TOP2A, and UBE2T were identified as potential risk factors in pathologic stage-I LUAD. Except for ANLN and KIAA0101, the hub genes mRNA levels were higher in tumors compared with adjacent non-cancerous samples in the qPCR analysis. The hub genes protein levels were also overexpressed in tumors. In vitro experiments showed that knockdown of UBE2T in LUAD cell lines could inhibit cell proliferation and cycle progression. Conclusions The DEGs can probably be used as potential predictors for stage-I LUAD worse prognosis and UBE2T may be a potential tumor promoter and target for treatment.
Collapse
|
15
|
Galisa SLG, Jacob PL, de Farias AA, Lemes RB, Alves LU, Nóbrega JCL, Zatz M, Santos S, Weller M. Haplotypes of single cancer driver genes and their local ancestry in a highly admixed long-lived population of Northeast Brazil. Genet Mol Biol 2022; 45:e20210172. [PMID: 35112701 PMCID: PMC8811751 DOI: 10.1590/1678-4685-gmb-2021-0172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 11/17/2021] [Indexed: 12/02/2022] Open
Abstract
Admixed populations have not been examined in detail in cancer genetic studies. Here, we inferred the local ancestry of cancer-associated single nucleotide polymorphisms (SNPs) and haplotypes of a highly admixed Brazilian population. SNP array was used to genotype 73 unrelated individuals aged 80-102 years. Local ancestry inference was performed by merging genotyped regions with phase three data from the 1000 Genomes Project Consortium using RFmix. The average ancestry tract length was 9.12-81.71 megabases. Strong linkage disequilibrium was detected in 48 haplotypes containing 35 SNPs in 10 cancer driver genes. All together, 19 risk and eight protective alleles were identified in 23 out of 48 haplotypes. Homozygous individuals were mainly of European ancestry, whereas heterozygotes had at least one Native American and one African ancestry tract. Native-American ancestry for homozygous individuals with risk alleles for HNF1B, CDH1, and BRCA1 was inferred for the first time. Results indicated that analysis of SNP polymorphism in the present admixed population has a high potential to identify new ancestry-associated alleles and haplotypes that modify cancer susceptibility differentially in distinct human populations. Future case-control studies with populations with a complex history of admixture could help elucidate ancestry-associated biological differences in cancer incidence and therapeutic outcomes.
Collapse
Affiliation(s)
- Steffany Larissa Galdino Galisa
- Universidade Estadual da Paraíba (UEPB), Núcleo de Estudos em
Genética e Educação, Programa de Pós-Graduação em Saúde Pública, Campina Grande, PB,
Brazil
| | - Priscila Lima Jacob
- Universidade Estadual da Paraíba (UEPB), Núcleo de Estudos em
Genética e Educação, Programa de Pós-Graduação em Saúde Pública, Campina Grande, PB,
Brazil
| | - Allysson Allan de Farias
- Universidade Estadual da Paraíba (UEPB), Núcleo de Estudos em
Genética e Educação, Programa de Pós-Graduação em Saúde Pública, Campina Grande, PB,
Brazil
- Universidade de São Paulo (USP), Departamento de Genética e Biologia
Evolutiva, São Paulo, SP, Brazil
| | - Renan Barbosa Lemes
- Universidade de São Paulo (USP), Departamento de Genética e Biologia
Evolutiva, São Paulo, SP, Brazil
| | - Leandro Ucela Alves
- Universidade Estadual da Paraíba (UEPB), Núcleo de Estudos em
Genética e Educação, Programa de Pós-Graduação em Saúde Pública, Campina Grande, PB,
Brazil
- Universidade de São Paulo (USP), Departamento de Genética e Biologia
Evolutiva, São Paulo, SP, Brazil
| | - Júlia Cristina Leite Nóbrega
- Universidade Estadual da Paraíba (UEPB), Núcleo de Estudos em
Genética e Educação, Programa de Pós-Graduação em Saúde Pública, Campina Grande, PB,
Brazil
| | - Mayana Zatz
- Universidade de São Paulo (USP), Departamento de Genética e Biologia
Evolutiva, São Paulo, SP, Brazil
| | - Silvana Santos
- Universidade Estadual da Paraíba (UEPB), Núcleo de Estudos em
Genética e Educação, Programa de Pós-Graduação em Saúde Pública, Campina Grande, PB,
Brazil
- Universidade Estadual da Paraíba (UEPB), Departamento de Biologia,
Campina Grande, PB, Brazil
| | - Mathias Weller
- Universidade Estadual da Paraíba (UEPB), Núcleo de Estudos em
Genética e Educação, Programa de Pós-Graduação em Saúde Pública, Campina Grande, PB,
Brazil
- Universidade Estadual da Paraíba (UEPB), Departamento de Biologia,
Campina Grande, PB, Brazil
| |
Collapse
|
16
|
Jiang W, Cai G, Hu P, Wang Y. Personalized medicine of non-gene-specific chemotherapies for non-small cell lung cancer. Acta Pharm Sin B 2021; 11:3406-3416. [PMID: 34900526 PMCID: PMC8642451 DOI: 10.1016/j.apsb.2021.02.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/28/2020] [Accepted: 12/01/2020] [Indexed: 12/15/2022] Open
Abstract
Non-small cell lung cancer is recognized as the deadliest cancer across the globe. In some areas, it is more common in women than even breast and cervical cancer. Its rise, vaulted by smoking habits and increasing air pollution, has garnered much attention and resource in the medical field. The first lung cancer treatments were developed more than half a century ago. Unfortunately, many of the earlier chemotherapies often did more harm than good, especially when they were used to treat genetically unsuitable patients. With the introduction of personalized medicine, physicians are increasingly aware of when, how, and in whom, to use certain anti-cancer agents. Drugs such as tyrosine kinase inhibitors, anaplastic lymphoma kinase inhibitors, and monoclonal antibodies possess limited utility because they target specific oncogenic mutations, but other drugs that target mechanisms universal to all cancers do not. In this review, we discuss many of these non-oncogene-targeting anti-cancer agents including DNA replication inhibitors (i.e., alkylating agents and topoisomerase inhibitors) and cytoskeletal function inhibitors to highlight their application in the setting of personalized medicine as well as their limitations and resistance factors.
Collapse
Affiliation(s)
| | - Guiqing Cai
- Quest Diagnostics, San Juan Capistrano, CA 92675, USA
| | - Peter Hu
- The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yue Wang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
17
|
Chen LH, Shen TC, Li CH, Chiu KL, Hsiau YC, Wang YC, Gong CL, Wang ZH, Chang WS, Tsai CW, Hsia TC, Bau DAT. The Significant Interaction of Excision Repair Cross-complementing Group 1 Genotypes and Smoking to Lung Cancer Risk. Cancer Genomics Proteomics 2021; 17:571-577. [PMID: 32859635 DOI: 10.21873/cgp.20213] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 05/24/2020] [Accepted: 05/25/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND The study aims to evaluate the contribution of excision repair cross-complementing group 1 (ERCC1), which plays an important role in genome integrity maintenance, to lung cancer risk. MATERIALS AND METHODS ERCC1 rs11615 and rs3212986 genotypes were identified by polymerase chain reaction-restriction fragment length polymorphism analysis and their association with lung cancer risk was examined among 358 lung cancer patients and 716 controls. RESULTS The proportions of CC, CT and TT for the rs11615 genotype were 43.6%, 41.6% and 14.8% in the case group and 50.0%, 41.1% and 8.9% in the control group, respectively (p for trend=0.0082). Allelic analysis showed that ERCC1 rs11615 T-allele carriers have a 1.32-fold higher risk of lung cancer than wild-type C-allele carriers [95%confidence interval (CI)=1.09-1.60, p=0.0039]. In addition, a significant interaction between the rs11615 genotype and smoking status was observed. CONCLUSION The T allele of ERCC1 rs11615 jointly with smoking habits may contribute to a higher lung cancer risk in Taiwan.
Collapse
Affiliation(s)
- Li-Hsiou Chen
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan, R.O.C.,Division of Chest Medicine, Department of Internal Medicine, Taichung Tzu Chi Hospital, Taichung, Taiwan, R.O.C
| | - Te-Chun Shen
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan, R.O.C.,Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan, R.O.C
| | - Chia-Hsiang Li
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan, R.O.C.,Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan, R.O.C
| | - Kuo-Liang Chiu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan, R.O.C.,Division of Chest Medicine, Department of Internal Medicine, Taichung Tzu Chi Hospital, Taichung, Taiwan, R.O.C
| | - Yu-Chen Hsiau
- Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan, R.O.C
| | - Yun-Chi Wang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan, R.O.C.,Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan, R.O.C
| | - Chi-Li Gong
- Department of Physiology, China Medical University, Taichung, Taiwan, R.O.C
| | - Zhi-Hong Wang
- Department of Food Nutrition and Health Biotechnology, Asia University, Taichung, Taiwan, R.O.C
| | - Wen-Shin Chang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan, R.O.C.,Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan, R.O.C
| | - Chia-Wen Tsai
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan, R.O.C.,Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan, R.O.C
| | - Te-Chun Hsia
- Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan, R.O.C
| | - DA-Tian Bau
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan, R.O.C. .,Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan, R.O.C.,Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan, R.O.C
| |
Collapse
|
18
|
Jiang C, Guo Y, Li Y, Kang J, Sun X, Wu H, Feng J, Xu Y. The association between the ERCC1/2 polymorphisms and radiotherapy efficacy in 87 patients with non-small cell lung cancer. J Thorac Dis 2021; 13:3126-3136. [PMID: 34164203 PMCID: PMC8182509 DOI: 10.21037/jtd-21-755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background This study sought to investigate the association between the ERCC1/2 single-nucleotide polymorphisms (SNPs) and the efficacy of radiotherapy and prognosis in patients with non-small cell lung cancer (NSCLC). Methods We examined 6 SNPs in the ERCC1 and ERCC2 genes in 87 consecutive patients with NSCLC who were treated with definitive radiotherapy. The objective remission rates (ORR), overall survival (OS), and progressive-free survival (PFS) were assessed. A Cox regression analysis was conducted to analyze the independent factors related to death and recurrence. Result Patients with the G allele had better OS than patients with the A allele, and there was a statistical difference between the two groups (30.9 vs. 16.2 months; P=0.003). Patients with the AA genotype had significantly worse OS than patients with the AG or GG genotypes (6.8 vs. 19.8 vs. 30.9 months, respectively; P=0.000). The median PFS of the G allele was 18.9 months, which was significantly better than that of the A allele (P=0.040). The median PFS of patients with the GG genotype, the AG genotype, and the AA genotype was 18.9, 11.3, and 5.1 months, respectively; the difference among the three groups was statistically significant (P=0.019). Patients with the G allele also had better PFS than those with the A allele (18.9 vs. 11.3 months, P=0.040). The multivariate cox proportional hazard analysis showed that the ERCC1 gene rs11615 was an independent survival indicator [HR: 1.623, 95% confidence interval (CI): 1.018–2.591, P=0.042] but not an independent recurrence indicator (HR: 1.497, 95% CI: 0.932–2.404, P=0.095). Conclusions The ERCC1 rs11615 SNP may be a potential biomarker for predicting survival prognosis in Chinese NSCLC patients who have undergone definitive radiotherapy. Patients with the G allele had better OS than those with the A allele.
Collapse
Affiliation(s)
- Chenxue Jiang
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yanling Guo
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yefei Li
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jingjing Kang
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaojiang Sun
- Department of Radiation Oncology, Cancer Hospital of University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China
| | - Hongyu Wu
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jianguo Feng
- Laboratory Research Centre, Cancer Hospital of University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China
| | - Yaping Xu
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
19
|
Burgess JT, Rose M, Boucher D, Plowman J, Molloy C, Fisher M, O'Leary C, Richard DJ, O'Byrne KJ, Bolderson E. The Therapeutic Potential of DNA Damage Repair Pathways and Genomic Stability in Lung Cancer. Front Oncol 2020; 10:1256. [PMID: 32850380 PMCID: PMC7399071 DOI: 10.3389/fonc.2020.01256] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/17/2020] [Indexed: 12/16/2022] Open
Abstract
Despite advances in our understanding of the molecular biology of the disease and improved therapeutics, lung cancer remains the most common cause of cancer-related deaths worldwide. Therefore, an unmet need remains for improved treatments, especially in advanced stage disease. Genomic instability is a universal hallmark of all cancers. Many of the most commonly prescribed chemotherapeutics, including platinum-based compounds such as cisplatin, target the characteristic genomic instability of tumors by directly damaging the DNA. Chemotherapies are designed to selectively target rapidly dividing cells, where they cause critical DNA damage and subsequent cell death (1, 2). Despite the initial efficacy of these drugs, the development of chemotherapy resistant tumors remains the primary concern for treatment of all lung cancer patients. The correct functioning of the DNA damage repair machinery is essential to ensure the maintenance of normal cycling cells. Dysregulation of these pathways promotes the accumulation of mutations which increase the potential of malignancy. Following the development of the initial malignancy, the continued disruption of the DNA repair machinery may result in the further progression of metastatic disease. Lung cancer is recognized as one of the most genomically unstable cancers (3). In this review, we present an overview of the DNA damage repair pathways and their contributions to lung cancer disease occurrence and progression. We conclude with an overview of current targeted lung cancer treatments and their evolution toward combination therapies, including chemotherapy with immunotherapies and antibody-drug conjugates and the mechanisms by which they target DNA damage repair pathways.
Collapse
Affiliation(s)
- Joshua T Burgess
- Cancer & Ageing Research Program, School of Biomedical Sciences, Institute of Health and Biomedical Innovation at the Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Maddison Rose
- Cancer & Ageing Research Program, School of Biomedical Sciences, Institute of Health and Biomedical Innovation at the Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Didier Boucher
- Cancer & Ageing Research Program, School of Biomedical Sciences, Institute of Health and Biomedical Innovation at the Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Jennifer Plowman
- Cancer & Ageing Research Program, School of Biomedical Sciences, Institute of Health and Biomedical Innovation at the Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Christopher Molloy
- Cancer & Ageing Research Program, School of Biomedical Sciences, Institute of Health and Biomedical Innovation at the Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Mark Fisher
- Cancer & Ageing Research Program, School of Biomedical Sciences, Institute of Health and Biomedical Innovation at the Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Connor O'Leary
- Cancer & Ageing Research Program, School of Biomedical Sciences, Institute of Health and Biomedical Innovation at the Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD, Australia.,Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Derek J Richard
- Cancer & Ageing Research Program, School of Biomedical Sciences, Institute of Health and Biomedical Innovation at the Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Kenneth J O'Byrne
- Cancer & Ageing Research Program, School of Biomedical Sciences, Institute of Health and Biomedical Innovation at the Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD, Australia.,Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Emma Bolderson
- Cancer & Ageing Research Program, School of Biomedical Sciences, Institute of Health and Biomedical Innovation at the Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD, Australia.,Princess Alexandra Hospital, Brisbane, QLD, Australia
| |
Collapse
|
20
|
Grenda A, Błach J, Szczyrek M, Krawczyk P, Nicoś M, Kuźnar Kamińska B, Jakimiec M, Balicka G, Chmielewska I, Batura-Gabryel H, Sawicki M, Milanowski J. Promoter polymorphisms of TOP2A and ERCC1 genes as predictive factors for chemotherapy in non-small cell lung cancer patients. Cancer Med 2019; 9:605-614. [PMID: 31797573 PMCID: PMC6970032 DOI: 10.1002/cam4.2743] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/29/2019] [Accepted: 11/15/2019] [Indexed: 12/11/2022] Open
Abstract
Background Topoisomerase 2‐alpha (TOP2A) is an enzyme that controls topologic changes in DNA during transcription and replication. ERCC1 is an enzyme that takes part in DNA repair processes. The purpose of this study was to assess the predictive role of particular single nucleotide polymorphisms (SNPs) in the promoter regions of TOP2A and ERCC1 genes in non‐small cell lung cancer patients (NSCLC) treated with chemotherapy. Materials and methods We enrolled 113 NSCLC patients treated in the first line with platinum‐based chemotherapy. Effectiveness was available for 71 patients. DNA was isolated from whole blood using the Qiamp DNA Blood Mini kit (Qiagen). We examined five SNPs: rs11615 (ERCC1), rs3212986 (ERCC1), rs13695 (TOP2A), rs34300454 (TOP2A), rs11540720 (TOP2A). Quantitative PCR using the TaqMan probe (ThermoFisher) was performed on a Eco Illumina Real‐Time PCR system device (Illumina Inc). Results Patients with the A/A genotype in rs11615 of the ERCC1 gene had significantly longer median progression free survival (PFS) (8.5 months; P = .0088). Patients with the C/C genotype in rs3212986 of the ERCC1 gene had longer median PFS (7 months; P = .05). Patients with the C/C genotype in rs34300454 of TOP2A gene had significantly higher median PFS (7.5 months; P = .0029). Carriers of the C/C genotype in rs34300454 of the TOP2A gene had significantly longer median OS (15.5 months; P = .0017). Patients with the A/A genotype in rs11615 of the ERCC1 gene had significantly higher risk of neutropenia (P = .0133). Conclusions Polymorphisms of the TOP2A and ERCC1 genes may be a predictive factor of toxicities and survival for chemotherapy in NSCLC patients.
Collapse
Affiliation(s)
- Anna Grenda
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, Lublin, Poland
| | - Justyna Błach
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, Lublin, Poland.,Department of Clinical Immunology, Medical University of Lublin, Lublin, Poland
| | - Michał Szczyrek
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, Lublin, Poland
| | - Paweł Krawczyk
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, Lublin, Poland
| | - Marcin Nicoś
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, Lublin, Poland.,Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Barbara Kuźnar Kamińska
- Department of Pulmonology, Allergology and Respiratory Oncology, University of Medical Sciences in Poznań, Poznań, Poland
| | - Monika Jakimiec
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, Lublin, Poland
| | - Grażyna Balicka
- Department of Thoracic Surgery, Medical University of Lublin, Lublin, Poland
| | - Izabela Chmielewska
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, Lublin, Poland
| | - Halina Batura-Gabryel
- Department of Pulmonology, Allergology and Respiratory Oncology, University of Medical Sciences in Poznań, Poznań, Poland
| | - Marek Sawicki
- Department of Thoracic Surgery, Medical University of Lublin, Lublin, Poland
| | - Janusz Milanowski
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, Lublin, Poland
| |
Collapse
|