1
|
Li H, Yu Z, Wang H, Wang N, Sun X, Yang S, Hua X, Liu Z. Role of ANO1 in tumors and tumor immunity. J Cancer Res Clin Oncol 2022; 148:2045-2068. [PMID: 35471604 DOI: 10.1007/s00432-022-04004-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 03/29/2022] [Indexed: 12/24/2022]
Abstract
Dysregulation of gene amplification, cell-signaling-pathway transduction, epigenetic and transcriptional regulation, and protein interactions drives tumor-cell proliferation and invasion, while ion channels also play an important role in the generation and development of tumor cells. Overexpression of Ca2+-activated Cl- channel anoctamin 1 (ANO1) is shown in numerous cancer types and correlates with poor prognosis. However, the mechanisms involved in ANO1-mediated malignant cellular transformation and the role of ANO1 in tumor immunity remain unknown. In this review, we discuss recent studies to determine the role of ANO1 in tumorigenesis and provide novel insights into the role of ANO1 in the context of tumor immunity. Furthermore, we analyze the roles and potential mechanisms of ANO1 in different types of cancers, and provide novel notions for the role of ANO1 in the tumor microenvironment and for potential use of ANO1 in clinical applications. Our review shows that ANO1 is involved in tumor immunity and microenvironment, and may, therefore, be an effective biomarker and therapeutic drug target.
Collapse
Affiliation(s)
- Haini Li
- Department of Gastroenterology, Qingdao Sixth People's Hospital, Qingdao, 266001, China
| | - Zongxue Yu
- Department of Endocrinology, Affiliated Qingdao Third People's Hospital, Qingdao University, Qingdao, 266001, China
| | - Haiyan Wang
- Department of Clinical Laboratory, Affiliated Qingdao Third People's Hospital, Qingdao University, Qingdao, 266021, China
| | - Ning Wang
- Department of Clinical Laboratory, Affiliated Qingdao Third People's Hospital, Qingdao University, Qingdao, 266021, China
| | - Xueguo Sun
- Department of Gastroenterology, Qingdao University Affiliated Hospital, Qingdao, 266001, China
| | - Shengmei Yang
- Department of Gynecology, Qingdao University Affiliated Hospital, Qingdao, 266001, China
| | - Xu Hua
- Department of Clinical Laboratory, Affiliated Qingdao Third People's Hospital, Qingdao University, Qingdao, 266021, China
| | - Zongtao Liu
- Department of Clinical Laboratory, Affiliated Qingdao Third People's Hospital, Qingdao University, Qingdao, 266021, China.
| |
Collapse
|
2
|
Jansen K, Farahi N, Büscheck F, Lennartz M, Luebke AM, Burandt E, Menz A, Kluth M, Hube-Magg C, Hinsch A, Höflmayer D, Weidemann S, Fraune C, Möller K, Lebok P, Sauter G, Simon R, Uhlig R, Wilczak W, Jacobsen F, Minner S, Krech R, Clauditz T, Bernreuther C, Dum D, Krech T, Marx A, Steurer S. DOG1 expression is common in human tumors: A tissue microarray study on more than 15,000 tissue samples. Pathol Res Pract 2021; 228:153663. [PMID: 34717148 DOI: 10.1016/j.prp.2021.153663] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 10/17/2021] [Indexed: 02/03/2023]
Abstract
DOG1 (Discovered on GIST1) is a voltage-gated calcium-activated chloride and bicarbonate channel that is highly expressed in interstitial cells of Cajal and in gastrointestinal stromal tumors (GIST) derived from Cajal cells. To systematically determine in what tumor entities and normal tissue types DOG1 may be further expressed, a tissue microarray (TMA) containing 15,965 samples from 121 different tumor types and subtypes as well as 608 samples of 76 different normal tissue types was analyzed by immunohistochemistry. DOG1 immunostaining was found in 67 tumor types including GIST (95.7%), esophageal squamous cell carcinoma (31.9%), pancreatic ductal adenocarcinoma (33.6%), adenocarcinoma of the Papilla Vateri (20%), squamous cell carcinoma of the vulva (15.8%) and the oral cavity (15.3%), mucinous ovarian cancer (15.3%), esophageal adenocarcinoma (12.5%), endometrioid endometrial cancer (12.1%), neuroendocrine carcinoma of the colon (11.1%) and diffuse gastric adenocarcinoma (11%). Low level-DOG1 immunostaining was seen in 17 additional tumor entities. DOG1 expression was unrelated to histopathological parameters of tumor aggressiveness and/or patient prognosis in cancers of the breast (n = 1002), urinary bladder (975), ovary (469), endometrium (173), stomach (233), and thyroid gland (512). High DOG1 expression was linked to estrogen receptor expression in breast cancer (p < 0.0001) and absence of HPV infection in squamous cell carcinomas (p = 0.0008). In conclusion, our data identify several tumor entities that can show DOG1 expression levels at similar levels as in GIST. Although DOG1 is tightly linked to a diagnosis of GIST in spindle cell tumors, the differential diagnosis is much broader in DOG1 positive epithelioid neoplasms.
Collapse
Affiliation(s)
- Kristina Jansen
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nagina Farahi
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Franziska Büscheck
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maximilian Lennartz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas M Luebke
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eike Burandt
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anne Menz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martina Kluth
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Claudia Hube-Magg
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andrea Hinsch
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Doris Höflmayer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sören Weidemann
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Fraune
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katharina Möller
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Patrick Lebok
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Ria Uhlig
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Waldemar Wilczak
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Frank Jacobsen
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sarah Minner
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Rainer Krech
- Institute of Pathology, Clinical Center Osnabrueck, Osnabrueck, Germany
| | - Till Clauditz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Bernreuther
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - David Dum
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Till Krech
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Institute of Pathology, Clinical Center Osnabrueck, Osnabrueck, Germany
| | - Andreas Marx
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Pathology, Academic Hospital Fuerth, Fuerth, Germany
| | - Stefan Steurer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
3
|
Gao J, Li X, Li D, Liu Y, Cao W, Chen X, Li Z, Wang X, Cao Q, Peng T, Jin H, Shan H. Quantitative immunohistochemistry (IHC) analysis of biomarker combinations for human esophageal squamous cell carcinoma. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1086. [PMID: 34422998 PMCID: PMC8339853 DOI: 10.21037/atm-21-2950] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/06/2021] [Indexed: 12/09/2022]
Abstract
Background Esophageal squamous carcinoma (ESCC) is one of the most common cancers in developing countries. However, currently there are no specific biomarkers for ESCC. This study evaluated the expression of proliferating cell nuclear antigen (PCNA), tumor suppressor protein p53, epidermal growth factor receptor (EGFR), and vascular endothelial growth factor (VEGF) as biomarkers for ESCC. Methods This study included 60 clinical cases (30 ESCC and 30 non-ESCC cases that were confirmed pathologically). The expression of PCNA, p53, EGFR, and VEGF were investigated using a quantitative computerized immunohistochemistry (IHC) method. The expression level of each protein was indicated by a H-score from the quantitative analysis. Receiver operating characteristic curve (ROC) and area under curve (AUC) analyses were performed. The sensitivity and specificity of each individual protein and combinations of the proteins were calculated. Results The H-score analysis indicated that expressions of EGFR, PCNA, and VEGF were statistically significantly higher in ESCC than non-ESCC patients; however, p53 was not. The panels of combinations of these proteins were more sensitive than that of any single protein. In the triplicate combination, the AUC prediction probability increased to 0.86, while the single protein AUC prediction probabilities were 0.74 (EGFR), 0.80 (PCNA), and 0.70 (VEGF). Conclusions The high expression of PCNA, EGFR, and VEGF suggests that they are potential biomarkers for ESCC. The combination of these biomarkers may provide targets for molecular therapy and molecular imaging.
Collapse
Affiliation(s)
- Jiebing Gao
- Department of Radiology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China.,Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Xinglin Li
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China.,Center for Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Dan Li
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China.,Center for Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Ye Liu
- Department of Pathology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Wanwei Cao
- Department of Pathology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Xiaoyun Chen
- Department of Radiology, Zhongshan Affiliated Hospital, Guangzhou University of Chinese Medicine, Zhongshan, China
| | - Zhijun Li
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Xiaojing Wang
- Department of Cardiothoracic Surgery, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Qingdong Cao
- Department of Cardiothoracic Surgery, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Tukang Peng
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Hongjun Jin
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Hong Shan
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China.,Center for Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| |
Collapse
|
4
|
Zhang C, Li H, Gao J, Cui X, Yang S, Liu Z. Prognostic significance of ANO1 expression in cancers. Medicine (Baltimore) 2021; 100:e24525. [PMID: 33530281 PMCID: PMC7850693 DOI: 10.1097/md.0000000000024525] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 01/07/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Anoctamin-1 (ANO1) plays a pivotal role in cancer progression. A meta-analysis was conducted to assess the potential prognostic role of ANO1 in cancers. METHODS A total of 1760 patients from 7 eligible studies were included into the analysis. Pooled hazard ratios or odds ratios were extracted and calculated with a random-effects model, and analyses of heterogeneity bias were conducted. RESULTS Our results showed that over expression of ANO1 was significantly correlated with poor overall survival in all cancers (HR = 1.52; 95% CI: 1.19-1.92; P = .0006). Subgroup analysis indicated that there was a significant association between over expression of ANO1 and poor prognosis breast cancer (HR = 3.24; 95% CI: 1.74-6.04), head and neck squamous cell carcinoma (HR = 1.14; 95% CI: 1.00-1.30), esophageal squamous cell carcinoma (HR = 1.93; 95% CI: 1.07-3.50), gastric cancer (HR = 1.62; 95% CI: 1.12-2.34) and colorectal cancer (HR = 1.38; 95% CI: 1.03-1.85). In addition, over expression of ANO1 was not associated with TNM stage, histological grade, lymph node metastasis, tumor size, age and gender. However, ANO1 was significantly associated with human epidermal growth factor receptor 2, but not associated with progesterone receptor or estrogen receptor in breast cancer. CONCLUSIONS Our results indicate that ANO1 can be a predictive factor for prognosis of cancer.
Collapse
Affiliation(s)
- Congxiao Zhang
- Qingdao University School of Pharmacy, Department of Pharmacology
| | - Haini Li
- Qingdao Sixth People's Hospital, Department of Gastroenterology
| | - Jing Gao
- Affiliated Qingdao Third People's Hospital, Qingdao University, Department of Pharmacy
| | - Xiaoqing Cui
- Affiliated Qingdao Third People's Hospital, Qingdao University, Department of Pharmacy
| | - Shengmei Yang
- Qingdao University Affiliated Hospital, Department of Gynecology
| | - Zongtao Liu
- Affiliated Qingdao Third People's Hospital, Qingdao University, Department of Clinical Laboratory, Qingdao, China
| |
Collapse
|
5
|
Yu Y, Li Z, Huang C, Fang H, Zhao F, Zhou Y, Pan X, Li Q, Zhuang Y, Chen L, Xu J, Wang W. Integrated analysis of genomic and transcriptomic profiles identified a prognostic immunohistochemistry panel for esophageal squamous cell cancer. Cancer Med 2019; 9:575-585. [PMID: 31793228 PMCID: PMC6970036 DOI: 10.1002/cam4.2744] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/26/2019] [Accepted: 11/15/2019] [Indexed: 12/21/2022] Open
Abstract
Background The poor outcome of patients with esophageal squamous cell carcinoma (ESCC) highlights the importance of the identification of novel effective prognostic biomarkers. We aimed to identify a clinically applicable prognostic immunohistochemistry (IHC) panel for ESCC. Methods An integrated analysis was performed to screen and establish a prognostic panel using exome sequencing profile from 81 pairs of ESCC samples and RNA expression microarray data from 119 ESCC subjects. Two independent ESCC cohorts were recruited as training and validation groups to test the prognostic value. Results Three genes were selected, namely, ANO1, GAL, and MMP3, which were aberrantly expressed in ESCC tumor tissues (P < .001). Among them, ANO1 and MMP3 were reserved for the construction of the prognostic panel due to their significant association with the prognosis of ESCC patients (P = .015 and P < .001). Patients with both ANO1+ and MMP3+ had a poorer prognosis than that with ANO1−/MMP3+, ANO1+/MMP3−, or ANO1−/MMP3 − in both the training set and validation set (P < .001). Receiver operating characteristic analysis showed that the combination of IHC panel and eighth American Joint Commission on Cancer staging yielded a better prognostic predictive efficacy compared with the two indexes alone (P < .001, area under curve: 0.752). Finally, a nomogram was created by integrating the IHC markers and clinicopathological risk factors to predict prognosis with a C‐index of 0.695 (95% confidence interval: 0.657‐0.734). Conclusion Using an integrated multistage screening strategy, we identified and validated a valuable prognostic IHC panel for ESCC.
Collapse
Affiliation(s)
- Yue Yu
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Department of Thoracic Surgery, Chinese Academy of Medical Sciences Cancer Institute and Hospital, Beijing, China
| | - Zhihua Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Chenjun Huang
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Haisheng Fang
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Fei Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yue Zhou
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xianglong Pan
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qifan Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yu Zhuang
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Liang Chen
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jing Xu
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Wang
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|