1
|
Ahmadvand P, Farahani H, Farnell D, Darbandsari A, Topham J, Karasinska J, Nelson J, Naso J, Jones SJM, Renouf D, Schaeffer DF, Bashashati A. A Deep Learning Approach for the Identification of the Molecular Subtypes of Pancreatic Ductal Adenocarcinoma Based on Whole Slide Pathology Images. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:2302-2312. [PMID: 39222907 DOI: 10.1016/j.ajpath.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 08/12/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Delayed diagnosis and treatment resistance result in high pancreatic ductal adenocarcinoma (PDAC) mortality rates. Identifying molecular subtypes can improve treatment, but current methods are costly and time-consuming. In this study, deep learning models were used to identify histologic features that classify PDAC molecular subtypes based on routine hematoxylin-eosin-stained histopathologic slides. A total of 97 histopathology slides associated with resectable PDAC from The Cancer Genome Atlas project were used to train a deep learning model and test the performance on 44 needle biopsy material (110 slides) from a local annotated patient cohort. The model achieved balanced accuracy of 96.19% and 83.03% in identifying the classical and basal subtypes of PDAC in The Cancer Genome Atlas and the local cohort, respectively. This study provides a promising method to cost-effectively and rapidly classify PDAC molecular subtypes based on routine hematoxylin-eosin-stained slides, potentially leading to more effective clinical management of this disease.
Collapse
Affiliation(s)
- Pouya Ahmadvand
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hossein Farahani
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| | - David Farnell
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Amirali Darbandsari
- Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| | - James Topham
- Pancreas Centre BC, Vancouver, British Columbia, Canada
| | | | - Jessica Nelson
- British Columbia Cancer Research Center, Vancouver, British Columbia, Canada
| | - Julia Naso
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Steven J M Jones
- Michael Smith Genome Sciences Center, British Columbia Cancer Research Center, Vancouver, British Columbia, Canada
| | - Daniel Renouf
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - David F Schaeffer
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Vancouver General Hospital, Vancouver, British Columbia, Canada; Pancreas Centre BC, Vancouver, British Columbia, Canada.
| | - Ali Bashashati
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
2
|
Pan X, Wang Q, Sun B. Multifaceted roles of neutrophils in tumor microenvironment. Biochim Biophys Acta Rev Cancer 2024; 1879:189231. [PMID: 39615862 DOI: 10.1016/j.bbcan.2024.189231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 11/20/2024] [Accepted: 11/24/2024] [Indexed: 12/14/2024]
Abstract
Neutrophils, the most abundant leukocyte population in circulation, play a crucial role in detecting and responding to foreign cells, such as pathogens and tumor cells. However, the impact of neutrophils on cancer pathogenesis has been overlooked because of their short lifespan, terminal differentiation, and limited transcriptional activity. Within the tumor microenvironment (TME), neutrophils can be influenced by tumor cells or other stromal cells to acquire either protumor or antitumor properties via the cytokine environment. Despite progress in neutrophil-related research, a comprehensive understanding of tissue-specific neutrophil diversity and adaptability in the TME is still lacking, which poses a significant obstacle to the development of neutrophil-based cancer therapies. This review evaluated the current studies on the dual roles of neutrophils in cancer progression, emphasizing their importance in predicting clinical outcomes, and explored various approaches for targeting neutrophils in cancer treatment, including their potential synergy with cancer immunotherapy.
Collapse
Affiliation(s)
- Xueyin Pan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Innovative Institute of Tumor Immunity and Medicine (ITIM), Anhui Provincial Innovation Institute for Pharmaceutical Basic Research, Hefei, Anhui, China; Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, Hefei, Anhui, China
| | - Qiang Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Innovative Institute of Tumor Immunity and Medicine (ITIM), Anhui Provincial Innovation Institute for Pharmaceutical Basic Research, Hefei, Anhui, China; Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, Hefei, Anhui, China.
| | - Beicheng Sun
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Innovative Institute of Tumor Immunity and Medicine (ITIM), Anhui Provincial Innovation Institute for Pharmaceutical Basic Research, Hefei, Anhui, China; Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, Hefei, Anhui, China.
| |
Collapse
|
3
|
Yamada Y, Yamamoto T, Tsutsumi C, Matsumoto T, Noguchi S, Shimada Y, Nakata K, Ohuchida K, Nakamura M, Oda Y. Immature stroma and high infiltration of CD15 + cells are predictive markers of poor prognosis in different subsets of patients with pancreatic cancer. Cancer Sci 2024; 115:1001-1013. [PMID: 38230840 PMCID: PMC10920995 DOI: 10.1111/cas.16060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/10/2023] [Accepted: 12/12/2023] [Indexed: 01/18/2024] Open
Abstract
Preoperative treatment is commonly carried out for borderline resectable pancreatic ductal adenocarcinoma (PDAC). However, the relationship between the combination of immune cells in the tumor microenvironment and their intratumoral heterogeneity along with their association with histological findings remains unclear, especially in patients receiving preoperative chemotherapy. We aimed to explore the therapeutic strategies for patients with PDAC with poor prognosis after receiving chemotherapy based on histological and immunological microenvironmental classifications. We investigated the correlation between the prognosis and histological immune microenvironmental factors of patients who initially underwent surgery (n = 100) and were receiving gemcitabine plus nab-paclitaxel (GEM + nabPTX) as preoperative chemotherapy (n = 103). Immune profiles were generated based on immune cell infiltration into the tumor, and their correlation with patient outcomes and histological features was analyzed. Tumor-infiltrating neutrophils (TINs) were identified as independent poor prognostic factors using multivariate analysis in both surgery-first and preoperative chemotherapy groups. The patients were further classified into four groups based on immune cell infiltration into the tumor. Patients with high CD15 infiltration into the tumor and immature stroma at the cancer margins showed the worst prognosis in the preoperative chemotherapy group. The analysis of mRNA expression and immunohistochemical features revealed that CXCR2, the receptor for CXCL8, was correlated with disease-free and overall survival. We inferred that patients with immature stroma at the margins and high infiltration of CD15+ neutrophils within the tumor showed the worst prognosis and they could particularly benefit from treatment with inhibitors targeting CXCR2 or CXCL8.
Collapse
Affiliation(s)
- Yutaka Yamada
- Department of Anatomic Pathology, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
- Department of Surgery and Oncology, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Takeo Yamamoto
- Department of Anatomic Pathology, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
- Department of Surgery and Oncology, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Chikanori Tsutsumi
- Department of Surgery and Oncology, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Takashi Matsumoto
- Department of Anatomic Pathology, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
- Department of Surgery and Oncology, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Shoko Noguchi
- Department of Anatomic Pathology, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
- Department of Surgery and Oncology, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Yuki Shimada
- Department of Anatomic Pathology, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
- Department of Surgery and Oncology, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Kohei Nakata
- Department of Surgery and Oncology, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Kenoki Ohuchida
- Department of Surgery and Oncology, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Masafumi Nakamura
- Department of Surgery and Oncology, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| |
Collapse
|
4
|
Ye LF, Weng JY, Wu LD. Integrated genomic analysis defines molecular subgroups in dilated cardiomyopathy and identifies novel biomarkers based on machine learning methods. Front Genet 2023; 14:1050696. [PMID: 36824437 PMCID: PMC9941670 DOI: 10.3389/fgene.2023.1050696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 01/20/2023] [Indexed: 02/09/2023] Open
Abstract
Aim: As the most common cardiomyopathy, dilated cardiomyopathy (DCM) often leads to progressive heart failure and sudden cardiac death. This study was designed to investigate the molecular subgroups of DCM. Methods: Three datasets of DCM were downloaded from GEO database (GSE17800, GSE79962 and GSE3585). After log2-transformation and background correction with "limma" package in R software, the three datasets were merged into a metadata cohort. The consensus clustering was conducted by the "Consensus Cluster Plus" package to uncover the molecular subgroups of DCM. Moreover, clinical characteristics of different molecular subgroups were compared in detail. We also adopted Weighted gene co-expression network analysis (WGCNA) analysis based on subgroup-specific signatures of gene expression profiles to further explore the specific gene modules of each molecular subgroup and its biological function. Two machine learning methods of LASSO regression algorithm and SVM-RFE algorithm was used to screen out the genetic biomarkers, of which the discriminative ability of molecular subgroups was evaluated by receiver operating characteristic (ROC) curve. Results: Based on the gene expression profiles, heart tissue samples from patients with DCM were clustered into three molecular subgroups. No statistical difference was found in age, body mass index (BMI) and left ventricular internal diameter at end-diastole (LVIDD) among three molecular subgroups. However, the results of left ventricular ejection fraction (LVEF) statistics showed that patients from subgroup 2 had a worse condition than the other group. We found that some of the gene modules (pink, black and grey) in WGCNA analysis were significantly related to cardiac function, and each molecular subgroup had its specific gene modules functions in modulating occurrence and progression of DCM. LASSO regression algorithm and SVM-RFE algorithm was used to further screen out genetic biomarkers of molecular subgroup 2, including TCEAL4, ISG15, RWDD1, ALG5, MRPL20, JTB and LITAF. The results of ROC curves showed that all of the genetic biomarkers had favorable discriminative effectiveness. Conclusion: Patients from different molecular subgroups have their unique gene expression patterns and different clinical characteristics. More personalized treatment under the guidance of gene expression patterns should be realized.
Collapse
Affiliation(s)
- Ling-Fang Ye
- Changzhi People’s Hospital, Changzhi, Shanxi, China
| | - Jia-Yi Weng
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University,Suzhou, China,*Correspondence: Li-Da Wu, ; Jia-Yi Weng,
| | - Li-Da Wu
- Nanjing Medical University, Nanjing, China,*Correspondence: Li-Da Wu, ; Jia-Yi Weng,
| |
Collapse
|
5
|
Hassan WA, ElBanna AK, Noufal N, El-Assmy M, Lotfy H, Ali RI. Significance of tumor-associated neutrophils, lymphocytes, and neutrophil-to-lymphocyte ratio in non-invasive and invasive bladder urothelial carcinoma. J Pathol Transl Med 2023; 57:88-94. [PMID: 36623816 PMCID: PMC10028012 DOI: 10.4132/jptm.2022.11.06] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/06/2022] [Indexed: 01/11/2023] Open
Abstract
Background Tumor-infiltrating neutrophils and lymphocytes play essential roles in promoting or combating various neoplasms. This study aimed to investigate the association between tumor-infiltrating neutrophils and lymphocytes and the neutrophil-to-lymphocyte ratio in the progression of urothelial carcinoma. Methods A total of 106 patients diagnosed with urothelial carcinoma were was. Pathological examination for tumor grade and stage and for tumor-infiltrating neutrophils, both CD4 and CD8+ T lymphocytes, as well as the neutrophil- to-lymphocyte ratio were evaluated. Results The presence of neutrophils and the neutrophil-to-lymphocyte ratio correlated with high-grade urothelial neoplasms. In both low- and high-grade tumors, the lymphocytes increased during progression from a non-invasive neoplasm to an early-invasive neoplasm. CD8+ T lymphocytes increased in low-grade non-muscle-invasive tumors compared to non-invasive tumors. Additionally, there was a significant decrease in CD8+ T lymphocytes during progression to muscle-invasive tumors. Conclusions Our results suggest that tumor-infiltrating neutrophils and CD8+ T lymphocytes have a significant effect on tumor grade and progression.
Collapse
Affiliation(s)
- Wael Abdo Hassan
- Department of Pathology, Faculty of Medicine, Suez Canal University, El Sheikh Zayed, Egypt
- Department of Basic Sciences, College of Medicine, Suliman Al Rajhi University, Al Bukairiyah, Saudi Arabia
| | - Ahmed Kamal ElBanna
- Department of Basic Sciences, College of Medicine, Suliman Al Rajhi University, Al Bukairiyah, Saudi Arabia
- Department of Anatomy, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Noha Noufal
- Department of Pathology, Faculty of Medicine, Suez Canal University, El Sheikh Zayed, Egypt
- Department of Basic Medical Sciences, College of Medicine, Dar Al Uloom University, Riyadh, Saudi Arabia
| | - Mohamed El-Assmy
- Department of Clinical Sciences, Suliman Al Rajhi University, Bukayriah, Saudi Arabia
| | - Hany Lotfy
- Department of Basic Sciences, College of Medicine, Suliman Al Rajhi University, Al Bukairiyah, Saudi Arabia
- Department of Microbiology and Immunology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Rehab Ibrahim Ali
- Department of Pathology, College of Medicine, Jouf University, Al-Jawf, Saudi Arabia
| |
Collapse
|
6
|
Wisniewski L, Braak S, Klamer Z, Gao C, Shi C, Allen P, Haab BB. Heterogeneity of Glycan Biomarker Clusters as an Indicator of Recurrence in Pancreatic Cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.05.522607. [PMID: 36711795 PMCID: PMC9881915 DOI: 10.1101/2023.01.05.522607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Outcomes following tumor resection vary dramatically among patients with pancreatic cancer. A challenge in defining predictive biomarkers is to discern within the complex tumor tissue the specific subpopulations and relationships that drive recurrence. Multiplexed immunofluorescence is valuable for such studies when supplied with markers of relevant subpopulations and analysis methods to sort out the intra-tumor relationships that are informative of tumor behavior. We hypothesized that the glycan biomarkers CA19-9 and STRA, which detect separate subpopulations of cancer cells, define intra-tumoral features associated with recurrence. We probed this question using automated signal thresholding and spatial cluster analysis applied to the immunofluorescence images of the STRA and CA19-9 glycan biomarkers in whole-block tumor sections. The tumors (N = 22) displayed extreme diversity between them in the amounts of the glycans and in the levels of spatial clustering, but neither the amounts nor the clusters of the individual and combined glycans associated with recurrence. The combined glycans, however, marked divergent types of spatial clusters, alternatively only STRA, only CA19-9, or both. The co-occurrence of more than one cluster type within a tumor associated significantly with disease recurrence, in contrast to the independent occurrence of each type of cluster. In addition, intra-tumoral regions with heterogeneity in biomarker clusters spatially aligned with pathology-confirmed cancer cells, whereas regions with homogeneous biomarker clusters aligned with various non-cancer cells. Thus, the STRA and CA19-9 glycans are markers of distinct and co-occurring subpopulations of cancer cells that in combination are associated with recurrence. Furthermore, automated signal thresholding and spatial clustering provides a tool for quantifying intra-tumoral subpopulations that are informative of outcome.
Collapse
|
7
|
Wisniewski L, Braak S, Klamer Z, Gao C, Shi C, Allen P, Haab BB. Heterogeneity of glycan biomarker clusters as an indicator of recurrence in pancreatic cancer. Front Oncol 2023; 13:1135405. [PMID: 37124496 PMCID: PMC10130372 DOI: 10.3389/fonc.2023.1135405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 03/17/2023] [Indexed: 05/02/2023] Open
Abstract
Introduction Outcomes following tumor resection vary dramatically among patients with pancreatic ductal adenocarcinoma (PDAC). A challenge in defining predictive biomarkers is to discern within the complex tumor tissue the specific subpopulations and relationships that drive recurrence. Multiplexed immunofluorescence is valuable for such studies when supplied with markers of relevant subpopulations and analysis methods to sort out the intra-tumor relationships that are informative of tumor behavior. We hypothesized that the glycan biomarkers CA19-9 and STRA, which detect separate subpopulations of cancer cells, define intra-tumoral features associated with recurrence. Methods We probed this question using automated signal thresholding and spatial cluster analysis applied to the immunofluorescence images of the STRA and CA19-9 glycan biomarkers in whole-block sections of PDAC tumors collected from curative resections. Results The tumors (N = 22) displayed extreme diversity between them in the amounts of the glycans and in the levels of spatial clustering, but neither the amounts nor the clusters of the individual and combined glycans associated with recurrence. The combined glycans, however, marked divergent types of spatial clusters, alternatively only STRA, only CA19-9, or both. The co-occurrence of more than one cluster type within a tumor associated significantly with disease recurrence, in contrast to the independent occurrence of each type of cluster. In addition, intra-tumoral regions with heterogeneity in biomarker clusters spatially aligned with pathology-confirmed cancer cells, whereas regions with homogeneous biomarker clusters aligned with various non-cancer cells. Conclusion Thus, the STRA and CA19-9 glycans are markers of distinct and co-occurring subpopulations of cancer cells that in combination are associated with recurrence. Furthermore, automated signal thresholding and spatial clustering provides a tool for quantifying intra-tumoral subpopulations that are informative of outcome.
Collapse
Affiliation(s)
- Luke Wisniewski
- Department of Cell Biology, Van Andel Institute, Grand Rapids, MI, United States
| | - Samuel Braak
- Department of Cell Biology, Van Andel Institute, Grand Rapids, MI, United States
| | - Zachary Klamer
- Department of Cell Biology, Van Andel Institute, Grand Rapids, MI, United States
| | - ChongFeng Gao
- Department of Cell Biology, Van Andel Institute, Grand Rapids, MI, United States
| | - Chanjuan Shi
- Department of Pathology, Duke University School of Medicine, Durham, NC, United States
| | - Peter Allen
- Department of Surgery, Duke University School of Medicine, Durham, NC, United States
| | - Brian B. Haab
- Department of Cell Biology, Van Andel Institute, Grand Rapids, MI, United States
- *Correspondence: Brian B. Haab,
| |
Collapse
|
8
|
McDonald PC, Dedhar S. New Perspectives on the Role of Integrin-Linked Kinase (ILK) Signaling in Cancer Metastasis. Cancers (Basel) 2022; 14:cancers14133209. [PMID: 35804980 PMCID: PMC9264971 DOI: 10.3390/cancers14133209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Today, the vast majority of deaths from cancer are due to cancer metastasis. Metastasis requires that cancer cells escape from the initial tumor, travel through blood vessels, and form new tumors in distant host tissues. Integrin-linked kinase (ILK) is overexpressed by many types of cancer cells and provides both structural and signaling functions that are important for successful metastasis. Here, we discuss recent findings that show how ILK is involved in promoting physical changes important for cell motility and invasion, and how ILK relays signals to other machinery components during metastasis, including interactions with components of the immune system and communication between cancer cells and normal cells, to affect the process of metastasis. We also discuss the contribution of ILK to therapeutic resistance and examine efforts to target ILK for the treatment of metastatic disease. Abstract Cancer metastasis is a major barrier to the long-term survival of cancer patients. In cancer cells, integrin engagement downstream of cell-extracellular matrix (ECM) interactions results in the recruitment of cytoskeletal and signaling molecules to form multi-protein complexes to promote processes critical for metastasis. One of the major functional components of these complexes is Integrin Linked Kinase (ILK). Here, we discuss recent advances in our understanding of the importance of ILK as a signaling effector in processes linked to tumor progression and metastasis. New mechanistic insights as to the role of ILK in cellular plasticity, epithelial mesenchymal transition (EMT), migration, and invasion, including the impact of ILK on the formation of invadopodia, filopodia-like protrusions (FLPs), and Neutrophil Extracellular Trap (NET)-induced motility are highlighted. Recent findings detailing the contribution of ILK to therapeutic resistance and the importance of ILK as a potentially therapeutically tractable vulnerability in both solid tumors and hematologic malignancies are discussed. Indeed, pharmacologic inhibition of ILK activity using specific small molecule inhibitors is effective in curtailing the contribution of ILK to these processes, potentially offering a novel therapeutic avenue for inhibiting critical steps in the metastatic cascade leading to reduced drug resistance and increased therapeutic efficacy.
Collapse
Affiliation(s)
- Paul C. McDonald
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada;
| | - Shoukat Dedhar
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada;
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- Correspondence:
| |
Collapse
|
9
|
Kalloger SE, Karasinska JM, Warren C, Renouf DJ, Schaeffer DF. Advancing the Care of Pancreatic Cancer Patients: Moving Beyond Just Tumour Tissue. Biomark Insights 2021; 16:11772719211049852. [PMID: 34658620 PMCID: PMC8512230 DOI: 10.1177/11772719211049852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/01/2021] [Indexed: 11/15/2022] Open
Abstract
Biobanking efforts, to establish and grow the pool of available tissue from which evidence on aetiology, therapeutic susceptibility and prognosis of various diseases, have been underway for decades. This is illustrated nowhere better than in cancer. High incidence cancers such as breast, colorectal and lung have seen massive increases in their requisite formularies that have yielded improved prognoses. These discoveries, on a very fundamental level, were made by scientists who had access to tumour tissue and associated clinical data from patient donors. As the research space for higher incidence malignancies became increasingly crowded, attention has turned towards those malignancies with lower incidence. In the same time span, technology has continued to evolve, allowing the next generation of scientists and clinicians to ask more nuanced questions. Inquiries are no longer limited to the -omics of tumour tissue but also include biomarkers of blood and excretory products, concurrent disease status and composition of the gut microbiome. The impact of these new technologies and the questions now facing researchers in low-incidence cancers will be summarized and discussed. Our experience with pancreatic ductal adenocarcinoma will be used as a model for this review.
Collapse
Affiliation(s)
- Steve E Kalloger
- Pancreas Centre BC, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.,School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada
| | | | | | - Daniel J Renouf
- Pancreas Centre BC, Vancouver, BC, Canada.,Department of Medical Oncology, British Columbia Cancer Agency, Vancouver, BC, Canada.,Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - David F Schaeffer
- Pancreas Centre BC, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.,Division of Anatomical Pathology, Vancouver General Hospital, Vancouver, BC, Canada.,Genetic Pathology Evaluation Centre, Vancouver, BC, Canada
| |
Collapse
|
10
|
Mollinedo F, Gajate C. Direct Endoplasmic Reticulum Targeting by the Selective Alkylphospholipid Analog and Antitumor Ether Lipid Edelfosine as a Therapeutic Approach in Pancreatic Cancer. Cancers (Basel) 2021; 13:4173. [PMID: 34439330 PMCID: PMC8394177 DOI: 10.3390/cancers13164173] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/11/2021] [Accepted: 08/15/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), the most common malignancy of the pancreas, shows a dismal and grim overall prognosis and survival rate, which have remained virtually unchanged for over half a century. PDAC is the most lethal of all cancers, with the highest mortality-to-incidence ratio. PDAC responds poorly to current therapies and remains an incurable malignancy. Therefore, novel therapeutic targets and drugs are urgently needed for pancreatic cancer treatment. Selective induction of apoptosis in cancer cells is an appealing approach in cancer therapy. Apoptotic cell death is highly regulated by different signaling routes that involve a variety of subcellular organelles. Endoplasmic reticulum (ER) stress acts as a double-edged sword at the interface of cell survival and death. Pancreatic cells exhibit high hormone and enzyme secretory functions, and thereby show a highly developed ER. Thus, pancreatic cancer cells display a prominent ER. Solid tumors have to cope with adverse situations in which hypoxia, lack of certain nutrients, and the action of certain antitumor agents lead to a complex interplay and crosstalk between ER stress and autophagy-the latter acting as an adaptive survival response. ER stress also mediates cell death induced by a number of anticancer drugs and experimental conditions, highlighting the pivotal role of ER stress in modulating cell fate. The alkylphospholipid analog prototype edelfosine is selectively taken up by tumor cells, accumulates in the ER of a number of human solid tumor cells-including pancreatic cancer cells-and promotes apoptosis through a persistent ER-stress-mediated mechanism both in vitro and in vivo. Here, we discuss and propose that direct ER targeting may be a promising approach in the therapy of pancreatic cancer, opening up a new avenue for the treatment of this currently incurable and deadly cancer. Furthermore, because autophagy acts as a cytoprotective response to ER stress, potentiation of the triggering of a persistent ER response by combination therapy, together with the use of autophagy blockers, could improve the current gloomy expectations for finding a cure for this type of cancer.
Collapse
Affiliation(s)
- Faustino Mollinedo
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Laboratory of Cell Death and Cancer Therapy, Department of Molecular Biomedicine, C/Ramiro de Maeztu 9, E-28040 Madrid, Spain;
| | | |
Collapse
|
11
|
Jaworek C, Verel-Yilmaz Y, Driesch S, Ostgathe S, Cook L, Wagner S, Bartsch DK, Slater EP, Bartsch JW. Cohort Analysis of ADAM8 Expression in the PDAC Tumor Stroma. J Pers Med 2021; 11:jpm11020113. [PMID: 33578644 PMCID: PMC7916368 DOI: 10.3390/jpm11020113] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/05/2021] [Accepted: 02/07/2021] [Indexed: 12/17/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a cancer type with one of the highest mortalities. The metalloprotease-disintegrin ADAM8 is highly expressed in pancreatic cancer cells and is correlated with an unfavorable patient prognosis. However, no information is available on ADAM8 expression in cells of the tumor microenvironment. We used immunohistochemistry (IHC) to describe the stromal cell types expressing ADAM8 in PDAC patients using a cohort of 72 PDAC patients. We found ADAM8 expressed significantly in macrophages (6%), natural killer cells (40%), and neutrophils (63%), which showed the highest percentage of ADAM8 expressing stromal cells. We quantified the amount of ADAM8+ neutrophils in post-capillary venules in PDAC sections by IHC. Notably, the amount of ADAM8+ neutrophils could be correlated with post-operative patient survival times. In contrast, neither the total neutrophil count in peripheral blood nor the neutrophil-to-lymphocyte ratio showed a comparable correlation. We conclude from our data that ADAM8 is, in addition to high expression levels in tumor cells, present in tumor-associated stromal macrophages, NK cells, and neutrophils and, in addition to functional implications, the ADAM8-expressing neutrophil density in post-capillary venules is a diagnostic parameter for PDAC patients when the numbers of ADAM8+ neutrophils are quantified.
Collapse
Affiliation(s)
- Christian Jaworek
- Department of Neurosurgery, Philipps University Marburg, Baldingerstrasse, 35033 Marburg, Germany; (C.J.); (S.O.); (L.C.)
| | - Yesim Verel-Yilmaz
- Department of Visceral Surgery, Philipps University Marburg, Baldingerstrasse, 35033 Marburg, Germany; (Y.V.-Y.); (S.D.); (D.K.B.); (E.P.S.)
| | - Sarah Driesch
- Department of Visceral Surgery, Philipps University Marburg, Baldingerstrasse, 35033 Marburg, Germany; (Y.V.-Y.); (S.D.); (D.K.B.); (E.P.S.)
| | - Sarah Ostgathe
- Department of Neurosurgery, Philipps University Marburg, Baldingerstrasse, 35033 Marburg, Germany; (C.J.); (S.O.); (L.C.)
| | - Lena Cook
- Department of Neurosurgery, Philipps University Marburg, Baldingerstrasse, 35033 Marburg, Germany; (C.J.); (S.O.); (L.C.)
| | - Steffen Wagner
- Head and Neck Surgery, Department of Otorhinolaryngology, Justus Liebig University Giessen, Aulweg 128 (ForMED), 35392 Giessen, Germany;
| | - Detlef K. Bartsch
- Department of Visceral Surgery, Philipps University Marburg, Baldingerstrasse, 35033 Marburg, Germany; (Y.V.-Y.); (S.D.); (D.K.B.); (E.P.S.)
| | - Emily P. Slater
- Department of Visceral Surgery, Philipps University Marburg, Baldingerstrasse, 35033 Marburg, Germany; (Y.V.-Y.); (S.D.); (D.K.B.); (E.P.S.)
| | - Jörg W. Bartsch
- Department of Neurosurgery, Philipps University Marburg, Baldingerstrasse, 35033 Marburg, Germany; (C.J.); (S.O.); (L.C.)
- Correspondence: ; Tel.: +49-6421-58-61173
| |
Collapse
|