1
|
Grimbergen G, Eijkelenkamp H, Snoeren LM, Bahij R, Bernchou U, van der Bijl E, Heerkens HD, Binda S, Ng SS, Bouchart C, Paquier Z, Brown K, Khor R, Chuter R, Freear L, Dunlop A, Mitchell RA, Erickson BA, Hall WA, Godoy Scripes P, Tyagi N, de Leon J, Tran C, Oh S, Renz P, Shessel A, Taylor E, Intven MP, Meijer GJ. Treatment planning for MR-guided SBRT of pancreatic tumors on a 1.5 T MR-Linac: A global consensus protocol. Clin Transl Radiat Oncol 2024; 47:100797. [PMID: 38831754 PMCID: PMC11145226 DOI: 10.1016/j.ctro.2024.100797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/17/2024] [Accepted: 05/17/2024] [Indexed: 06/05/2024] Open
Abstract
Background and purpose Treatment planning for MR-guided stereotactic body radiotherapy (SBRT) for pancreatic tumors can be challenging, leading to a wide variation of protocols and practices. This study aimed to harmonize treatment planning by developing a consensus planning protocol for MR-guided pancreas SBRT on a 1.5 T MR-Linac. Materials and methods A consortium was founded of thirteen centers that treat pancreatic tumors on a 1.5 T MR-Linac. A phased planning exercise was conducted in which centers iteratively created treatment plans for two cases of pancreatic cancer. Each phase was followed by a meeting where the instructions for the next phase were determined. After three phases, a consensus protocol was reached. Results In the benchmarking phase (phase I), substantial variation between the SBRT protocols became apparent (for example, the gross tumor volume (GTV) D99% ranged between 36.8 - 53.7 Gy for case 1, 22.6 - 35.5 Gy for case 2). The next phase involved planning according to the same basic dosimetric objectives, constraints, and planning margins (phase II), which led to a large degree of harmonization (GTV D99% range: 47.9-53.6 Gy for case 1, 33.9-36.6 Gy for case 2). In phase III, the final consensus protocol was formulated in a treatment planning system template and again used for treatment planning. This not only resulted in further dosimetric harmonization (GTV D99% range: 48.2-50.9 Gy for case 1, 33.5-36.0 Gy for case 2) but also in less variation of estimated treatment delivery times. Conclusion A global consensus protocol has been developed for treatment planning for MR-guided pancreatic SBRT on a 1.5 T MR-Linac. Aside from harmonizing the large variation in the current clinical practice, this protocol can provide a starting point for centers that are planning to treat pancreatic tumors on MR-Linac systems.
Collapse
Affiliation(s)
- Guus Grimbergen
- Department of Radiation Oncology, University Medical Center Utrecht, The Netherlands
| | - Hidde Eijkelenkamp
- Department of Radiation Oncology, University Medical Center Utrecht, The Netherlands
| | - Louk M.W. Snoeren
- Department of Radiation Oncology, University Medical Center Utrecht, The Netherlands
| | - Rana Bahij
- Department of Oncology, Odense University Hospital, Denmark
| | - Uffe Bernchou
- Department of Oncology, Odense University Hospital, Denmark
- Department of Clinical Research, University of Southern Denmark, Denmark
| | - Erik van der Bijl
- Department of Radiation Oncology, Radboudumc, Nijmegen, The Netherlands
| | - Hanne D. Heerkens
- Department of Radiation Oncology, Radboudumc, Nijmegen, The Netherlands
| | - Shawn Binda
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Sylvia S.W. Ng
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Christelle Bouchart
- Department of Radiation Oncology, HUB Institut Jules Bordet, Brussels, Belgium
| | - Zelda Paquier
- Department of Radiation Oncology, HUB Institut Jules Bordet, Brussels, Belgium
| | - Kerryn Brown
- Radiation Oncology, ONJ Centre, Austin Health, Heidelberg, Victoria, Australia
| | - Richard Khor
- Radiation Oncology, ONJ Centre, Austin Health, Heidelberg, Victoria, Australia
| | | | | | - Alex Dunlop
- The Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, UK
| | - Robert Adam Mitchell
- The Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, UK
| | - Beth A. Erickson
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - William A. Hall
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Paola Godoy Scripes
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Neelam Tyagi
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Charles Tran
- GenesisCare, Darlinghurst, New South Wales, Australia
| | - Seungjong Oh
- Division of Radiation Oncology, Allegheny General Hospital, Pittsburgh, PA, USA
| | - Paul Renz
- Division of Radiation Oncology, Allegheny General Hospital, Pittsburgh, PA, USA
| | - Andrea Shessel
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Edward Taylor
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Martijn P.W. Intven
- Department of Radiation Oncology, University Medical Center Utrecht, The Netherlands
| | - Gert J. Meijer
- Department of Radiation Oncology, University Medical Center Utrecht, The Netherlands
| |
Collapse
|
2
|
Beckert R, Schiff JP, Morris E, Samson P, Kim H, Laugeman E. The impact of an Advanced Practice Radiation Therapist contouring for a CBCT-based adaptive radiotherapy program. Tech Innov Patient Support Radiat Oncol 2024; 30:100242. [PMID: 38495830 PMCID: PMC10940769 DOI: 10.1016/j.tipsro.2024.100242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 03/19/2024] Open
Abstract
We successfully implemented an APRT specializing in CBCT-guided online adaptive contouring. These data show statistical improvements in contouring time with APRT-led vs non-APRT led ART contouring, suggesting that an APRT specifically trained to manage the ART process may reduce physician workload and patient treatment time.
Collapse
Affiliation(s)
- Robbie Beckert
- Department of Radiation Oncology Washington University School of Medicine in St. Louis, 4921 Parkview Place, MSC: 35-LL-8224, St. Louis, MO 63110, United States
| | - Joshua P Schiff
- Department of Radiation Oncology Washington University School of Medicine in St. Louis, 4921 Parkview Place, MSC: 35-LL-8224, St. Louis, MO 63110, United States
| | - Eric Morris
- Department of Radiation Oncology Washington University School of Medicine in St. Louis, 4921 Parkview Place, MSC: 35-LL-8224, St. Louis, MO 63110, United States
| | - Pamela Samson
- Department of Radiation Oncology Washington University School of Medicine in St. Louis, 4921 Parkview Place, MSC: 35-LL-8224, St. Louis, MO 63110, United States
| | - Hyun Kim
- Department of Radiation Oncology Washington University School of Medicine in St. Louis, 4921 Parkview Place, MSC: 35-LL-8224, St. Louis, MO 63110, United States
| | - Eric Laugeman
- Department of Radiation Oncology Washington University School of Medicine in St. Louis, 4921 Parkview Place, MSC: 35-LL-8224, St. Louis, MO 63110, United States
| |
Collapse
|
3
|
Chiloiro G, Panza G, Boldrini L, Romano A, Placidi L, Nardini M, Galetto M, Votta C, Campitelli M, Cellini F, Massaccesi M, Gambacorta MA. REPeated mAgnetic resonance Image-guided stereotactic body Radiotherapy (MRIg-reSBRT) for oligometastatic patients: REPAIR, a mono-institutional retrospective study. Radiat Oncol 2024; 19:52. [PMID: 38671526 PMCID: PMC11055272 DOI: 10.1186/s13014-024-02445-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/22/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Oligo-progression or further recurrence is an open issue in the multi-integrated management of oligometastatic disease (OMD). Re-irradiation with stereotactic body radiotherapy (re-SBRT) technique could represent a valuable treatment option to improve OMD clinical outcomes. MRI-guided allows real-time visualization of the target volumes and online adaptive radiotherapy (oART). The aim of this retrospective study is to evaluate the efficacy and toxicity profile of MRI-guided repeated SBRT (MRIg-reSBRT) in the OMD setting and propose a re-SBRT classification. METHODS We retrospectively analyzed patients (pts) with recurrent liver metastases or abdominal metastatic lesions between 1 and 5 centimeters from liver candidate to MRIg-reSBRT showing geometric overlap between the different SBRT courses and assessing whether they were in field (type 1) or not (type 2). RESULTS Eighteen pts completed MRIg-reSBRT course for 25 metastatic hepatic/perihepatic lesions from July 2019 to January 2020. A total of 20 SBRT courses: 15 Type 1 re-SBRT (75%) and 5 Type 2 re-SBRT (25%) was delivered. Mean interval between the first SBRT and MRIg-reSBRT was 8,6 months. Mean prescribed dose for the first treatment was 43 Gy (range 24-50 Gy, mean BEDα/β10=93), while 41 Gy (range 16-50 Gy, mean BEDα/β10=92) for MRIg-reSBRT. Average liver dose was 3,9 Gy (range 1-10 Gy) and 3,7 Gy (range 1,6-8 Gy) for the first SBRT and MRIg-reSBRT, respectively. No acute or late toxicities were reported at a median follow-up of 10,7 months. The 1-year OS and PFS was 73,08% and 50%, respectively. Overall Clinical Benefit was 54%. CONCLUSIONS MRIg-reSBRT could be considered an effective and safe option in the multi-integrated treatment of OMD.
Collapse
Affiliation(s)
- Giuditta Chiloiro
- Fondazione Policlinico Universitario Agostino Gemelli, IRCSS, Rome, Italy
| | - Giulia Panza
- Fondazione Policlinico Universitario Agostino Gemelli, IRCSS, Rome, Italy.
| | - Luca Boldrini
- Fondazione Policlinico Universitario Agostino Gemelli, IRCSS, Rome, Italy
| | - Angela Romano
- Fondazione Policlinico Universitario Agostino Gemelli, IRCSS, Rome, Italy
| | - Lorenzo Placidi
- Fondazione Policlinico Universitario Agostino Gemelli, IRCSS, Rome, Italy
| | - Matteo Nardini
- Fondazione Policlinico Universitario Agostino Gemelli, IRCSS, Rome, Italy
| | - Matteo Galetto
- Fondazione Policlinico Universitario Agostino Gemelli, IRCSS, Rome, Italy
| | - Claudio Votta
- Fondazione Policlinico Universitario Agostino Gemelli, IRCSS, Rome, Italy
| | - Maura Campitelli
- Fondazione Policlinico Universitario Agostino Gemelli, IRCSS, Rome, Italy
| | - Francesco Cellini
- Fondazione Policlinico Universitario Agostino Gemelli, IRCSS, Rome, Italy
| | | | - Maria Antonietta Gambacorta
- Fondazione Policlinico Universitario Agostino Gemelli, IRCSS, Rome, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
4
|
Kishi N, Yoneyama M, Inoo H, Inoue M, Iramina H, Nakakura A, Ono T, Hirashima H, Adachi T, Matsushita N, Sasaki M, Fujimoto T, Nakamura M, Matsuo Y, Mizowaki T. Protocol of a phase II study to evaluate the efficacy and safety of deep-inspiration breath-hold daily online adaptive radiotherapy for centrally located lung tumours (PUDDING study). Radiat Oncol 2024; 19:32. [PMID: 38459580 PMCID: PMC10921600 DOI: 10.1186/s13014-024-02427-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 02/29/2024] [Indexed: 03/10/2024] Open
Abstract
BACKGROUND Centrally located lung tumours present a challenge because of their tendency to exhibit symptoms such as airway obstruction, atelectasis, and bleeding. Surgical resection of these tumours often requires sacrificing the lungs, making definitive radiotherapy the preferred alternative to avoid pneumonectomy. However, the proximity of these tumours to mediastinal organs at risk increases the potential for severe adverse events. To mitigate this risk, we propose a dual-method approach: deep inspiration breath-hold (DIBH) radiotherapy combined with adaptive radiotherapy. The aim of this single-centre, single-arm phase II study is to investigate the efficacy and safety of DIBH daily online adaptive radiotherapy. METHODS Patients diagnosed with centrally located lung tumours according to the International Association for the Study of Lung Cancer recommendations, are enrolled and subjected to DIBH daily online adaptive radiotherapy. The primary endpoint is the one-year cumulative incidence of grade 3 or more severe adverse events, as classified by the Common Terminology Criteria for Adverse Events (CTCAE v5.0). DISCUSSION Delivering definitive radiotherapy for centrally located lung tumours presents a dilemma between ensuring optimal dose coverage for the planning target volume and the associated increased risk of adverse events. DIBH provides measurable dosimetric benefits by increasing the normal lung volume and distancing the tumour from critical mediastinal organs at risk, leading to reduced toxicity. DIBH adaptive radiotherapy has been proposed as an adjunct treatment option for abdominal and pelvic cancers. If the application of DIBH adaptive radiotherapy to centrally located lung tumours proves successful, this approach could shape future phase III trials and offer novel perspectives in lung tumour radiotherapy. TRIAL REGISTRATION Registered at the Japan Registry of Clinical Trials (jRCT; https://jrct.niph.go.jp/ ); registration number: jRCT1052230085 ( https://jrct.niph.go.jp/en-latest-detail/jRCT1052230085 ).
Collapse
Affiliation(s)
- Noriko Kishi
- Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan.
| | - Masahiro Yoneyama
- Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Hiroyuki Inoo
- Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Minoru Inoue
- Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Hiraku Iramina
- Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Akiyoshi Nakakura
- Department of Biomedical Statistics and Bioinformatics, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Tomohiro Ono
- Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Hideaki Hirashima
- Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Takanori Adachi
- Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | | | - Makoto Sasaki
- Clinical Radiology Service, Kyoto University Hospital, Kyoto, Japan
| | | | - Mitsuhiro Nakamura
- Department of Information Technology and Medical Engineering, Division of Medical Physics, Graduate School of Medicine, Human Health Sciences, Kyoto University, Kyoto, Japan
| | - Yukinori Matsuo
- Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
- Department of Radiation Oncology, Faculty of Medicine, Kindai University, 377-2, Onohigashi, Osakasayama-Shi, Osaka, 589-8511, Japan
| | - Takashi Mizowaki
- Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| |
Collapse
|
5
|
Ocanto A, Torres L, Montijano M, Rincón D, Fernández C, Sevilla B, Gonsalves D, Teja M, Guijarro M, Glaría L, Hernánz R, Zafra-Martin J, Sanmamed N, Kishan A, Alongi F, Moghanaki D, Nagar H, Couñago F. MR-LINAC, a New Partner in Radiation Oncology: Current Landscape. Cancers (Basel) 2024; 16:270. [PMID: 38254760 PMCID: PMC10813892 DOI: 10.3390/cancers16020270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Technological advances in radiation oncology are oriented towards improving treatment precision and tumor control. Among these advances, magnetic-resonance-image-guided radiation therapy (MRgRT) stands out, with technological advances to deliver targeted treatments adapted to a tumor's anatomy on the day while minimizing incidental exposure to organs at risk, offering an unprecedented therapeutic advantage compared to X-ray-based IGRT delivery systems. This new technology changes the traditional workflow in radiation oncology and requires an evolution in team coordination to administer more precise treatments. Once implemented, it paves the way for newer indication for radiation therapy to safely deliver higher doses than ever before, with better preservation of healthy tissues to optimize patient outcomes. In this narrative review, we assess the technical aspects of the novel linear accelerators that can deliver MRgRT and summarize the available published experience to date, focusing on oncological results and future challenges.
Collapse
Affiliation(s)
- Abrahams Ocanto
- Department of Radiation Oncology, Hospital Universitario San Francisco de Asís, GenesisCare, 28002 Madrid, Spain; (L.T.); (M.M.); (D.R.); (C.F.); (B.S.); (D.G.); (M.T.); (M.G.); (L.G.); (R.H.); (F.C.)
- Department of Radiation Oncology, Hospital Universitario Vithas La Milagrosa, GenesisCare, 28010 Madrid, Spain
| | - Lisselott Torres
- Department of Radiation Oncology, Hospital Universitario San Francisco de Asís, GenesisCare, 28002 Madrid, Spain; (L.T.); (M.M.); (D.R.); (C.F.); (B.S.); (D.G.); (M.T.); (M.G.); (L.G.); (R.H.); (F.C.)
- Department of Radiation Oncology, Hospital Universitario Vithas La Milagrosa, GenesisCare, 28010 Madrid, Spain
| | - Miguel Montijano
- Department of Radiation Oncology, Hospital Universitario San Francisco de Asís, GenesisCare, 28002 Madrid, Spain; (L.T.); (M.M.); (D.R.); (C.F.); (B.S.); (D.G.); (M.T.); (M.G.); (L.G.); (R.H.); (F.C.)
- Department of Radiation Oncology, Hospital Universitario Vithas La Milagrosa, GenesisCare, 28010 Madrid, Spain
| | - Diego Rincón
- Department of Radiation Oncology, Hospital Universitario San Francisco de Asís, GenesisCare, 28002 Madrid, Spain; (L.T.); (M.M.); (D.R.); (C.F.); (B.S.); (D.G.); (M.T.); (M.G.); (L.G.); (R.H.); (F.C.)
- Department of Radiation Oncology, Hospital Universitario Vithas La Milagrosa, GenesisCare, 28010 Madrid, Spain
| | - Castalia Fernández
- Department of Radiation Oncology, Hospital Universitario San Francisco de Asís, GenesisCare, 28002 Madrid, Spain; (L.T.); (M.M.); (D.R.); (C.F.); (B.S.); (D.G.); (M.T.); (M.G.); (L.G.); (R.H.); (F.C.)
- Department of Radiation Oncology, Hospital Universitario Vithas La Milagrosa, GenesisCare, 28010 Madrid, Spain
| | - Beatriz Sevilla
- Department of Radiation Oncology, Hospital Universitario San Francisco de Asís, GenesisCare, 28002 Madrid, Spain; (L.T.); (M.M.); (D.R.); (C.F.); (B.S.); (D.G.); (M.T.); (M.G.); (L.G.); (R.H.); (F.C.)
- Department of Radiation Oncology, Hospital Universitario Vithas La Milagrosa, GenesisCare, 28010 Madrid, Spain
| | - Daniela Gonsalves
- Department of Radiation Oncology, Hospital Universitario San Francisco de Asís, GenesisCare, 28002 Madrid, Spain; (L.T.); (M.M.); (D.R.); (C.F.); (B.S.); (D.G.); (M.T.); (M.G.); (L.G.); (R.H.); (F.C.)
- Department of Radiation Oncology, Hospital Universitario Vithas La Milagrosa, GenesisCare, 28010 Madrid, Spain
| | - Macarena Teja
- Department of Radiation Oncology, Hospital Universitario San Francisco de Asís, GenesisCare, 28002 Madrid, Spain; (L.T.); (M.M.); (D.R.); (C.F.); (B.S.); (D.G.); (M.T.); (M.G.); (L.G.); (R.H.); (F.C.)
- Department of Radiation Oncology, Hospital Universitario Vithas La Milagrosa, GenesisCare, 28010 Madrid, Spain
| | - Marcos Guijarro
- Department of Radiation Oncology, Hospital Universitario San Francisco de Asís, GenesisCare, 28002 Madrid, Spain; (L.T.); (M.M.); (D.R.); (C.F.); (B.S.); (D.G.); (M.T.); (M.G.); (L.G.); (R.H.); (F.C.)
- Department of Radiation Oncology, Hospital Universitario Vithas La Milagrosa, GenesisCare, 28010 Madrid, Spain
| | - Luis Glaría
- Department of Radiation Oncology, Hospital Universitario San Francisco de Asís, GenesisCare, 28002 Madrid, Spain; (L.T.); (M.M.); (D.R.); (C.F.); (B.S.); (D.G.); (M.T.); (M.G.); (L.G.); (R.H.); (F.C.)
| | - Raúl Hernánz
- Department of Radiation Oncology, Hospital Universitario San Francisco de Asís, GenesisCare, 28002 Madrid, Spain; (L.T.); (M.M.); (D.R.); (C.F.); (B.S.); (D.G.); (M.T.); (M.G.); (L.G.); (R.H.); (F.C.)
| | - Juan Zafra-Martin
- Group of Translational Research in Cancer Immunotherapy, Centro de Investigaciones Médico-Sanitarias (CIMES), Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga (UMA), 29010 Málaga, Spain;
- Department of Radiation Oncology, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
| | - Noelia Sanmamed
- Department of Radiation Oncology, Hospital Universitario Clínico San Carlos, 28040 Madrid, Spain;
| | - Amar Kishan
- Department of Radiation Oncology, University of California, Los Angeles, CA 90095, USA;
| | - Filippo Alongi
- Advanced Radiation Oncology Department, Cancer Care Center, IRCCS Sacro Cuore Don Calabria Hospital, 37024 Negrar, Italy;
- University of Brescia, 25121 Brescia, Italy
| | - Drew Moghanaki
- UCLA Department of Radiation Oncology, University of California Los Angeles, Los Angeles, CA 90095, USA;
| | - Himanshu Nagar
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY 10065, USA;
| | - Felipe Couñago
- Department of Radiation Oncology, Hospital Universitario San Francisco de Asís, GenesisCare, 28002 Madrid, Spain; (L.T.); (M.M.); (D.R.); (C.F.); (B.S.); (D.G.); (M.T.); (M.G.); (L.G.); (R.H.); (F.C.)
- Department of Radiation Oncology, Hospital Universitario Vithas La Milagrosa, GenesisCare, 28010 Madrid, Spain
- GenesisCare, 28043 Madrid, Spain
| |
Collapse
|
6
|
Prime S, Schiff JP, Hosni A, Stanescu T, Dawson LA, Henke LE. The Use of MR-Guided Radiation Therapy for Liver Cancer. Semin Radiat Oncol 2024; 34:36-44. [PMID: 38105091 DOI: 10.1016/j.semradonc.2023.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
The role of radiotherapy in the management of primary and metastatic liver malignancies has expanded in recent years due to advances such as IGRT and SBRT. MRI-guided radiotherapy (MRgRT) has arisen as an excellent option for the management of hepatocellular carcinoma, cholangiocarcinoma, and liver metastases due to the ability to combine improved hepatic imaging with conformal treatment planning paradigms like adaptive radiotherapy and advanced motion management techniques. Herein we review the data for MRgRT for liver malignancies, as well as describe workflow and technical considerations for the 2 commercially available MRgRT delivery platforms.
Collapse
Affiliation(s)
- Sabrina Prime
- Washington University School of Medicine in St. Louis, Department of Radiation Oncology, St. Louis, MO
| | - Joshua P Schiff
- Washington University School of Medicine in St. Louis, Department of Radiation Oncology, St. Louis, MO
| | - Ali Hosni
- Radiation Medicine Program, Princess Margaret Cancer Centre, Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Teodor Stanescu
- Radiation Medicine Program, Princess Margaret Cancer Centre, Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Laura A Dawson
- Radiation Medicine Program, Princess Margaret Cancer Centre, Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Lauren E Henke
- University Hospitals/Case Western Reserve University, Department of Radiation Oncology, Cleveland, OH.
| |
Collapse
|
7
|
Bordeau K, Michalet M, Dorion V, Keskes A, Valdenaire S, Debuire P, Cantaloube M, Cabaillé M, Draghici R, Ychou M, Assenat E, Jarlier M, Gourgou S, Guiu B, Ursic-Bedoya J, Aillères N, Fenoglietto P, Azria D, Riou O. A prospective registry study of stereotactic magnetic resonance guided radiotherapy (MRgRT) for primary liver tumors. Radiother Oncol 2023; 189:109912. [PMID: 37739315 DOI: 10.1016/j.radonc.2023.109912] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/04/2023] [Accepted: 09/09/2023] [Indexed: 09/24/2023]
Abstract
BACKGROUND AND PURPOSE Stereotactic body radiation therapy (SBRT) has demonstrated safe and effective results for primary liver tumors. Magnetic Resonance guided Radiotherapy (MRgRT) is an innovative radiotherapy modality for abdominal tumors. The aim of this study is to report on acute and late toxicities and initial oncological results for primary liver tumors treated with MRgRT. MATERIALS AND METHODS We prospectively included in our cohort all patients treated by MRgRT for a primary liver tumor at the Montpellier Cancer Institute. The primary endpoint was acute and late toxicities assessed according to CTCAE v 5.0. The mean prescribed dose was 50 Gy in 5 fractions. RESULTS Between October 2019 and April 2022, MRgRT treated 56 patients for 72 primary liver lesions. No acute or late toxicities of CTCAE grade greater than 2 attributable to radiotherapy were noted during follow-up. No cases of radiation-induced liver disease (RILD), either classical or non-classical, occurred. After a median follow-up of 13.2 months (95% CI [8.8; 15.7]), overall survival was 85.1% (95% CI: [70.8; 92.7]) at 1 year and 74.2% at 18 months (95% CI [52.6; 87.0]). Local control was 98.1% (95% CI: [87.4; 99.7]) and 94.7% (95% CI: [79.5; 98.7]) at 12 and 18 months, respectively. Among the HCC subgroup, no local recurrences were observed. CONCLUSION MRgRT for primary liver tumors is safe without severe adverse events and reach excellent local control. Numerous studies are underway to better assess the value of MRI guidance and adaptive process in these indications.
Collapse
Affiliation(s)
- Karl Bordeau
- University Federation of Radiation Oncology of Mediterranean Occitanie, Montpellier Cancer Institute (ICM), Univ Montpellier, INSERM U1194 IRCM, Montpellier, France
| | - Morgan Michalet
- University Federation of Radiation Oncology of Mediterranean Occitanie, Montpellier Cancer Institute (ICM), Univ Montpellier, INSERM U1194 IRCM, Montpellier, France
| | - Valérie Dorion
- University Federation of Radiation Oncology of Mediterranean Occitanie, Montpellier Cancer Institute (ICM), Univ Montpellier, INSERM U1194 IRCM, Montpellier, France
| | - Aïcha Keskes
- University Federation of Radiation Oncology of Mediterranean Occitanie, Montpellier Cancer Institute (ICM), Univ Montpellier, INSERM U1194 IRCM, Montpellier, France
| | - Simon Valdenaire
- University Federation of Radiation Oncology of Mediterranean Occitanie, Montpellier Cancer Institute (ICM), Univ Montpellier, INSERM U1194 IRCM, Montpellier, France
| | - Pierre Debuire
- University Federation of Radiation Oncology of Mediterranean Occitanie, Montpellier Cancer Institute (ICM), Univ Montpellier, INSERM U1194 IRCM, Montpellier, France
| | - Marie Cantaloube
- University Federation of Radiation Oncology of Mediterranean Occitanie, Montpellier Cancer Institute (ICM), Univ Montpellier, INSERM U1194 IRCM, Montpellier, France
| | - Morgane Cabaillé
- University Federation of Radiation Oncology of Mediterranean Occitanie, Montpellier Cancer Institute (ICM), Univ Montpellier, INSERM U1194 IRCM, Montpellier, France
| | - Roxana Draghici
- University Federation of Radiation Oncology of Mediterranean Occitanie, Montpellier Cancer Institute (ICM), Univ Montpellier, INSERM U1194 IRCM, Montpellier, France
| | - Marc Ychou
- Medical oncology department, ICM, Montpellier Cancer Institute, Univ Montpellier, Montpellier, France
| | - Eric Assenat
- Medical oncology department, CHU St Eloi 34000, Montpellier, France
| | - Marta Jarlier
- Biometrics Unit ICM, Montpellier Cancer Institute, Univ Montpellier, Montpellier, France
| | - Sophie Gourgou
- Biometrics Unit ICM, Montpellier Cancer Institute, Univ Montpellier, Montpellier, France
| | - Boris Guiu
- Radiology department, CHU St Eloi 34000, Montpellier, France
| | - José Ursic-Bedoya
- Liver Transplantation Unit, Department of Hepatology, Montpellier University Hospital, University of Montpellier, 34295, Montpellier, France
| | - Norbert Aillères
- University Federation of Radiation Oncology of Mediterranean Occitanie, Montpellier Cancer Institute (ICM), Univ Montpellier, INSERM U1194 IRCM, Montpellier, France
| | - Pascal Fenoglietto
- University Federation of Radiation Oncology of Mediterranean Occitanie, Montpellier Cancer Institute (ICM), Univ Montpellier, INSERM U1194 IRCM, Montpellier, France
| | - David Azria
- University Federation of Radiation Oncology of Mediterranean Occitanie, Montpellier Cancer Institute (ICM), Univ Montpellier, INSERM U1194 IRCM, Montpellier, France
| | - Olivier Riou
- University Federation of Radiation Oncology of Mediterranean Occitanie, Montpellier Cancer Institute (ICM), Univ Montpellier, INSERM U1194 IRCM, Montpellier, France.
| |
Collapse
|
8
|
Chin RI, Schiff JP, Bommireddy A, Kang KH, Andruska N, Price AT, Green OL, Huang Y, Korenblat K, Parikh PJ, Olsen J, Samson PP, Henke LE, Kim H, Badiyan SN. Clinical outcomes of patients with unresectable primary liver cancer treated with MR-guided stereotactic body radiation Therapy: A Six-Year experience. Clin Transl Radiat Oncol 2023; 41:100627. [PMID: 37441543 PMCID: PMC10334127 DOI: 10.1016/j.ctro.2023.100627] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 03/13/2023] [Accepted: 04/11/2023] [Indexed: 07/15/2023] Open
Abstract
Purpose Magnetic resonance-guided stereotactic body radiation therapy (MRgSBRT) with optional online adaptation has shown promise in delivering ablative doses to unresectable primary liver cancer. However, there remain limited data on the indications for online adaptation as well as dosimetric and longer-term clinical outcomes following MRgSBRT. Methods and Materials Patients with unresectable hepatocellular carcinoma (HCC), cholangiocarcinoma (CCA), and combined biphenotypic hepatocellular-cholangiocarcinoma (cHCC-CCA) who completed MRgSBRT to 50 Gy in 5 fractions between June of 2015 and December of 2021 were analyzed. The necessity of adaptive techniques was evaluated. The cumulative incidence of local progression was evaluated and survival and competing risk analyses were performed. Results Ninety-nine analyzable patients completed MRgSBRT during the study period and 54 % had planning target volumes (PTVs) within 1 cm of the duodenum, small bowel, or stomach at the time of simulation. Online adaptive RT was used in 53 % of patients to correct organ-at-risk constraint violation and/or to improve target coverage. In patients who underwent adaptive RT planning, online replanning resulted in superior target coverage when compared to projected, non-adaptive plans (median coverage ≥ 95 % at 47.5 Gy: 91 % [IQR: 82-96] before adaptation vs 95 % [IQR: 87-99] after adaptation, p < 0.01). The median follow-up for surviving patients was 34.2 months for patients with HCC and 10.1 months for patients with CCA/cHCC-CCA. For all patients, the 2-year cumulative incidence of local progression was 9.8 % (95 % CI: 1.5-18 %) for patients with HCC and 9.0 % (95 % CI: 0.1-18) for patients with CCA/cHCC-CCA. Grade 3 through 5 acute and late clinical gastrointestinal toxicities were observed in < 10 % of the patients. Conclusions MRgSBRT, with the option for online adaptive planning when merited, allows delivery of ablative doses to primary liver tumors with excellent local control with acceptable toxicities. Additional studies evaluating the efficacy and safety of MRgSBRT in the treatment of primary liver cancer are warranted.
Collapse
Affiliation(s)
- Re-I Chin
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis MO, USA
| | - Joshua P. Schiff
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis MO, USA
| | | | - Kylie H. Kang
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis MO, USA
| | - Neal Andruska
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis MO, USA
| | - Alexander T. Price
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis MO, USA
| | - Olga L. Green
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis MO, USA
| | - Yi Huang
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis MO, USA
| | - Kevin Korenblat
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis MO, USA
| | - Parag J Parikh
- Department of Radiation Oncology, Henry Ford Cancer Institute, Detroit, MI, USA
| | - Jefferey Olsen
- Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Pamela P. Samson
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis MO, USA
| | - Lauren E. Henke
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis MO, USA
| | - Hyun Kim
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis MO, USA
| | - Shahed N. Badiyan
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis MO, USA
| |
Collapse
|
9
|
Ladbury C, Amini A, Schwer A, Liu A, Williams T, Lee P. Clinical Applications of Magnetic Resonance-Guided Radiotherapy: A Narrative Review. Cancers (Basel) 2023; 15:cancers15112916. [PMID: 37296879 DOI: 10.3390/cancers15112916] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/20/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Magnetic resonance-guided radiotherapy (MRgRT) represents a promising new image guidance technology for radiation treatment delivery combining an onboard MRI scanner with radiation delivery technology. By enabling real-time low-field or high-field MRI acquisition, it facilitates improved soft tissue delineation, adaptive treatment, and motion management. Now that MRgRT has been available for nearly a decade, research has shown the technology can be used to effectively shrink treatment margins to either decrease toxicity (in breast, prostate cancer, and pancreatic cancer) or facilitate dose-escalation and improved oncologic outcomes (in pancreatic and liver cancer), as well as enabling indications that require clear soft tissue delineation and gating (lung and cardiac ablation). In doing so, the use of MRgRT has the potential to significantly improve the outcomes and quality of life of the patients it treats. The present narrative review aims to describe the rationale for MRgRT, the current and forthcoming state of technology, existing studies, and future directions for the advancement of MRgRT, including associated challenges.
Collapse
Affiliation(s)
- Colton Ladbury
- Department of Radiation Oncology, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Arya Amini
- Department of Radiation Oncology, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Amanda Schwer
- Department of Radiation Oncology, City of Hope Orange County Lennar Foundation Cancer Center, Irvine, CA 92618, USA
| | - An Liu
- Department of Radiation Oncology, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Terence Williams
- Department of Radiation Oncology, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Percy Lee
- Department of Radiation Oncology, City of Hope Orange County Lennar Foundation Cancer Center, Irvine, CA 92618, USA
| |
Collapse
|
10
|
Klaar R, Rabe M, Gaass T, Schneider MJ, Benlala I, Eze C, Corradini S, Belka C, Landry G, Kurz C, Dinkel J. Ventilation and perfusion MRI at a 0.35 T MR-Linac: feasibility and reproducibility study. Radiat Oncol 2023; 18:58. [PMID: 37013541 PMCID: PMC10069152 DOI: 10.1186/s13014-023-02244-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/07/2023] [Indexed: 04/05/2023] Open
Abstract
BACKGROUND Hybrid devices that combine radiation therapy and MR-imaging have been introduced in the clinical routine for the treatment of lung cancer. This opened up not only possibilities in terms of accurate tumor tracking, dose delivery and adapted treatment planning, but also functional lung imaging. The aim of this study was to show the feasibility of Non-uniform Fourier Decomposition (NuFD) MRI at a 0.35 T MR-Linac as a potential treatment response assessment tool, and propose two signal normalization strategies for enhancing the reproducibility of the results. METHODS Ten healthy volunteers (median age 28 ± 8 years, five female, five male) were repeatedly scanned at a 0.35 T MR-Linac using an optimized 2D+t balanced steady-state free precession (bSSFP) sequence for two coronal slice positions. Image series were acquired in normal free breathing with breaks inside and outside the scanner as well as deep and shallow breathing. Ventilation- and perfusion-weighted maps were generated for each image series using NuFD. For intra-volunteer ventilation map reproducibility, a normalization factor was defined based on the linear correlation of the ventilation signal and diaphragm position of each scan as well as the diaphragm motion amplitude of a reference scan. This allowed for the correction of signal dependency on the diaphragm motion amplitude, which varies with breathing patterns. The second strategy, which can be used for ventilation and perfusion, eliminates the dependency on the signal amplitude by normalizing the ventilation/perfusion maps with the average ventilation/perfusion signal within a selected region-of-interest (ROI). The position and size dependency of this ROI was analyzed. To evaluate the performance of both approaches, the normalized ventilation/perfusion-weighted maps were compared and the deviation of the mean ventilation/perfusion signal from the reference was calculated for each scan. Wilcoxon signed-rank tests were performed to test whether the normalization methods can significantly improve the reproducibility of the ventilation/perfusion maps. RESULTS The ventilation- and perfusion-weighted maps generated with the NuFD algorithm demonstrated a mostly homogenous distribution of signal intensity as expected for healthy volunteers regardless of the breathing maneuver and slice position. Evaluation of the ROI's size and position dependency showed small differences in the performance. Applying both normalization strategies improved the reproducibility of the ventilation by reducing the median deviation of all scans to 9.1%, 5.7% and 8.6% for the diaphragm-based, the best and worst performing ROI-based normalization, respectively, compared to 29.5% for the non-normalized scans. The significance of this improvement was confirmed by the Wilcoxon signed rank test with [Formula: see text] at [Formula: see text]. A comparison of the techniques against each other revealed a significant difference in the performance between best ROI-based normalization and worst ROI ([Formula: see text]) and between best ROI-based normalization and scaling factor ([Formula: see text]), but not between scaling factor and worst ROI ([Formula: see text]). Using the ROI-based approach for the perfusion-maps, the uncorrected deviation of 10.2% was reduced to 5.3%, which was shown to be significant ([Formula: see text]). CONCLUSIONS Using NuFD for non-contrast enhanced functional lung MRI at a 0.35 T MR-Linac is feasible and produces plausible ventilation- and perfusion-weighted maps for volunteers without history of chronic pulmonary diseases utilizing different breathing patterns. The reproducibility of the results in repeated scans significantly benefits from the introduction of the two normalization strategies, making NuFD a potential candidate for fast and robust early treatment response assessment of lung cancer patients during MR-guided radiotherapy.
Collapse
Affiliation(s)
- Rabea Klaar
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
- Comprehensive Pneumology Center (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Moritz Rabe
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Thomas Gaass
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
- Comprehensive Pneumology Center (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Moritz J. Schneider
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
- Comprehensive Pneumology Center (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany
- Antaros Medical AB, BioVenture Hub, Mölndal, Sweden
| | - Ilyes Benlala
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
- Comprehensive Pneumology Center (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany
- Univ. Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, F-33600 Pessac, France
- CHU Bordeaux, Service d’Imagerie Thoracique et Cardiovasculaire, Service des Maladies Respiratoires, Service d’Exploration Fonctionnelle Respiratoire, Unité de Pneumologie Pédiatrique, CIC 1401, F-33600 Pessac, France
- INSERM, U1045, Centre de Recherche Cardio-thoracique de Bordeaux, F-33600 Pessac, France
| | - Chukwuka Eze
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Stefanie Corradini
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Claus Belka
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), Munich, Germany
| | - Guillaume Landry
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Christopher Kurz
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Julien Dinkel
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
- Comprehensive Pneumology Center (CPC-M), Member of the German Center for Lung Research (DZL), Munich, Germany
| |
Collapse
|
11
|
Uder L, Nachbar M, Butzer S, Boldt J, Baumeister S, Bitzer M, Königsrainer A, Seufferlein T, Hoffmann R, Gatidis S, Nikolaou K, Zips D, Thorwarth D, Gani C, Boeke S. Local control and patient reported outcomes after online MR guided stereotactic body radiotherapy of liver metastases. Front Oncol 2023; 12:1095633. [PMID: 36727060 PMCID: PMC9885175 DOI: 10.3389/fonc.2022.1095633] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/14/2022] [Indexed: 01/18/2023] Open
Abstract
Introduction Stereotactic body radiotherapy (SBRT) is used to treat liver metastases with the intention of ablation. High local control rates were shown. Magnetic resonance imaging guided radiotherapy (MRgRT) provides the opportunity of a marker-less liver SBRT treatment due to the high soft tissue contrast. We report herein on one of the largest cohorts of patients treated with online MRgRT of liver metastases focusing on oncological outcome, toxicity, patient reported outcome measures (PROMs), quality of life. Material and methods Patients treated for liver metastases with online MR-guided SBRT at a 1,5 T MR-Linac (Unity, Elekta, Crawley, UK) between March 2019 and December 2021 were included in this prospective study. UK SABR guidelines were used for organs at risk constraints. Oncological endpoints such as survival parameters (overall survival, progression-free survival) and local control as well as patient reported acceptance and quality of life data (EORTC QLQ-C30 questionnaire) were assessed. For toxicity scoring the Common Toxicity Criteria Version 5 were used. Results A total of 51 patients with 74 metastases were treated with a median of five fractions. The median applied BED GTV D98 was 84,1 Gy. Median follow-up was 15 months. Local control of the irradiated liver metastasis after 12 months was 89,6%, local control of the liver was 40,3%. Overall survival (OS) after 12 months was 85.1%. Progression free survival (PFS) after 12 months was 22,4%. Local control of the irradiated liver lesion was 100% after three years when a BED ≥100 Gy was reached. The number of treated lesions did not impact local control neither of the treated or of the hepatic control. Patient acceptance of online MRgSBRT was high. There were no acute grade ≥ 3 toxicities. Quality of life data showed no significant difference comparing baseline and follow-up data. Conclusion Online MR guided radiotherapy is a noninvasive, well-tolerated and effective treatment for liver metastases. Further prospective trials with the goal to define patients who actually benefit most from an online adaptive workflow are currently ongoing.
Collapse
Affiliation(s)
- Laura Uder
- Department of Radiation Oncology, University Hospital and Medical Faculty, Eberhard Karls University Tübingen, Tübingen, Germany,*Correspondence: Laura Uder,
| | - Marcel Nachbar
- Section for Biomedical Physics, Department of Radiation Oncology, University Hospital and Medical Faculty, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Sarah Butzer
- Department of Radiation Oncology, University Hospital and Medical Faculty, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Jessica Boldt
- Department of Radiation Oncology, University Hospital and Medical Faculty, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Sabrina Baumeister
- Department of Radiation Oncology, University Hospital and Medical Faculty, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Michael Bitzer
- Department of Internal Medicine I, University Hospital Tübingen, Tübingen, Germany
| | - Alfred Königsrainer
- Department of General, Visceral and Transplant Surgery, University Hospital Tübingen, Tübingen, Germany
| | - Thomas Seufferlein
- Department of Internal Medicine I, Ulm University Hospital Medical Center, Ulm, Germany
| | - Rüdiger Hoffmann
- Department of Diagnostic and Interventional Radiology , University of Tübingen, Tübingen, Germany
| | - Sergios Gatidis
- Department of Diagnostic and Interventional Radiology , University of Tübingen, Tübingen, Germany
| | - Konstantin Nikolaou
- Department of Diagnostic and Interventional Radiology , University of Tübingen, Tübingen, Germany
| | - Daniel Zips
- Department of Radiation Oncology, University Hospital and Medical Faculty, Eberhard Karls University Tübingen, Tübingen, Germany,German Cancer Consortium (DKTK), partner site Tübingen; and German Cancer Research Center (DKFZ), Heidelberg, Germany,Department of Radiation Oncology, Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Daniela Thorwarth
- Section for Biomedical Physics, Department of Radiation Oncology, University Hospital and Medical Faculty, Eberhard Karls University Tübingen, Tübingen, Germany,German Cancer Consortium (DKTK), partner site Tübingen; and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Cihan Gani
- Department of Radiation Oncology, University Hospital and Medical Faculty, Eberhard Karls University Tübingen, Tübingen, Germany,German Cancer Consortium (DKTK), partner site Tübingen; and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Simon Boeke
- Department of Radiation Oncology, University Hospital and Medical Faculty, Eberhard Karls University Tübingen, Tübingen, Germany,German Cancer Consortium (DKTK), partner site Tübingen; and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
12
|
Cao X, Gao XS, Li W, Liu P, Qin SB, Dou YB, Li HZ, Shang S, Gu XB, Ma MW, Qi X, Xie M, Wang D. Contouring lumbosacral plexus nerves with MR neurography and MR/CT deformable registration technique. Front Oncol 2022; 12:818953. [DOI: 10.3389/fonc.2022.818953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 10/11/2022] [Indexed: 11/11/2022] Open
Abstract
PurposeIt is difficult to contour nerve structures with the naked eye due to poor differentiation between the nerve structures with other soft tissues on CT images. Magnetic resonance neurography (MRN) has the advantage in nerve visualization. The purpose of this study is to identify one MRN sequence to better assist the delineation of the lumbosacral plexus (LSP) nerves to assess the radiation dose to the LSP using the magnetic resonance (MR)/CT deformable coregistration technique.MethodsA total of 18 cases of patients with prostate cancer and one volunteer with radiation-induced lumbosacral plexopathy (RILSP) were enrolled. The data of simulation CT images and original treatment plans were collected. Two MRN sequences (Lr_NerveVIEW sequence and Cs_NerveVIEW sequence) were optimized from a published MRN sequence (3D NerveVIEW sequence). The nerve visualization ability of the Lr_NerveVIEW sequence and the Cs_NerveVIEW sequence was evaluated via a four-point nerve visualization score (NVS) scale in the first 10 patients enrolled to determine the better MRN sequence for assisting nerve contouring. Deformable registration was applied to the selected MRN sequence and simulation CT images to get fused MR/CT images, on which the LSP was delineated. The contouring of the LSP did not alter treatment planning. The dosimetric data of the LSP nerve were collected from the dose–volume histogram in the original treatment plans. The data of the maximal dose (Dmax) and the location of the maximal radiation point received by the LSP structures were collected.ResultsThe Cs_NerveVIEW sequence gained lower NVS scores than the Lr_NerveVIEW sequence (Z=-2.887, p=0.004). The LSP structures were successfully created in 18 patients and one volunteer with MRN (Lr_NerveVIEW)/CT deformable registration techniques, and the LSP structures conformed with the anatomic distribution. In the patient cohort, the percentage of the LSP receiving doses exceeding 50, 55, and 60 Gy was 68% (12/18), 33% (6/18), and 17% (3/18), respectively. For the volunteer with RILSP, the maximum irradiation dose to his LSP nerves was 69 Gy.ConclusionThe Lr_NerveVIEW MRN sequence performed better than the Cs_NerveVIEW sequence in nerve visualization. The dose in the LSP needs to be measured to understand the potential impact on treatment-induced neuropathy.
Collapse
|
13
|
Delpon G, Barateau A, Beneux A, Bessières I, Latorzeff I, Welmant J, Tallet A. [What do we need to deliver "online" adapted radiotherapy treatment plans?]. Cancer Radiother 2022; 26:794-802. [PMID: 36028418 DOI: 10.1016/j.canrad.2022.06.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 11/17/2022]
Abstract
During the joint SFRO/SFPM session of the 2019 congress, a state of the art of adaptive radiotherapy announced a strong impact in our clinical practice, in particular with the availability of treatment devices coupled to an MRI system. Three years later, it seems relevant to take stock of adaptive radiotherapy in practice, and especially the "online" strategy because it is indeed more and more accessible with recent hardware and software developments, such as coupled accelerators to a three-dimensional imaging device and algorithms based on artificial intelligence. However, the deployment of this promising strategy is complex because it contracts the usual time scale and upsets the usual organizations. So what do we need to deliver adapted treatment plans with an "online" strategy?
Collapse
Affiliation(s)
- G Delpon
- Institut de cancérologie de l'Ouest, Saint-Herblain et IMT Atlantique, Nantes université, CNRS/IN2P3, Subatech, Nantes, France.
| | - A Barateau
- Université Rennes, CLCC Eugène-Marquis, Inserm, LTSI-UMR 1099, Rennes, France
| | - A Beneux
- Hospices Civils de Lyon, Lyon, France
| | - I Bessières
- Centre Georges-François Leclerc, Dijon, France
| | | | - J Welmant
- Institut du cancer de Montpellier, Montpellier, France
| | - A Tallet
- Institut Paoli-Calmettes, Marseille, France
| |
Collapse
|
14
|
Schiff JP, Stowe HB, Price A, Laugeman E, Hatscher C, Hugo GD, Badiyan SN, Kim H, Robinson CG, Henke LE. In Silico Trial of Computed Tomography-Guided Stereotactic Adaptive Radiotherapy (CT-STAR) for the Treatment of Abdominal Oligometastases. Int J Radiat Oncol Biol Phys 2022; 114:1022-1031. [PMID: 35768023 DOI: 10.1016/j.ijrobp.2022.06.078] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/25/2022] [Accepted: 06/13/2022] [Indexed: 11/17/2022]
Abstract
PURPOSE We conducted a prospective, in silico clinical imaging study (NCTXXXX) to evaluate the feasibility of cone-beam computed tomography-guided stereotactic adaptive radiotherapy (CT-STAR) for the treatment of abdominal oligometastases. We hypothesized that CT-STAR produces improved dosimetry compared to non-adapted CT-stereotactic body radiotherapy (SBRT). METHODS/MATERIALS Eight patients receiving SBRT for abdominal oligometastatic disease received five additional kV cone beam CTs (CBCTs) on the ETHOS system. These additional CBCTs were used for imaging during an emulator treatment session. Initial plans were created based on their simulation (PI) and emulated adaptive plans (PA) were based on anatomy-of-the-day. The prescription was 50 Gy/5 fractions. Organ-at-risk (OAR) constraints were prioritized over planning target volume coverage under a strict isotoxicity approach. The PI was applied to the patient's anatomy-of-the-day and compared to the re-optimized PA using dose volume histogram metrics, with selection of the superior plan. Feasibility was defined as completion of the adaptive workflow and compliance with strict OAR constraints in ≥80% of fractions. Fractions were performed under time pressures by a physician and physicist to mimic the adaptive process. RESULTS CT-STAR was feasible, with successful workflow completion in 38/40 (95%) fractions. PI application to daily anatomy created OAR constraint violations in 30/40 (75%) fractions. There were 8 stomach, 18 duodenum, 16 small bowel, and 11 large bowel PI OAR constraint violations. In contrast, OAR violations occurred in 2/40 (5%) PA (both small bowel violations, both improved from the PI). CT-STAR also improved GTV V100 and D95 coverage in 25/40 (63%) and 20/40 (50%) fractions, respectively. 0/40 (0%) fractions were deemed non-feasible due to poor image quality and/or inability to delineate structures. Adaptation time per fraction was a median of 22.59 minutes (10.97-47.23). CONCLUSIONS CT-STAR resolved OAR hard constraint violations and/or improved target coverage in silico when compared to non-adapted CT-guided SBRT for the ablation of abdominal oligometastatic disease. While limitations of this study include its small sample size and in silico design, the consistently high quality CBCT images captured and comparable timing metrics to prior adaptive studies suggest that CT- STAR is a viable treatment paradigm for the ablation of abdominal oligometastatic disease. Clinical trials are in development to further evaluate CT-STAR in the clinic.
Collapse
Affiliation(s)
- Joshua P Schiff
- Washington University School of Medicine in St. Louis, Department of Radiation Oncology, St. Louis, Missouri, USA.
| | - Hayley B Stowe
- Washington University School of Medicine in St. Louis, Department of Radiation Oncology, St. Louis, Missouri, USA
| | - Alex Price
- Washington University School of Medicine in St. Louis, Department of Radiation Oncology, St. Louis, Missouri, USA
| | - Eric Laugeman
- Washington University School of Medicine in St. Louis, Department of Radiation Oncology, St. Louis, Missouri, USA
| | - Casey Hatscher
- Washington University School of Medicine in St. Louis, Department of Radiation Oncology, St. Louis, Missouri, USA
| | - Geoffrey D Hugo
- Washington University School of Medicine in St. Louis, Department of Radiation Oncology, St. Louis, Missouri, USA
| | - Shahed N Badiyan
- Washington University School of Medicine in St. Louis, Department of Radiation Oncology, St. Louis, Missouri, USA
| | - Hyun Kim
- Washington University School of Medicine in St. Louis, Department of Radiation Oncology, St. Louis, Missouri, USA
| | - Clifford G Robinson
- Washington University School of Medicine in St. Louis, Department of Radiation Oncology, St. Louis, Missouri, USA
| | - Lauren E Henke
- Washington University School of Medicine in St. Louis, Department of Radiation Oncology, St. Louis, Missouri, USA.
| |
Collapse
|
15
|
Yang DD, Brennan VS, Huynh E, Williams CL, Han Z, Ampofo N, Vastola ME, Sangal P, Singer L, Mak RH, Leeman JE, Cagney DN, Huynh MA. Stereotactic Magnetic Resonance Guided Adaptive Radiation Therapy (SMART) for Abdominopelvic Oligometastases. Int J Radiat Oncol Biol Phys 2022; 114:941-949. [DOI: 10.1016/j.ijrobp.2022.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/06/2022] [Accepted: 05/10/2022] [Indexed: 10/18/2022]
|
16
|
Kutuk T, Herrera R, Mustafayev TZ, Gungor G, Ugurluer G, Atalar B, Kotecha R, Hall MD, Rubens M, Mittauer KE, Contreras JA, McCulloch J, Kalman NS, Alvarez D, Romaguera T, Gutierrez AN, Garcia J, Kaiser A, Mehta MP, Ozyar E, Chuong MD. Multi-Institutional Outcomes of Stereotactic Magnetic Resonance Image-Guided Adaptive Radiation Therapy (SMART) with a Median Biologically Effective Dose of 100 Gy10 for Non-Bone Oligometastases. Adv Radiat Oncol 2022; 7:100978. [PMID: 35647412 PMCID: PMC9130084 DOI: 10.1016/j.adro.2022.100978] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/16/2022] [Indexed: 12/04/2022] Open
Abstract
Purpose Randomized data show a survival benefit of stereotactic ablative body radiation therapy in selected patients with oligometastases (OM). Stereotactic magnetic resonance guided adaptive radiation therapy (SMART) may facilitate the delivery of ablative dose for OM lesions, especially those adjacent to historically dose-limiting organs at risk, where conventional approaches preclude ablative dosing. Methods and Materials The RSSearch Registry was queried for OM patients (1-5 metastatic lesions) treated with SMART. Freedom from local progression (FFLP), freedom from distant progression (FFDP), progression-free survival (PFS), and overall survival (LS) were estimated using the Kaplan-Meier method. FFLP was evaluated using RECIST 1.1 criteria. Toxicity was evaluated using Common Terminology Criteria for Adverse Events version 4 criteria. Results Ninety-six patients with 108 OM lesions were treated on a 0.35 T MR Linac at 2 institutions between 2018 and 2020. SMART was delivered to mostly abdominal or pelvic lymph nodes (48.1%), lung (18.5%), liver and intrahepatic bile ducts (16.7%), and adrenal gland (11.1%). The median prescribed radiation therapy dose was 48.5 Gy (range, 30-60 Gy) in 5 fractions (range, 3-15). The median biologically effective dose corrected using an alpha/beta value of 10 was 100 Gy10 (range, 48-180). No acute or late grade 3+ toxicities were observed with median 10 months (range, 3-25) follow-up. Estimated 1-year FFLP, FFDP, PFS, and OS were 92.3%, 41.1%, 39.3%, and 89.6%, respectively. Median FFDP and PFS were 8.9 months (95% confidence interval, 5.2-12.6 months) and 7.6 months (95% confidence interval, 4.5-10.6 months), respectively. Conclusions To our knowledge, this represents the largest analysis of SMART using ablative dosing for non-bone OM. A median prescribed biologically effective dose of 100 Gy10 resulted in excellent early FFLP and no significant toxicity, likely facilitated by continuous intrafraction MR visualization, breath hold delivery, and online adaptive replanning. Additional prospective evaluation of dose-escalated SMART for OM is warranted.
Collapse
|
17
|
Pham TT, Whelan B, Oborn BM, Delaney GP, Vinod S, Brighi C, Barton M, Keall P. Magnetic resonance imaging (MRI) guided proton therapy: A review of the clinical challenges, potential benefits and pathway to implementation. Radiother Oncol 2022; 170:37-47. [DOI: 10.1016/j.radonc.2022.02.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 02/09/2022] [Accepted: 02/25/2022] [Indexed: 10/18/2022]
|