1
|
Zheng L, Li Z, Wang R, Wang J, Liu B, Wang Y, Qin S, Yang J, Liu J. A novel photosensitizer DTPP-mediated photodynamic therapy induces oxidative stress and apoptosis through mitochondrial pathways in LA795 cells. Photodiagnosis Photodyn Ther 2024; 45:103894. [PMID: 37984526 DOI: 10.1016/j.pdpdt.2023.103894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/12/2023] [Accepted: 11/13/2023] [Indexed: 11/22/2023]
Abstract
OBJECTIVE Investigation of the effects of 5-5- (4-N, N-diacetoxylphenyl)-10,15,20- tetraphenylporphyrin (DTPP)-mediated photodynamic therapy (PDT) on oxidative stress and mitochondrial apoptosis in LA795 lung cancer cells. METHODS Proteomics was used to identify differentially expressed proteins after PDT treatment. The apoptosis rate was determined by flow cytometry. Morphologic observation of apoptosis, reactive oxygen species (ROS) levels, antioxidant indices, nitric oxide (NO) content, mitochondrial membrane potential (MMP), and Caspase- 9 and Caspase-3 were determined by assays; apoptosis-related protein levels of Cytochrome (Cyto) c, Bcl- 2, Bax were determined by Western blot. RESULTS Typical apoptosis morphology of LA795 cells was observed after PDT. The cells were mainly in the apoptosis death pathway with high cell apoptosis rates. The proteomics study observed the apoptosis-associated proteins, oxidative stress proteins, antioxidant proteins, the cytoskeletal protein and mitochondrial dysfunction in LA 795 cells. Additional results indicated that PDT could increase levels of ROS, NO; decrease glutathione (GSH) content and MMP; upregulated Bax, Cyto c, and Caspase-3 protein expression, inhibited Bcl-2 protein expression, and further induced cell apoptosis. The effect of DTPP-PDT on lung cancer was: first, mitochondrial Cyto c is released into the cytoplasm, then Caspase- 9 / Caspase-3 was activated, Bcl-2 decreased/Bax increased, initiating cell apoptosis. CONCLUSION DTPP-PDT could induce oxidative stress and apoptosis via mitochondrial pathways in LA795 cells.
Collapse
Affiliation(s)
- Liqing Zheng
- Hebei Key Laboratory of Neuropharmacology, Department of Pharmacy, Hebei North University, Zhangjiakou 075000, China
| | - Ze Li
- Hebei Key Laboratory of Neuropharmacology, Department of Pharmacy, Hebei North University, Zhangjiakou 075000, China
| | - Ruibo Wang
- Hebei Key Laboratory of Neuropharmacology, Department of Pharmacy, Hebei North University, Zhangjiakou 075000, China
| | - Jing Wang
- Hebei North University Library Zhangjiakou 075000, China
| | - Bochao Liu
- Tianjin Shuangling Middle School, Tianjin 300041 China
| | - Yiying Wang
- Hebei Key Laboratory of Neuropharmacology, Department of Pharmacy, Hebei North University, Zhangjiakou 075000, China
| | - Shihao Qin
- Hebei Key Laboratory of Neuropharmacology, Department of Pharmacy, Hebei North University, Zhangjiakou 075000, China
| | - Junying Yang
- Hebei Key Laboratory of Neuropharmacology, Department of Pharmacy, Hebei North University, Zhangjiakou 075000, China
| | - Jianhua Liu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Hebei North University, Zhangjiakou 075000, China.
| |
Collapse
|
2
|
Kallenbach J, Atri Roozbahani G, Heidari Horestani M, Baniahmad A. Distinct mechanisms mediating therapy-induced cellular senescence in prostate cancer. Cell Biosci 2022; 12:200. [PMID: 36522745 PMCID: PMC9753376 DOI: 10.1186/s13578-022-00941-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Prostate cancer (PCa) is an age-related malignancy in men with a high incidence rate. PCa treatments face many obstacles due to cancer cell resistance and many bypassing mechanisms to escape therapy. According to the intricacy of PCa, many standard therapies are being used depending on PCa stages including radical prostatectomy, radiation therapy, androgen receptor (AR) targeted therapy (androgen deprivation therapy, supraphysiological androgen, and AR antagonists) and chemotherapy. Most of the aforementioned therapies have been implicated to induce cellular senescence. Cellular senescence is defined as a stable cell cycle arrest in the G1 phase and is one of the mechanisms that prevent cancer proliferation. RESULTS In this review, we provide and analyze different mechanisms of therapy-induced senescence (TIS) in PCa and their effects on the tumor. Interestingly, it seems that different molecular pathways are used by cancer cells for TIS. Understanding the complexity and underlying mechanisms of cellular senescence is very critical due to its role in tumorigenesis. The most prevalent analyzed pathways in PCa as TIS are the p53/p21WAF1/CIP1, the p15INK4B/p16INK4A/pRb/E2F/Cyclin D, the ROS/ERK, p27Kip1/CDK/pRb, and the p27Kip1/Skp2/C/EBP β signaling. Despite growth inhibition, senescent cells are highly metabolically active. In addition, their secretome, which is termed senescence-associated secretory phenotype (SASP), affects within the tumor microenvironment neighboring non-tumor and tumor cells and thereby may regulate the growth of tumors. Induction of cancer cell senescence is therefore a double-edged sword that can lead to reduced or enhanced tumor growth. CONCLUSION Thus, dependent on the type of senescence inducer and the specific senescence-induced cellular pathway, it is useful to develop pathway-specific senolytic compounds to specifically targeting senescent cells in order to evict senescent cells and thereby to reduce SASP side effects.
Collapse
Affiliation(s)
- Julia Kallenbach
- grid.9613.d0000 0001 1939 2794Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Am Klinikum 1, 07740 Jena, Germany
| | - Golnaz Atri Roozbahani
- grid.9613.d0000 0001 1939 2794Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Am Klinikum 1, 07740 Jena, Germany
| | - Mehdi Heidari Horestani
- grid.9613.d0000 0001 1939 2794Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Am Klinikum 1, 07740 Jena, Germany
| | - Aria Baniahmad
- grid.9613.d0000 0001 1939 2794Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Am Klinikum 1, 07740 Jena, Germany
| |
Collapse
|
3
|
Effect of intermittency factor on singlet oxygen and PGE2 formation in azulene-mediated photodynamic therapy: A preliminary study. Biochem Biophys Rep 2022; 31:101290. [PMID: 35677631 PMCID: PMC9168118 DOI: 10.1016/j.bbrep.2022.101290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 11/22/2022] Open
Abstract
In photodynamic therapy, intermittent irradiation modes that incorporate an interval between pulses are believed to decrease the effect of hypoxia by permitting an interval of re-oxygenation. The effect of the irradiation intermittency factor (the ratio of the irradiation pulse time to the total irradiation time) on singlet oxygen formation and inflammatory cytokine production was examined using azulene as a photosensitizer. Effects of difference intermittency factor on singlet oxygen formation and inflammatory cytokine were examined. Azulene solutions (1/10 μM) were irradiated with a 638-nm 500 mW diode laser in fractionation (intermittency factor of 5 or 9) or continuous mode using 50 mW/cm2 at 4 or 8 J/cm2. Singlet oxygen measurement was performed using a dimethyl anthracene probe. Peripheral blood mononuclear cells (PBMC) were stimulated by 10 ng/ml rhTNF-α for 6 h, before addition of 1 and 10 μM azulene solutions and irradiation. PGE2 measurement was undertaken using a human PGE2 ELISA kit. Kruskal-Wallis with Dunn Bonferroni test was used for statistical analyses at p < 0.05.Irradiation of 1 μM azulene+4 J/cm2+intermittency factor of 9 increased singlet oxygen 3-fold (p < 0.0001). Irradiation of 10 μM azulene at either 4 J/cm2+intermittency of 9 or 8 J/cm2+intermittency factor of 5 reduced PGE2 expression in PBMCs to non-inflamed levels. Thus, at 50 mW/cm2, 10 μM azulene-mediated photodynamic therapy with a high intermittency factor and a low energy density generated sufficient singlet oxygen to suppress PGE2 in Inflamed PBMCs. Different intermittency factors can stimulate ROS formation differently. Relative high intermittency factor with azulene induces high ROS formation. Relative high intermittency factor with low energy density inhibits PGE2 production. Azulene-based photodynamic therapy suppresses inflammation.
Collapse
|
4
|
Yang YY, Liu J, Liu YT, Ong HH, Chen QM, Chen CB, Thong M, Xu X, Zhou SZ, Qiu QH, Wang DY. Moderate Dose Irradiation Induces DNA Damage and Impairments of Barrier and Host Defense in Nasal Epithelial Cells in vitro. J Inflamm Res 2022; 15:3661-3675. [PMID: 35783248 PMCID: PMC9242583 DOI: 10.2147/jir.s369385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/16/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose Radiotherapy (RT) is the mainstay treatment for head and neck cancers. However, chronic and recurrent upper respiratory tract infections and inflammation have been commonly reported in patients post-RT. The underlying mechanisms remain poorly understood. Method and Materials We used a well-established model of human nasal epithelial cells (hNECs) that forms a pseudostratified layer in the air-liquid interface (ALI) and exposed it to single or repeated moderate dose γ-irradiation (1Gy). We assessed the DNA damage and evaluated the biological properties of hNECs at different time points post-RT. Further, we explored the host immunity alterations in irradiated hNECs with polyinosinic-polycytidylic acid sodium salt (poly [I:C]) and lipopolysaccharides (LPS). Results IR induced DNA double strand breaks (DSBs) and triggered DNA damage response in hNECs. Repeated IR significantly reduced basal cell proliferation with low expression of p63/KRT5 and Ki67, induced cilia loss and inhibited mucus secretion. In addition, IR decreased ZO-1 expression and caused a significant decline in the transepithelial electrical resistance (TEER). Moreover, hyperreactive response against pathogen invasion and disrupted epithelial host defense can be observed in hNECs exposed to repeated IR. Conclusion Our study suggests that IR induced prolonged structural and functional impairments of hNECs may contribute to patients post-RT with increased risk of developing chronic and recurrent upper respiratory tract infection and inflammation.
Collapse
Affiliation(s)
- Yue-Ying Yang
- Department of Otolaryngology-Head and Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
- Department of Otolaryngology, Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jing Liu
- Department of Otolaryngology, Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Yi-Tong Liu
- Department of Otolaryngology-Head and Neck Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, People’s Republic of China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, People’s Republic of China
| | - Hsiao-Hui Ong
- Department of Otolaryngology, Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Qian-Min Chen
- Department of Otolaryngology, Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, People’s Republic of China
| | - Ce-Belle Chen
- Centre for Ion Beam Applications, Department of Physics, National University of Singapore, Singapore
| | - Mark Thong
- Department of Otolaryngology-Head and Neck Surgery, National University Hospital, National University Health System, Singapore
| | - Xinni Xu
- Department of Otolaryngology-Head and Neck Surgery, National University Hospital, National University Health System, Singapore
| | - Sui-Zi Zhou
- Department of Otolaryngology-Head and Neck Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, People’s Republic of China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, People’s Republic of China
| | - Qian-Hui Qiu
- Department of Otolaryngology-Head and Neck Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, People’s Republic of China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, People’s Republic of China
- Correspondence: Qian-Hui Qiu, Department of Otolaryngology-Head and Neck Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, No. 106 Zhongshan Road II, Guangzhou, 510080, People’s Republic of China, Tel +86 20 83827812, Email
| | - De-Yun Wang
- Department of Otolaryngology, Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- De-Yun Wang, Department of Otolaryngology, Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, NUHS Tower Block, 1E Kent Ridge Road, 119228, Singapore, Tel + 65 6772 5373/5370/5371, Fax +65 6775 3820, Email
| |
Collapse
|
5
|
Ashrafizadeh M, Paskeh MDA, Mirzaei S, Gholami MH, Zarrabi A, Hashemi F, Hushmandi K, Hashemi M, Nabavi N, Crea F, Ren J, Klionsky DJ, Kumar AP, Wang Y. Targeting autophagy in prostate cancer: preclinical and clinical evidence for therapeutic response. J Exp Clin Cancer Res 2022; 41:105. [PMID: 35317831 PMCID: PMC8939209 DOI: 10.1186/s13046-022-02293-6] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 02/16/2022] [Indexed: 02/08/2023] Open
Abstract
Prostate cancer is a leading cause of death worldwide and new estimates revealed prostate cancer as the leading cause of death in men in 2021. Therefore, new strategies are pertinent in the treatment of this malignant disease. Macroautophagy/autophagy is a “self-degradation” mechanism capable of facilitating the turnover of long-lived and toxic macromolecules and organelles. Recently, attention has been drawn towards the role of autophagy in cancer and how its modulation provides effective cancer therapy. In the present review, we provide a mechanistic discussion of autophagy in prostate cancer. Autophagy can promote/inhibit proliferation and survival of prostate cancer cells. Besides, metastasis of prostate cancer cells is affected (via induction and inhibition) by autophagy. Autophagy can affect the response of prostate cancer cells to therapy such as chemotherapy and radiotherapy, given the close association between autophagy and apoptosis. Increasing evidence has demonstrated that upstream mediators such as AMPK, non-coding RNAs, KLF5, MTOR and others regulate autophagy in prostate cancer. Anti-tumor compounds, for instance phytochemicals, dually inhibit or induce autophagy in prostate cancer therapy. For improving prostate cancer therapy, nanotherapeutics such as chitosan nanoparticles have been developed. With respect to the context-dependent role of autophagy in prostate cancer, genetic tools such as siRNA and CRISPR-Cas9 can be utilized for targeting autophagic genes. Finally, these findings can be translated into preclinical and clinical studies to improve survival and prognosis of prostate cancer patients. • Prostate cancer is among the leading causes of death in men where targeting autophagy is of importance in treatment; • Autophagy governs proliferation and metastasis capacity of prostate cancer cells; • Autophagy modulation is of interest in improving the therapeutic response of prostate cancer cells; • Molecular pathways, especially involving non-coding RNAs, regulate autophagy in prostate cancer; • Autophagy possesses both diagnostic and prognostic roles in prostate cancer, with promises for clinical application.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956, Istanbul, Turkey.
| | - Mahshid Deldar Abad Paskeh
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.,Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | | | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, 34396, Istanbul, Turkey
| | - Farid Hashemi
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, 1417466191, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine University of Tehran, Tehran, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.,Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Noushin Nabavi
- Department of Urological Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada
| | - Francesco Crea
- Cancer Research Group-School of Life Health and Chemical Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK
| | - Jun Ren
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA.,Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Daniel J Klionsky
- Life Sciences Institute & Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Alan Prem Kumar
- Cancer Science Institute of Singapore and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore. .,NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | - Yuzhuo Wang
- Department of Urological Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada.
| |
Collapse
|
6
|
Pizzuti VJ, Viswanath D, Torregrosa-Allen SE, Currie MP, Elzey BD, Won YY. Bilirubin-Coated Radioluminescent Particles for Radiation-Induced Photodynamic Therapy. ACS APPLIED BIO MATERIALS 2020; 3:4858-4872. [PMID: 35021730 DOI: 10.1021/acsabm.0c00354] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Vincenzo J. Pizzuti
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Dhushyanth Viswanath
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Sandra E. Torregrosa-Allen
- Purdue University Center for Cancer Research, West Lafayette, Indiana 47906, United States
- Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana 47907, United States
| | - Melanie P. Currie
- Purdue University Center for Cancer Research, West Lafayette, Indiana 47906, United States
- Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana 47907, United States
| | - Bennett D. Elzey
- Purdue University Center for Cancer Research, West Lafayette, Indiana 47906, United States
- Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana 47907, United States
| | - You-Yeon Won
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue University Center for Cancer Research, West Lafayette, Indiana 47906, United States
| |
Collapse
|
7
|
Packer JR, Hirst AM, Droop AP, Adamson R, Simms MS, Mann VM, Frame FM, O'Connell D, Maitland NJ. Notch signalling is a potential resistance mechanism of progenitor cells within patient-derived prostate cultures following ROS-inducing treatments. FEBS Lett 2020; 594:209-226. [PMID: 31468514 PMCID: PMC7003772 DOI: 10.1002/1873-3468.13589] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/02/2019] [Accepted: 08/08/2019] [Indexed: 12/16/2022]
Abstract
Low Temperature Plasma (LTP) generates reactive oxygen and nitrogen species, causing cell death, similarly to radiation. Radiation resistance results in tumour recurrence, however mechanisms of LTP resistance are unknown. LTP was applied to patient-derived prostate epithelial cells and gene expression assessed. A typical global oxidative response (AP-1 and Nrf2 signalling) was induced, whereas Notch signalling was activated exclusively in progenitor cells. Notch inhibition induced expression of prostatic acid phosphatase (PAP), a marker of prostate epithelial cell differentiation, whilst reducing colony forming ability and preventing tumour formation. Therefore, if LTP is to be progressed as a novel treatment for prostate cancer, combination treatments should be considered in the context of cellular heterogeneity and existence of cell type-specific resistance mechanisms.
Collapse
Affiliation(s)
- John R. Packer
- Cancer Research UnitDepartment of BiologyUniversity of YorkUK
| | - Adam M. Hirst
- Cancer Research UnitDepartment of BiologyUniversity of YorkUK
- Department of PhysicsYork Plasma InstituteUniversity of YorkUK
| | | | - Rachel Adamson
- Cancer Research UnitDepartment of BiologyUniversity of YorkUK
| | - Matthew S. Simms
- Department of UrologyCastle Hill Hospital (Hull and East Yorkshire Hospitals NHS Trust)CottinghamUK
| | - Vincent M. Mann
- Cancer Research UnitDepartment of BiologyUniversity of YorkUK
| | - Fiona M. Frame
- Cancer Research UnitDepartment of BiologyUniversity of YorkUK
| | | | | |
Collapse
|
8
|
Jiao L, Zhang X, Cui J, Peng X, Song F. Three-in-One Functional Silica Nanocarrier with Singlet Oxygen Generation, Storage/Release, and Self-Monitoring for Enhanced Fractional Photodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2019; 11:25750-25757. [PMID: 31245990 DOI: 10.1021/acsami.9b08371] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
At present, the intermittent photodynamic therapy (fractional PDT) for overcoming tumor hypoxia still have their own defects, such as irradiation-dependence and rapid metabolism of organic photosensitizers. Therefore, it is still a really formidable challenge to achieve efficient fractional PDT. Herein, a three-in-one functional silica nanocarrier (FSNC) with singlet oxygen (1O2) generating unit (protoporphyrin IX derivative), 1O2 storage/release unit (2-pyridone derivative), and 1O2 self-monitoring unit (cyanine derivative) was prepared by reverse microemulsion method. Also, it could be efficiently internalized in the HeLa cells because of an appropriate particle size (∼44.8 nm). In the presence of light, the endoperoxide is formed to achieve 1O2 storage together with 1O2 generated by 1O2 generating unit for traditional PDT. In the absence of light, the endoperoxide produces 1O2 through cycloreversion for continuous PDT. As a result, the fractional PDT process of the FSNC on the HeLa cells performed a higher phototoxicity than traditional photosensitizer protoporphyrin IX. Furthermore, this real-time release behavior of 1O2 can be visually captured by confocal laser scanning microscope via monitoring fluorescent bleaching of 1O2 self-monitoring unit. Therefore, this fluorescent imaging-guided fractional PDT process could effectively enhance the PDT effect compared with traditional PDT.
Collapse
Affiliation(s)
- Long Jiao
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , No. 2 Linggong Road, High-tech District , Dalian 116024 , P. R. China
| | - Xiaoye Zhang
- Marine Engineering College , Dalian Maritime University , No. 1 Linghai Road, High-tech District , Dalian 116026 , P. R. China
| | - Jingnan Cui
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , No. 2 Linggong Road, High-tech District , Dalian 116024 , P. R. China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , No. 2 Linggong Road, High-tech District , Dalian 116024 , P. R. China
| | - Fengling Song
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , No. 2 Linggong Road, High-tech District , Dalian 116024 , P. R. China
- Institute of Molecular Sciences and Engineering , Shandong University , Qingdao 266237 , P. R. China
| |
Collapse
|
9
|
Xu J, Patel NH, Saleh T, Cudjoe EK, Alotaibi M, Wu Y, Lima S, Hawkridge AM, Gewirtz DA. Differential Radiation Sensitivity in p53 Wild-Type and p53-Deficient Tumor Cells Associated with Senescence but not Apoptosis or (Nonprotective) Autophagy. Radiat Res 2018; 190:538-557. [PMID: 30132722 DOI: 10.1667/rr15099.1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Studies of radiation interaction with tumor cells often focus on apoptosis as an end point; however, clinically relevant doses of radiation also promote autophagy and senescence. Moreover, functional p53 has frequently been implicated in contributing to radiation sensitivity through the facilitation of apoptosis. To address the involvement of apoptosis, autophagy, senescence and p53 status in the response to radiation, the current studies utilized isogenic H460 non-small cell lung cancer cells that were either p53-wild type (H460wt) or null (H460crp53). As anticipated, radiosensitivity was higher in the H460wt cells than in the H460crp53 cell line; however, this differential radiation sensitivity did not appear to be a consequence of apoptosis. Furthermore, radiosensitivity did not appear to be reduced in association with the promotion of autophagy, as autophagy was markedly higher in the H460wt cells. Despite radiosensitization by chloroquine in the H460wt cells, the radiation-induced autophagy proved to be essentially nonprotective, as inhibition of autophagy via 3-methyl adenine (3-MA), bafilomycin A1 or ATG5 silencing failed to alter radiation sensitivity or promote apoptosis in either the H460wt or H460crp53 cells. Radiosensitivity appeared to be most closely associated with senescence, which occurred earlier and to a greater extent in the H460wt cells. This finding is consistent with the in-depth proteomics analysis on the secretomes from the H460wt and H460crp53 cells (with or without radiation exposure) that showed no significant association with radioresistance-related proteins, whereas several senescence-associated secretory phenotype (SASP) factors were upregulated in H460wt cells relative to H460crp53 cells. Taken together, these findings indicate that senescence, rather than apoptosis, plays a central role in determination of radiosensitivity; furthermore, autophagy is likely to have minimal influence on radiosensitivity under conditions where autophagy takes the nonprotective form.
Collapse
Affiliation(s)
- Jingwen Xu
- a Department of Pharmacology and Toxicology, Shenyang Pharmaceutical University, Liaoning, China
| | - Nipa H Patel
- b Department of Pharmacology and Toxicology and Medicine, Virginia Commonwealth University, Richmond, Virginia.,e Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Tareq Saleh
- b Department of Pharmacology and Toxicology and Medicine, Virginia Commonwealth University, Richmond, Virginia.,e Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Emmanuel K Cudjoe
- c Department of Pharmacotherapy and Outcome Sciences and Pharmaceutics, Virginia Commonwealth University, Richmond, Virginia
| | - Moureq Alotaibi
- f Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Yingliang Wu
- a Department of Pharmacology and Toxicology, Shenyang Pharmaceutical University, Liaoning, China
| | - Santiago Lima
- d Department of Biology, Virginia Commonwealth University, Richmond, Virginia.,e Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Adam M Hawkridge
- c Department of Pharmacotherapy and Outcome Sciences and Pharmaceutics, Virginia Commonwealth University, Richmond, Virginia.,e Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - David A Gewirtz
- b Department of Pharmacology and Toxicology and Medicine, Virginia Commonwealth University, Richmond, Virginia.,e Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
10
|
2-Pyridone-functionalized Aza-BODIPY photosensitizer for imaging-guided sustainable phototherapy. Biomaterials 2018; 183:1-9. [PMID: 30142531 DOI: 10.1016/j.biomaterials.2018.08.034] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 08/09/2018] [Accepted: 08/17/2018] [Indexed: 01/10/2023]
Abstract
To overcome irradiation-dependence of cancer phototherapy, a near infrared aza-BODIPY-based photothermogenic photosensitizer BDY with 2-Pyridone group has been synthesized for imaging-guided photothermal synergistic sustainable photodynamic therapy. Multifunctional water-soluble BDY nanoparticles (NPs), with high photothermal conversion efficiency of 35.7% and excellent singlet oxygen (1O2) generation ability, are prepared by self-assembling. The reversible transformation between 2-pyridone moiety and its endoperoxide form endows BDY with continuous 1O2 generation ability under illumination and non-illumination conditions. Simultaneously, BDY NPs exhibit excellent tumor targeting properties by enhanced permeability and retention (EPR) effect and photoacoustic imaging (PAI) ability. Furthermore, the photothermal assisted sustainable photodynamic therapy can significantly inhibit tumor growth (93.4% inhibition) with almost no side effects by intermittent laser illumination. The finding highlights that this photothermal synergistic sustainable phototherapy presents great potential for clinical applications.
Collapse
|
11
|
Yu W, Zhu J, Wang Y, Wang J, Fang W, Xia K, Shao J, Wu M, Liu B, Liang C, Ye C, Tao H. A review and outlook in the treatment of osteosarcoma and other deep tumors with photodynamic therapy: from basic to deep. Oncotarget 2018; 8:39833-39848. [PMID: 28418855 PMCID: PMC5503657 DOI: 10.18632/oncotarget.16243] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 02/07/2017] [Indexed: 12/20/2022] Open
Abstract
Photodynamic therapy, one of the most promising minimally invasive treatments, has received increasing focus in tumor therapy research, which has been widely applied in treating superficial tumors. Three basic factors - photosensitizer, the light source, and oxidative stress - are responsible for tumor cell cytotoxicity. However, due to insufficient luminous flux and peripheral tissue damage, the utilization of photodynamic therapy is facing a huge limitation in deep tumor therapy. Osteosarcoma is the typical deep tumor, which is the most commonly occurring malignancy in children and adolescents. Despite developments in surgery, high risks of the amputation still threatens the health of osteosarcoma patients. In this review, we summarize recent developments in the field of photodynamic therapy and specifically PDT research in OS treatment modalities. In addition, we also provide some novel suggestions, which could potentially be a breakthrough in PDT-induced OS therapies. PDT has the potential to become an effective therapy while the its limitations still present when applied on the treatment of OS or other types of deep tumors. Thus, more researches and studies in the field are required.
Collapse
Affiliation(s)
- Wei Yu
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, PR China
| | - Jian Zhu
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, PR China
| | - Yitian Wang
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, PR China
| | - Junjie Wang
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, PR China
| | - Weijing Fang
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, PR China
| | - Kaishun Xia
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, PR China
| | - Jianlin Shao
- La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - Minzu Wu
- Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Bing Liu
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, PR China
| | - Chengzhen Liang
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, PR China
| | - Chengyi Ye
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, PR China
| | - Huimin Tao
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China.,Orthopedics Research Institute of Zhejiang University, Hangzhou, PR China
| |
Collapse
|
12
|
Abdulrehman G, Xv K, Li Y, Kang L. Effects of meta-tetrahydroxyphenylchlorin photodynamic therapy on isogenic colorectal cancer SW480 and SW620 cells with different metastatic potentials. Lasers Med Sci 2018; 33:1581-1590. [PMID: 29796953 PMCID: PMC6133037 DOI: 10.1007/s10103-018-2524-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 04/22/2018] [Indexed: 01/10/2023]
Abstract
The aim of this study is to investigate the antitumor effects and possible mechanisms of meta-tetrahydroxyphenylchlorin-mediated photodynamic therapy (m-THPC-PDT) on human primary (SW480) and metastatic (SW620) colon cancer cell lines. SW480 and SW620 cells were incubated with various concentrations of m-THPC, followed by photodynamic irradiation. Subcellular localization of m-THPC in cells was observed with confocal laser scanning microscopy (CLSM). Photocytotoxicity of m-THPC in the two cells was investigated by using MTT assay. The flow cytometry was employed to detect the cell apoptosis. The migration and long-term recovery ability were determined by scratch test and colony formation assay respectively. CLSM showed that m-THPC was mainly distributed within the endoplasmic reticulum (ER) and lysosome of SW480 cells and within the lysosome and mitochondria of SW620 cells. m-THPC-PDT induced a dose-dependent and light energy-dependent cytotoxicity in SW480 and SW620 cells. Apoptosis rate was approximately 65 and 25% in SW480 and SW620 respectively when the concentration of m-THPC increased to 11.76 μM. However, the rate of necrotic cells had no significant changes in two cell lines. The colony formation and migration ability of the two cell lines were decreased with m-THPC-PDT treatment in a dose-dependent manner. PDT with m-THPC not only could effectively inhibit cell proliferation and decrease migration ability and colony formation ability, but also could effectively kill SW480 and SW620 cells in a dose-dependent manner in vitro. These results suggest that m-THPC is a promising sensitizer that warrants further development and extensive studies towards clinical use of colorectal cancer.
Collapse
Affiliation(s)
- Gulinur Abdulrehman
- College of Public Health, Xinjiang Medical University, No. 393, Xinyi Road, Xinyi District, Urumqi, Xinjiang, China
| | - Kaiyue Xv
- College of Public Health, Xinjiang Medical University, No. 393, Xinyi Road, Xinyi District, Urumqi, Xinjiang, China
| | - Yuhua Li
- College of Public Health, Xinjiang Medical University, No. 393, Xinyi Road, Xinyi District, Urumqi, Xinjiang, China
| | - Ling Kang
- College of Public Health, Xinjiang Medical University, No. 393, Xinyi Road, Xinyi District, Urumqi, Xinjiang, China.
| |
Collapse
|
13
|
Abbadie C, Pluquet O, Pourtier A. Epithelial cell senescence: an adaptive response to pre-carcinogenic stresses? Cell Mol Life Sci 2017; 74:4471-4509. [PMID: 28707011 PMCID: PMC11107641 DOI: 10.1007/s00018-017-2587-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 06/27/2017] [Accepted: 07/06/2017] [Indexed: 01/01/2023]
Abstract
Senescence is a cell state occurring in vitro and in vivo after successive replication cycles and/or upon exposition to various stressors. It is characterized by a strong cell cycle arrest associated with several molecular, metabolic and morphologic changes. The accumulation of senescent cells in tissues and organs with time plays a role in organismal aging and in several age-associated disorders and pathologies. Moreover, several therapeutic interventions are able to prematurely induce senescence. It is, therefore, tremendously important to characterize in-depth, the mechanisms by which senescence is induced, as well as the precise properties of senescent cells. For historical reasons, senescence is often studied with fibroblast models. Other cell types, however, much more relevant regarding the structure and function of vital organs and/or regarding pathologies, are regrettably often neglected. In this article, we will clarify what is known on senescence of epithelial cells and highlight what distinguishes it from, and what makes it like, replicative senescence of fibroblasts taken as a standard.
Collapse
Affiliation(s)
- Corinne Abbadie
- Univ. Lille, CNRS, Institut Pasteur de Lille, UMR 8161-M3T-Mechanisms of Tumorigenesis and Targeted Therapies, 59000, Lille, France.
| | - Olivier Pluquet
- Univ. Lille, CNRS, Institut Pasteur de Lille, UMR 8161-M3T-Mechanisms of Tumorigenesis and Targeted Therapies, 59000, Lille, France
| | - Albin Pourtier
- Univ. Lille, CNRS, Institut Pasteur de Lille, UMR 8161-M3T-Mechanisms of Tumorigenesis and Targeted Therapies, 59000, Lille, France
| |
Collapse
|
14
|
Wei J, Xu H, Liu Y, Li B, Zhou F. Effect of captopril on radiation-induced TGF-β1 secretion in EA.Hy926 human umbilical vein endothelial cells. Oncotarget 2017; 8:20842-20850. [PMID: 28209920 PMCID: PMC5400550 DOI: 10.18632/oncotarget.15356] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 01/27/2017] [Indexed: 12/20/2022] Open
Abstract
The pathophysiological mechanism involved in the sustained endothelial secretion of cytokines that leads to fibrosis 6–16 months after radiotherapy remains unclear. Angiotensin II (Ang II) is produced by the endothelium in response to stressing stimuli, like radiation, and may induce the synthesis of TGF-β, a profibrotic cytokine. In this study we tested the hypothesis that captopril, an angiotensin-converting enzyme (ACE) inhibitor, inhibits or attenuates radiation-induced endothelial TGF-β1 secretion. The human endothelial hybrid cell line EA.HY926 was irradiated with split doses of x-rays (28 Gy delivered in 14 fractions of 2 Gy). TGF-β1 mRNA, TNF-α mRNA and TGF-β1 protein levels were evaluated by RT-PCR and western blotting each month until the fifth month post radiation. Ang II was detected using radioimmunoassays, NF-κB activity was examined using EMSA, and western blotting was used to detect the expression of Iκ-Bα. To explore the role of Ang II on radiation-induced TGF-β1 release and Iκ-Bα expression, captopril was added to cultured cells before, during, or after irradiation. Sustained strong expression of TGF-β1 was observed after conventional fractionated irradiation. TNF-α, Ang II, and NF-κB activity were also increased in EA.Hy926 cells after radiation. Captopril decreased Ang II expression, inhibited the NF-κB pathway and reduced TGF-β1 expression. These data suggest that captopril might protect the endothelium from radiation-induced injury.
Collapse
Affiliation(s)
- Jingni Wei
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China.,Department of Radiation Oncology, Cancer Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Hui Xu
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China.,Hubei Clinical Cancer Study Centre, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Yinyin Liu
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Baiyu Li
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Fuxiang Zhou
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China.,Hubei Clinical Cancer Study Centre, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| |
Collapse
|
15
|
Biphasic ROS production, p53 and BIK dictate the mode of cell death in response to DNA damage in colon cancer cells. PLoS One 2017; 12:e0182809. [PMID: 28796811 PMCID: PMC5552129 DOI: 10.1371/journal.pone.0182809] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 03/31/2017] [Indexed: 01/08/2023] Open
Abstract
Necrosis, apoptosis and autophagic cell death are the main cell death pathways in multicellular organisms, all with distinct and overlapping cellular and biochemical features. DNA damage may trigger different types of cell death in cancer cells but the molecular events governing the mode of cell death remain elusive. Here we showed that increased BH3-only protein BIK levels promoted cisplatin- and UV-induced mitochondrial apoptosis and biphasic ROS production in HCT-116 wild-type cells. Nonetheless, early single peak of ROS formation along with lysosomal membrane permeabilization and cathepsin activation regulated cisplatin- and UV-induced necrosis in p53-null HCT-116 cells. Of note, necrotic cell death in p53-null HCT-116 cells did not depend on BIK, mitochondrial outer membrane permeabilization or caspase activation. These data demonstrate how cancer cells with different p53 background respond to DNA-damaging agents by integrating distinct cell signaling pathways dictating the mode of cell death.
Collapse
|
16
|
Broughton LJ, Giuntini F, Savoie H, Bryden F, Boyle RW, Maraveyas A, Madden LA. Duramycin-porphyrin conjugates for targeting of tumour cells using photodynamic therapy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 163:374-84. [DOI: 10.1016/j.jphotobiol.2016.09.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 08/30/2016] [Accepted: 09/01/2016] [Indexed: 12/27/2022]
|
17
|
Frame FM, Savoie H, Bryden F, Giuntini F, Mann VM, Simms MS, Boyle RW, Maitland NJ. Mechanisms of growth inhibition of primary prostate epithelial cells following gamma irradiation or photodynamic therapy include senescence, necrosis, and autophagy, but not apoptosis. Cancer Med 2015; 5:61-73. [PMID: 26590118 PMCID: PMC4708897 DOI: 10.1002/cam4.553] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 08/14/2015] [Accepted: 09/04/2015] [Indexed: 12/15/2022] Open
Abstract
In comparison to more differentiated cells, prostate cancer stem-like cells are radioresistant, which could explain radio-recurrent prostate cancer. Improvement of radiotherapeutic efficacy may therefore require combination therapy. We have investigated the consequences of treating primary prostate epithelial cells with gamma irradiation and photodynamic therapy (PDT), both of which act through production of reactive oxygen species (ROS). Primary prostate epithelial cells were cultured from patient samples of benign prostatic hyperplasia and prostate cancer prior to treatment with PDT or gamma irradiation. Cell viability was measured using MTT and alamar blue assay, and cell recovery by colony-forming assays. Immunofluorescence of gamma-H2AX foci was used to quantify DNA damage, and autophagy and apoptosis were assessed using Western blots. Necrosis and senescence were measured by propidium iodide staining and beta-galactosidase staining, respectively. Both PDT and gamma irradiation reduced the colony-forming ability of primary prostate epithelial cells. PDT reduced the viability of all types of cells in the cultures, including stem-like cells and more differentiated cells. PDT induced necrosis and autophagy, whereas gamma irradiation induced senescence, but neither treatment induced apoptosis. PDT and gamma irradiation therefore inhibit cell growth by different mechanisms. We suggest these treatments would be suitable for use in combination as sequential treatments against prostate cancer.
Collapse
Affiliation(s)
- Fiona M Frame
- YCR Cancer Research Unit, Department of Biology, University of York, Heslington, North Yorkshire, YO10 5DD, United Kingdom
| | - Huguette Savoie
- Department of Chemistry, University of Hull, Kingston Upon Hull, HU6 7RX, United Kingdom
| | - Francesca Bryden
- Department of Chemistry, University of Hull, Kingston Upon Hull, HU6 7RX, United Kingdom
| | - Francesca Giuntini
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, L3 2AJ, United Kingdom
| | - Vincent M Mann
- Department of Urology, Castle Hill Hospital (Hull and East Yorkshire Hospitals NHS Trust), Cottingham, HU16 5JQ, United Kingdom.,Hull York Medical School, University of Hull, Hull, HU6 7RX, United Kingdom
| | - Matthew S Simms
- Department of Urology, Castle Hill Hospital (Hull and East Yorkshire Hospitals NHS Trust), Cottingham, HU16 5JQ, United Kingdom.,Hull York Medical School, University of Hull, Hull, HU6 7RX, United Kingdom
| | - Ross W Boyle
- Department of Chemistry, University of Hull, Kingston Upon Hull, HU6 7RX, United Kingdom
| | - Norman J Maitland
- YCR Cancer Research Unit, Department of Biology, University of York, Heslington, North Yorkshire, YO10 5DD, United Kingdom
| |
Collapse
|