1
|
McCarthy S, Gonen S. δ-Conotoxin Structure Prediction and Analysis through Large-Scale Comparative and Deep Learning Modeling Approaches. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404786. [PMID: 39033537 PMCID: PMC11425241 DOI: 10.1002/advs.202404786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/27/2024] [Indexed: 07/23/2024]
Abstract
The δ-conotoxins, a class of peptides produced in the venom of cone snails, are of interest due to their ability to inhibit the inactivation of voltage-gated sodium channels causing paralysis and other neurological responses, but difficulties in their isolation and synthesis have made structural characterization challenging. Taking advantage of recent breakthroughs in computational algorithms for structure prediction that have made modeling especially useful when experimental data is sparse, this work uses both the deep-learning-based algorithm AlphaFold and comparative modeling method RosettaCM to model and analyze 18 previously uncharacterized δ-conotoxins derived from piscivorous, vermivorous, and molluscivorous cone snails. The models provide useful insights into the structural aspects of these peptides and suggest features likely to be significant in influencing their binding and different pharmacological activities against their targets, with implications for drug development. Additionally, the described protocol provides a roadmap for the modeling of similar disulfide-rich peptides by these complementary methods.
Collapse
Affiliation(s)
- Stephen McCarthy
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, 92697, USA
| | - Shane Gonen
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, 92697, USA
| |
Collapse
|
2
|
Groome JR. Historical Perspective of the Characterization of Conotoxins Targeting Voltage-Gated Sodium Channels. Mar Drugs 2023; 21:md21040209. [PMID: 37103349 PMCID: PMC10142487 DOI: 10.3390/md21040209] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
Marine toxins have potent actions on diverse sodium ion channels regulated by transmembrane voltage (voltage-gated ion channels) or by neurotransmitters (nicotinic acetylcholine receptor channels). Studies of these toxins have focused on varied aspects of venom peptides ranging from evolutionary relationships of predator and prey, biological actions on excitable tissues, potential application as pharmacological intervention in disease therapy, and as part of multiple experimental approaches towards an understanding of the atomistic characterization of ion channel structure. This review examines the historical perspective of the study of conotoxin peptides active on sodium channels gated by transmembrane voltage, which has led to recent advances in ion channel research made possible with the exploitation of the diversity of these marine toxins.
Collapse
Affiliation(s)
- James R Groome
- Department of Biological Sciences, Idaho State University, Pocatello, ID 83209, USA
| |
Collapse
|
3
|
Rajesh RP, Franklin JB, Badsha I, Arjun P, Jain RP, Vignesh MS, Kannan RR. Proteome based de novo sequencing of novel conotoxins from marine molluscivorous cone snail Conus amadis and neurological activities of its natural venom in zebrafish model. Protein Pept Lett 2019; 26:819-833. [PMID: 31203793 DOI: 10.2174/0929866526666190614144006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 04/09/2019] [Accepted: 04/19/2019] [Indexed: 11/22/2022]
Abstract
Conus amadis is a carnivorous snail found abundantly in coastal waters of India. They are equipped with potent chemical arsenal made of neurotoxic peptide concoction used for predation and competition. In this study, we have identified 19 novel conotoxins containing 1, 2 & 3 disulfides, belonging to different classes, from a molluscivorous cone snail Conus amadis using proteome based MALDI-TOF and LC-MS-MS analysis. Among them, 2 novel contryphans, 3 T-superfamily conotoxin, 2 A-superfamily conotoxins and 2 Mini M-Superfamily conotoxins were sequenced to its amino acid level from the fragmented spectrum of singly and doubly charged parent ions using de novo sequencing strategies. ama1054, a contryphan peptide toxin, possesses post translationally modified bromo tryptophan at its seventh position. Except ama1251, all the sequenced peptide toxins possess modified C-terminal amidation. Moreover, we have screened the crude venom for the presence of biological function in zebrafish model. Crude venom exhibited anticonvulsant properties in pentylenetetrazole-induced seizure in zebrafish larvae which suggested anti-epileptic properties of the venom cocktail. Acetyl cholinesterase activity was also identified in the venom complex.
Collapse
Affiliation(s)
- R P Rajesh
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012. India
| | - Jayaseelan Benjamin Franklin
- Andaman and Nicobar Centre for Ocean Science and Technology, National Institute of Ocean Technology, Ministry of Earth Sciences, Government of India, Port Blair 744103. India
| | - Iffath Badsha
- Molecular & Nanomedicine Research Unit, Centre for Nanoscience and Nanotechnology, Sathyabama Institute of Science and Technology, Chennai 600119. India
| | - P Arjun
- Molecular & Nanomedicine Research Unit, Centre for Nanoscience and Nanotechnology, Sathyabama Institute of Science and Technology, Chennai 600119. India
| | - Ruchi P Jain
- Molecular & Nanomedicine Research Unit, Centre for Nanoscience and Nanotechnology, Sathyabama Institute of Science and Technology, Chennai 600119. India
| | - M S Vignesh
- Molecular & Nanomedicine Research Unit, Centre for Nanoscience and Nanotechnology, Sathyabama Institute of Science and Technology, Chennai 600119. India
| | - R Rajesh Kannan
- Molecular & Nanomedicine Research Unit, Centre for Nanoscience and Nanotechnology, Sathyabama Institute of Science and Technology, Chennai 600119. India
| |
Collapse
|
4
|
Deuis JR, Mueller A, Israel MR, Vetter I. The pharmacology of voltage-gated sodium channel activators. Neuropharmacology 2017; 127:87-108. [PMID: 28416444 DOI: 10.1016/j.neuropharm.2017.04.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 03/28/2017] [Accepted: 04/10/2017] [Indexed: 12/19/2022]
Abstract
Toxins and venom components that target voltage-gated sodium (NaV) channels have evolved numerous times due to the importance of this class of ion channels in the normal physiological function of peripheral and central neurons as well as cardiac and skeletal muscle. NaV channel activators in particular have been isolated from the venom of spiders, wasps, snakes, scorpions, cone snails and sea anemone and are also produced by plants, bacteria and algae. These compounds have provided key insight into the molecular structure, function and pathophysiological roles of NaV channels and are important tools due to their at times exquisite subtype-selectivity. We review the pharmacology of NaV channel activators with particular emphasis on mammalian isoforms and discuss putative applications for these compounds. This article is part of the Special Issue entitled 'Venom-derived Peptides as Pharmacological Tools.'
Collapse
Affiliation(s)
- Jennifer R Deuis
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Qld 4072, Australia
| | - Alexander Mueller
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Qld 4072, Australia
| | - Mathilde R Israel
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Qld 4072, Australia
| | - Irina Vetter
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Qld 4072, Australia; School of Pharmacy, The University of Queensland, Woolloongabba, Qld 4102, Australia.
| |
Collapse
|
5
|
Pal K, Gangopadhyay G. Probing kinetic drug binding mechanism in voltage-gated sodium ion channel: open state versus inactive state blockers. Channels (Austin) 2016; 9:307-16. [PMID: 26274618 DOI: 10.1080/19336950.2015.1078950] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The kinetics and nonequilibrium thermodynamics of open state and inactive state drug binding mechanisms have been studied here using different voltage protocols in sodium ion channel. We have found that for constant voltage protocol, open state block is more efficient in blocking ionic current than inactive state block. Kinetic effect comes through peak current for mexiletine as an open state blocker and in the tail part for lidocaine as an inactive state blocker. Although the inactivation of sodium channel is a free energy driven process, however, the two different kinds of drug affect the inactivation process in a different way as seen from thermodynamic analysis. In presence of open state drug block, the process initially for a long time remains entropy driven and then becomes free energy driven. However in presence of inactive state block, the process remains entirely entropy driven until the equilibrium is attained. For oscillating voltage protocol, the inactive state blocking is more efficient in damping the oscillation of ionic current. From the pulse train analysis it is found that inactive state blocking is less effective in restoring normal repolarisation and blocks peak ionic current. Pulse train protocol also shows that all the inactive states behave differently as one inactive state responds instantly to the test pulse in an opposite manner from the other two states.
Collapse
Affiliation(s)
- Krishnendu Pal
- a S.N. Bose National Center for Basic Sciences ; Block-JD; Sector-III; Salt Lake; Kolkata , India
| | - Gautam Gangopadhyay
- a S.N. Bose National Center for Basic Sciences ; Block-JD; Sector-III; Salt Lake; Kolkata , India
| |
Collapse
|
6
|
Knapp O, McArthur JR, Adams DJ. Conotoxins targeting neuronal voltage-gated sodium channel subtypes: potential analgesics? Toxins (Basel) 2012. [PMID: 23202314 PMCID: PMC3509706 DOI: 10.3390/toxins4111236] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Voltage-gated sodium channels (VGSC) are the primary mediators of electrical signal amplification and propagation in excitable cells. VGSC subtypes are diverse, with different biophysical and pharmacological properties, and varied tissue distribution. Altered VGSC expression and/or increased VGSC activity in sensory neurons is characteristic of inflammatory and neuropathic pain states. Therefore, VGSC modulators could be used in prospective analgesic compounds. VGSCs have specific binding sites for four conotoxin families: μ-, μO-, δ- and ί-conotoxins. Various studies have identified that the binding site of these peptide toxins is restricted to well-defined areas or domains. To date, only the μ- and μO-family exhibit analgesic properties in animal pain models. This review will focus on conotoxins from the μ- and μO-families that act on neuronal VGSCs. Examples of how these conotoxins target various pharmacologically important neuronal ion channels, as well as potential problems with the development of drugs from conotoxins, will be discussed.
Collapse
Affiliation(s)
- Oliver Knapp
- Health Innovations Research Institute, RMIT University, Melbourne, Victoria 3083, Australia.
| | | | | |
Collapse
|
7
|
Lewis RJ, Dutertre S, Vetter I, Christie MJ. Conus Venom Peptide Pharmacology. Pharmacol Rev 2012; 64:259-98. [DOI: 10.1124/pr.111.005322] [Citation(s) in RCA: 323] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
8
|
Mandal AK, Ramasamy MRS, Sabareesh V, Openshaw ME, Krishnan KS, Balaram P. Sequencing of T-superfamily conotoxins from Conus virgo: pyroglutamic acid identification and disulfide arrangement by MALDI mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2007; 18:1396-404. [PMID: 17544293 DOI: 10.1016/j.jasms.2007.04.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2006] [Revised: 04/07/2007] [Accepted: 04/11/2007] [Indexed: 05/15/2023]
Abstract
De novo mass spectrometric sequencing of two Conus peptides, Vi1359 and Vi1361, from the vermivorous cone snail Conus virgo, found off the southern Indian coast, is presented. The peptides, whose masses differ only by 2 Da, possess two disulfide bonds and an amidated C-terminus. Simple chemical modifications and enzymatic cleavage coupled with matrix assisted laser desorption ionization (MALDI) mass spectrometric analysis aided in establishing the sequences of Vi1359, ZCCITIPECCRI-NH(2), and Vi1361, ZCCPTMPECCRI-NH(2), which differ only at residues 4 and 6 (Z = pyroglutamic acid). The presence of the pyroglutamyl residue at the N-terminus was unambiguously identified by chemical hydrolysis of the cyclic amide, followed by esterification. The presence of Ile residues in both the peptides was confirmed from high-energy collision induced dissociation (CID) studies, using the observation of w(n)- and d(n)-ions as a diagnostic. Differential cysteine labeling, in conjunction with MALDI-MS/MS, permitted establishment of disulfide connectivity in both peptides as Cys2-Cys9 and Cys3-Cys10. The cysteine pattern clearly reveals that the peptides belong to the class of T-superfamily conotoxins, in particular the T-1 superfamily.
Collapse
Affiliation(s)
- Amit Kumar Mandal
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | | | | | | | | | | |
Collapse
|
9
|
Abstract
This review covers the literature published in 2005 for marine natural products, with 704 citations (493 for the period January to December 2005) referring to compounds isolated from marine microorganisms and phytoplankton, green algae, brown algae, red algae, sponges, coelenterates, bryozoans, molluscs, tunicates and echinoderms. The emphasis is on new compounds (812 for 2005), together with their relevant biological activities, source organisms and country of origin. Biosynthetic studies, first syntheses, and syntheses that lead to the revision of structures or stereochemistries, have been included.
Collapse
Affiliation(s)
- John W Blunt
- Department of Chemistry, University of Canterbury, Christchurch, New Zealand.
| | | | | | | | | | | |
Collapse
|
10
|
Thakur SS, Balaram P. Rapid mass spectral identification of contryphans. Detection of characteristic peptide ions by fragmentation of intact disulfide-bonded peptides in crude venom. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2007; 21:3420-6. [PMID: 17902199 DOI: 10.1002/rcm.3225] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The mass spectrometric cleavage of intact disulfide-bonded peptides in conus venom has been investigated. Contryphans containing a single disulfide bond are shown to fragment preferentially at X-Pro bonds, giving rise to linearized, unsymmetrical cystine peptides, which subsequently fragment by multiple pathways at the disulfide bridge. Cleavage at the disulfide bond can be initiated by initial loss of the CalphaH or CbetaH proton, resulting in distinct product ions, with the subsequent loss of elemental sulfur, H2S or H2S2. Contryphans from Conus amadis, Conus loroisii, and Conus striatus are presented as examples, in which detailed assignment of the product ions resulting from tandem mass spectrometric analysis of the intact disulfide is also accomplished. Characteristic fragments arising from conserved contryphan sequences can be used as diagnostic, permitting rapid identification of this class of peptides in crude venom. The observed fragment ions obtained for contryphans in diverse cone snail species are also compared.
Collapse
Affiliation(s)
- Suman S Thakur
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | | |
Collapse
|