1
|
Copp W, Wilds CJ. O 6 -Alkylguanine DNA Alkyltransferase Mediated Disassembly of a DNA Tetrahedron. Chemistry 2020; 26:14802-14806. [PMID: 32543755 DOI: 10.1002/chem.202002565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Indexed: 11/05/2022]
Abstract
Tetrahedron DNA structures were formed by the assembly of three-way junction (TWJ) oligonucleotides containing O6 -2'-deoxyguanosine-alkylene-O6 -2'-deoxyguanosine (butylene and heptylene linked) intrastrand cross-links (IaCLs) lacking a phosphodiester group between the 2'-deoxyribose residues. The DNA tetrahedra containing TWJs were shown to undergo an unhooking reaction by the human DNA repair protein O6 -alkylguanine DNA alkyltransferase (hAGT) resulting in structure disassembly. The unhooking reaction of hAGT towards the DNA tetrahedra was observed to be moderate to virtually complete depending on the protein equivalents. DNA tetrahedron structures have been explored as drug delivery platforms that release their payload in response to triggers, such as light, chemical agents or hybridization of release strands. The dismantling of DNA tetrahedron structures by a DNA repair protein contributes to the armamentarium of approaches for drug release employing DNA nanostructures.
Collapse
Affiliation(s)
- William Copp
- Department of Chemistry and Biochemistry, Concordia University, Montréal, Québec, H4B 1R6, Canada
| | - Christopher J Wilds
- Department of Chemistry and Biochemistry, Concordia University, Montréal, Québec, H4B 1R6, Canada
| |
Collapse
|
2
|
Mikhailov SN, Drenichev MS, Oslovsky VE, Kulikova IV, Herdewijn P. Synthesis of Poly(ADP-ribose) Monomer Containing 2'-O-α-D-Ribofuranosyl Adenosine. ACTA ACUST UNITED AC 2020; 78:e92. [PMID: 31529780 DOI: 10.1002/cpnc.92] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this article, the earlier reported procedure for the synthesis of 2'-O-β-D-ribofuranosyl nucleosides was extended to the synthesis of 2'-O-α-D-ribofuranosyl adenosine, a monomeric unit of poly(ADP-ribose). It consists in condensation of a small excess of 1-O-acetyl-2,3,5-tri-O-benzoyl-α,β-D-arabinofuranose activated with tin tetrachloride with 3',5'-O-tetra-isopropyldisiloxane-1,3-diyl-ribonucleosides in 1,2-dichloroethane. The following debenzoylation and silylation of arabinofuranosyl residue and inversion of configuration at C-2'' atom of arabinofuranosyl residue and final removal of silyl protective groups gave 2'-O-α-D-ribofuranosyl adenosine in overall 13% to 21% yield. © 2019 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Sergey N Mikhailov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Mikhail S Drenichev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Vladimir E Oslovsky
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Irina V Kulikova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Piet Herdewijn
- Rega Institute, Katholieke Universiteit Leuven, Leuven, Belgium
| |
Collapse
|
3
|
Drenichev MS, Bennett M, Novikov RA, Mansfield J, Smirnoff N, Grant M, Mikhailov SN. A role for 3'-O-β-D-ribofuranosyladenosine in altering plant immunity. PHYTOCHEMISTRY 2019; 157:128-134. [PMID: 30399495 PMCID: PMC6290457 DOI: 10.1016/j.phytochem.2018.10.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 10/10/2018] [Accepted: 10/20/2018] [Indexed: 05/06/2023]
Abstract
Our understanding of how, and the extent to which, phytopathogens reconfigure host metabolic pathways to enhance virulence is remarkably limited. Here we investigate the dynamics of the natural disaccharide nucleoside, 3'-O-β-D-ribofuranosyladenosine, in leaves of Arabidopsis thaliana infected with virulent Pseudomonas syringae pv. tomato strain DC3000. 3'-O-β-D-ribofuranosyladenosine is a plant derived molecule that rapidly accumulates following delivery of P. syringae type III effectors to represent a major component of the infected leaf metabolome. We report the first synthesis of 3'-O-β-D-ribofuranosyladenosine using a method involving the condensation of a small excess of 1-O-acetyl-2,3,5-three-O-benzoyl-β-ribofuranose activated with tin tetrachloride with 2',5'-di-O-tert-butyldimethylsilyladenosine in 1,2-dichloroethane with further removal of silyl and benzoyl protecting groups. Interestingly, application of synthetic 3'-O-β-D-ribofuranosyladenosine did not affect either bacterial multiplication or infection dynamics suggesting a major reconfiguration of metabolism during pathogenesis and a heavy metabolic burden on the infected plant.
Collapse
Affiliation(s)
- Mikhail S Drenichev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str. 32, Moscow, 119991, Russian Federation
| | - Mark Bennett
- Imperial College London, Exhibition Road, London, SW7 2AZ, United Kingdom
| | - Roman A Novikov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str. 32, Moscow, 119991, Russian Federation
| | - John Mansfield
- Imperial College London, Exhibition Road, London, SW7 2AZ, United Kingdom
| | - Nick Smirnoff
- School of Biosciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, United Kingdom
| | - Murray Grant
- School of Life Sciences, Gibbet Hill, University of Warwick, Coventry, CV4 7AL, United Kingdom.
| | - Sergey N Mikhailov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str. 32, Moscow, 119991, Russian Federation
| |
Collapse
|
4
|
Komarova AO, Drenichev MS, Dyrkheeva NS, Kulikova IV, Oslovsky VE, Zakharova OD, Zakharenko AL, Mikhailov SN, Lavrik OI. Novel group of tyrosyl-DNA-phosphodiesterase 1 inhibitors based on disaccharide nucleosides as drug prototypes for anti-cancer therapy. J Enzyme Inhib Med Chem 2018; 33:1415-1429. [PMID: 30191738 PMCID: PMC6136360 DOI: 10.1080/14756366.2018.1509210] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 07/06/2018] [Accepted: 08/04/2018] [Indexed: 02/03/2023] Open
Abstract
A new class of tyrosyl-DNA phosphodiesterase 1 (TDP1) inhibitors based on disaccharide nucleosides was identified. TDP1 plays an essential role in the resistance of cancer cells to currently used antitumour drugs based on Top1 inhibitors such as topotecan and irinotecan. The most effective inhibitors investigated in this study have IC50 values (half-maximal inhibitory concentration) in 0.4-18.5 µM range and demonstrate relatively low own cytotoxicity along with significant synergistic effect in combination with anti-cancer drug topotecan. Moreover, kinetic parameters of the enzymatic reaction and fluorescence anisotropy were measured using different types of DNA-biosensors to give a sufficient insight into the mechanism of inhibitor's action.
Collapse
Affiliation(s)
- Anastasia O. Komarova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russian Federation
| | - Mikhail S. Drenichev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russian Federation
| | - Nadezhda S. Dyrkheeva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation
| | - Irina V. Kulikova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russian Federation
| | - Vladimir E. Oslovsky
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russian Federation
| | - Olga D. Zakharova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation
| | - Alexandra L. Zakharenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation
| | - Sergey N. Mikhailov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russian Federation
| | - Olga I. Lavrik
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russian Federation
| |
Collapse
|
5
|
Drenichev MS, Mikhailov SN. Poly(ADP-ribose): From chemical synthesis to drug design. Bioorg Med Chem Lett 2016; 26:3395-403. [PMID: 27318540 DOI: 10.1016/j.bmcl.2016.06.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 06/02/2016] [Accepted: 06/04/2016] [Indexed: 12/17/2022]
Abstract
Poly(ADP-ribose) (PAR) is an important biopolymer, which is involved in various life processes such as DNA repair and replication, modulation of chromatin structure, transcription, cell differentiation, and in pathogenesis of various diseases such as cancer, diabetes, ischemia and inflammations. PAR is the most electronegative biopolymer and this property is essential for its binding with a wide range of proteins. Understanding of PAR functions in cell on molecular level requires chemical synthesis of regular PAR oligomers. Recently developed methodologies for chemical synthesis of PAR oligomers, will facilitate the study of various cellular processes, involving PAR.
Collapse
Affiliation(s)
- Mikhail S Drenichev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str. 32, Moscow 119991, Russian Federation
| | - Sergey N Mikhailov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str. 32, Moscow 119991, Russian Federation.
| |
Collapse
|
6
|
Drenichev MS, Mikhailov SN. Poly(ADP-ribose)--a unique natural polymer structural features, biological role and approaches to the chemical synthesis. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2015; 34:258-76. [PMID: 25774719 DOI: 10.1080/15257770.2014.984073] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Poly(ADP-ribose) (PAR) is a natural polymer, taking part in numerous important cellular processes. Several enzymes are involved in biosynthesis and degradation of PAR. One of them, poly(ADP-ribose)polymerase-1 (PARP-1) is considered to be a perspective target for the design of new drugs, affecting PAR metabolism. The structure of PAR was established by enzymatic hydrolysis and further analysis of the products, but total chemical synthesis of PAR hasn't been described yet. Several approaches have been developed on the way to chemical synthesis of this unique biopolymer.
Collapse
Affiliation(s)
- Mikhail S Drenichev
- a Engelhardt Institute of Molecular Biology, Russian Academy of Sciences , Moscow , Russian Federation
| | | |
Collapse
|
7
|
Chmielewski MK, Markiewicz WT. Novel method of synthesis of 5''-phosphate 2'-O-ribosyl-ribonucleosides and their 3'-phosphoramidites. Molecules 2013; 18:14780-96. [PMID: 24352053 PMCID: PMC6269823 DOI: 10.3390/molecules181214780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 11/23/2013] [Accepted: 11/25/2013] [Indexed: 11/24/2022] Open
Abstract
Synthesis of 5''-phosphate 2'-O-ribosylribonucleosides [Nr(p)] of four common ribonucleosides, and 3'-phosphoramidites of 5''-phosphate 2'-O-ribosyladenosine and 2'-O-ribosylguanosine using the H-phosphonate chemistry is described. An additional ring protected by benzoyl groups was incorporated into the main ribosyl ring in the reaction with 1-O-acetyl-2,3,5-tri-O-benzoyl-β-D-ribofuranose in the presence of SnCl4. The obtained 2'-O-ribosylribonucleosides (Nr) were applied in the subsequent transformations with selective deprotection. Ethanolamine was applied as a very convenient reagent for selective removal of benzoyl groups. Additionally, the tetraisopropyldisiloxane-1,3-diyl (TIPDSi) group was found to be stable under these deprotection conditions. Thus, the selectively deprotected 5''-hydroxyl group of Nr was transformed into an H-phosphonate monoester which was found to be stable under the following conditions: the removal of the TIPDSi group with triethylammonium fluoride and the dimethoxytritylation of the 5''-hydroxyl function. The 5''-H-phosphonate of Nr precursors was easily transformed to the corresponding dicyanoethyl 5''-O-phosphotriesters before phosphitylation, which gave 3'-phosphoramidite units of Nr(p) in high yield. The derived phosphoramidite units were used in an automated oligonucleotide synthesizer to produce dimer Ar(p)T via the phosphoramidite approach. The obtained products were fully deprotected under standard deprotection conditions giving dimers with a 5''-phosphate monoester function. Application of an alkaline phosphatase to prove the presence of an additional phosphate group was described.
Collapse
Affiliation(s)
| | - Wojciech T Markiewicz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, Poznan PL-61704, Poland.
| |
Collapse
|
8
|
Kiviniemi A, Virta P, Drenichev MS, Mikhailov SN, Lönnberg H. Solid-supported 2'-O-glycoconjugation of oligonucleotides by azidation and click reactions. Bioconjug Chem 2011; 22:1249-55. [PMID: 21539388 DOI: 10.1021/bc200097g] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
2'-O-[(2-Bromoethoxy)methyl]cytidine and 2'-O-[(2-azidoethoxy)methyl]cytidine have been prepared and introduced as appropriately protected 3'-phosphoramidite (1) and 3'-(H-phosphonate) (2) building blocks, respectively, into 2'-O-methyl oligoribonucleotides. The support-bound oligonucleotides were subjected to two consecutive conjugations with alkynyl-functionalized monosaccharides. The first saccharide was introduced by a Cu(I) promoted click reaction with 2 and the second by azidation of the 2-bromoethoxy group of 1 followed by the click reaction. The influence of the 2'-glycoconjugations on hybridization with DNA and 2'-O-methyl RNA targets was studied. Two saccharide units within a 15-mer oligonucleotide had a barely noticeable effect on the duplex stability, while introduction of a third one moderately decreased the melting temperature.
Collapse
Affiliation(s)
- Anu Kiviniemi
- Department of Chemistry, University of Turku, FIN-20014 Turku, Finland.
| | | | | | | | | |
Collapse
|
9
|
Mikhailov SN, Timofeev EN, Drenichev MS, Efimtseva EV, Herdewijn P, Roesch EB, Lemaitre MM. Oligodeoxynucleotides containing N1-methyl-2'-deoxyadenosine and N6-methyl-2'-deoxyadenosine. ACTA ACUST UNITED AC 2009; Chapter 4:Unit 4.36 1-19. [PMID: 19746356 DOI: 10.1002/0471142700.nc0436s38] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This unit describes a simple and efficient synthesis of the phosphoramidite derivative of N(1)-methyl-2'-deoxyadenosine from 2'-deoxyadenosine. The synthesis starts with the monomethoxytritylation of 2'-deoxyadenosine followed by methylation of 5'-O-protected nucleoside at N-1. Subsequent N-chloroacetylation leads to N(6)-chloroacetyl-N(1)-methyl-5'-O-(p-anisyldiphenylmethyl)-2'-deoxyadenosine, which is finally converted to its 3' phosphoramidite derivative. This phosphoramidite is used to incorporate N(1)-methyl-2'-deoxyadenosine into synthetic oligonucleotides. N-Chloroacetyl protection and controlled anhydrous deprotection conditions are used to avoid the Dimroth rearrangement.
Collapse
Affiliation(s)
- Sergey N Mikhailov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | | | | | | | | | | | | |
Collapse
|
10
|
Efimtseva EV, Kulikova IV, Mikhailov SN. Disaccharide nucleosides as an important group of natural compounds. Mol Biol 2009. [DOI: 10.1134/s0026893309020125] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Timofeev E, Mikhailov S, Zuev A, Efimtseva E, Herdewijn P, Somers R, Lemaitre M. Oligodeoxynucleotides Containing 2′-Deoxy-1-methyladenosine andDimroth Rearrangement. Helv Chim Acta 2007. [DOI: 10.1002/hlca.200790093] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|