1
|
Gabed N, Verret F, Peticca A, Kryvoruchko I, Gastineau R, Bosson O, Séveno J, Davidovich O, Davidovich N, Witkowski A, Kristoffersen JB, Benali A, Ioannou E, Koutsaviti A, Roussis V, Gâteau H, Phimmaha S, Leignel V, Badawi M, Khiar F, Francezon N, Fodil M, Pasetto P, Mouget JL. What Was Old Is New Again: The Pennate Diatom Haslea ostrearia (Gaillon) Simonsen in the Multi-Omic Age. Mar Drugs 2022; 20:md20040234. [PMID: 35447907 PMCID: PMC9033121 DOI: 10.3390/md20040234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/08/2022] [Accepted: 03/18/2022] [Indexed: 02/04/2023] Open
Abstract
The marine pennate diatom Haslea ostrearia has long been known for its characteristic blue pigment marennine, which is responsible for the greening of invertebrate gills, a natural phenomenon of great importance for the oyster industry. For two centuries, this taxon was considered unique; however, the recent description of a new blue Haslea species revealed unsuspected biodiversity. Marennine-like pigments are natural blue dyes that display various biological activities—e.g., antibacterial, antioxidant and antiproliferative—with a great potential for applications in the food, feed, cosmetic and health industries. Regarding fundamental prospects, researchers use model organisms as standards to study cellular and physiological processes in other organisms, and there is a growing and crucial need for more, new and unconventional model organisms to better correspond to the diversity of the tree of life. The present work, thus, advocates for establishing H. ostrearia as a new model organism by presenting its pros and cons—i.e., the interesting aspects of this peculiar diatom (representative of benthic-epiphytic phytoplankton, with original behavior and chemodiversity, controlled sexual reproduction, fundamental and applied-oriented importance, reference genome, and transcriptome will soon be available); it will also present the difficulties encountered before this becomes a reality as it is for other diatom models (the genetics of the species in its infancy, the transformation feasibility to be explored, the routine methods needed to cryopreserve strains of interest).
Collapse
Affiliation(s)
- Noujoud Gabed
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research (HCMR), Gournes Pediados, 71003 Heraklion, Greece; (N.G.); (J.B.K.); (A.B.)
- Oran High School of Biological Sciences (ESSBO), Cellular and Molecular Biology Department, Oran 31000, Algeria
- Laboratoire d’Aquaculture et Bioremediation AquaBior, Université d’Oran 1, Oran 31000, Algeria
| | - Frédéric Verret
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research (HCMR), Gournes Pediados, 71003 Heraklion, Greece; (N.G.); (J.B.K.); (A.B.)
- Correspondence: ; Tel.: +30-2810-337-852
| | - Aurélie Peticca
- Laboratoire Biologie des Organismes, Stress, Santé, Environnement (BiOSSE), Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans, France; (A.P.); (O.B.); (J.S.); (H.G.); (S.P.); (V.L.); (M.B.); (F.K.); (M.F.); (J.-L.M.)
| | - Igor Kryvoruchko
- Department of Biology, United Arab Emirates University (UAEU), Al Ain P.O. Box 15551, United Arab Emirates;
| | - Romain Gastineau
- Institute of Marine and Environmental Sciences, University of Szczecin, Mickiewicza 16, 70-383 Szczecin, Poland; (R.G.); (N.D.); (A.W.)
| | - Orlane Bosson
- Laboratoire Biologie des Organismes, Stress, Santé, Environnement (BiOSSE), Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans, France; (A.P.); (O.B.); (J.S.); (H.G.); (S.P.); (V.L.); (M.B.); (F.K.); (M.F.); (J.-L.M.)
| | - Julie Séveno
- Laboratoire Biologie des Organismes, Stress, Santé, Environnement (BiOSSE), Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans, France; (A.P.); (O.B.); (J.S.); (H.G.); (S.P.); (V.L.); (M.B.); (F.K.); (M.F.); (J.-L.M.)
| | - Olga Davidovich
- Karadag Scientific Station, Natural Reserve of the Russian Academy of Sciences, Kurortnoe, 98188 Feodosiya, Russia;
| | - Nikolai Davidovich
- Institute of Marine and Environmental Sciences, University of Szczecin, Mickiewicza 16, 70-383 Szczecin, Poland; (R.G.); (N.D.); (A.W.)
- Karadag Scientific Station, Natural Reserve of the Russian Academy of Sciences, Kurortnoe, 98188 Feodosiya, Russia;
| | - Andrzej Witkowski
- Institute of Marine and Environmental Sciences, University of Szczecin, Mickiewicza 16, 70-383 Szczecin, Poland; (R.G.); (N.D.); (A.W.)
| | - Jon Bent Kristoffersen
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research (HCMR), Gournes Pediados, 71003 Heraklion, Greece; (N.G.); (J.B.K.); (A.B.)
| | - Amel Benali
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research (HCMR), Gournes Pediados, 71003 Heraklion, Greece; (N.G.); (J.B.K.); (A.B.)
- Laboratoire d’Aquaculture et Bioremediation AquaBior, Université d’Oran 1, Oran 31000, Algeria
- Laboratoire de Génétique Moléculaire et Cellulaire, Université des Sciences et de la Technologie d’Oran Mohamed BOUDIAF-USTO-MB, BP 1505, El M’naouer, Oran 31000, Algeria
| | - Efstathia Ioannou
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (E.I.); (A.K.); (V.R.)
| | - Aikaterini Koutsaviti
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (E.I.); (A.K.); (V.R.)
| | - Vassilios Roussis
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (E.I.); (A.K.); (V.R.)
| | - Hélène Gâteau
- Laboratoire Biologie des Organismes, Stress, Santé, Environnement (BiOSSE), Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans, France; (A.P.); (O.B.); (J.S.); (H.G.); (S.P.); (V.L.); (M.B.); (F.K.); (M.F.); (J.-L.M.)
| | - Suliya Phimmaha
- Laboratoire Biologie des Organismes, Stress, Santé, Environnement (BiOSSE), Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans, France; (A.P.); (O.B.); (J.S.); (H.G.); (S.P.); (V.L.); (M.B.); (F.K.); (M.F.); (J.-L.M.)
| | - Vincent Leignel
- Laboratoire Biologie des Organismes, Stress, Santé, Environnement (BiOSSE), Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans, France; (A.P.); (O.B.); (J.S.); (H.G.); (S.P.); (V.L.); (M.B.); (F.K.); (M.F.); (J.-L.M.)
| | - Myriam Badawi
- Laboratoire Biologie des Organismes, Stress, Santé, Environnement (BiOSSE), Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans, France; (A.P.); (O.B.); (J.S.); (H.G.); (S.P.); (V.L.); (M.B.); (F.K.); (M.F.); (J.-L.M.)
| | - Feriel Khiar
- Laboratoire Biologie des Organismes, Stress, Santé, Environnement (BiOSSE), Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans, France; (A.P.); (O.B.); (J.S.); (H.G.); (S.P.); (V.L.); (M.B.); (F.K.); (M.F.); (J.-L.M.)
| | - Nellie Francezon
- Institut des Molécules et Matériaux du Mans, UMR CNRS 6283, Le Mans Université, Avenue Olivier Messiaen, 2085 Le Mans, France; (N.F.); (P.P.)
| | - Mostefa Fodil
- Laboratoire Biologie des Organismes, Stress, Santé, Environnement (BiOSSE), Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans, France; (A.P.); (O.B.); (J.S.); (H.G.); (S.P.); (V.L.); (M.B.); (F.K.); (M.F.); (J.-L.M.)
| | - Pamela Pasetto
- Institut des Molécules et Matériaux du Mans, UMR CNRS 6283, Le Mans Université, Avenue Olivier Messiaen, 2085 Le Mans, France; (N.F.); (P.P.)
| | - Jean-Luc Mouget
- Laboratoire Biologie des Organismes, Stress, Santé, Environnement (BiOSSE), Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans, France; (A.P.); (O.B.); (J.S.); (H.G.); (S.P.); (V.L.); (M.B.); (F.K.); (M.F.); (J.-L.M.)
| |
Collapse
|
4
|
Cafferty BJ, Yuan L, Baghbanzadeh M, Rappoport D, Beyzavi MH, Whitesides GM. Charge Transport through Self-Assembled Monolayers of Monoterpenoids. Angew Chem Int Ed Engl 2019; 58:8097-8102. [PMID: 30989746 DOI: 10.1002/anie.201902997] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Indexed: 11/08/2022]
Abstract
The nature of the processes at the origin of life that selected specific classes of molecules for broad incorporation into cells is controversial. Among those classes selected were polyisoprenoids and their derivatives. This paper tests the hypothesis that polyisoprenoids were early contributors to membranes in part because they (or their derivatives) could facilitate charge transport by quantum tunneling. It measures charge transport across self-assembled monolayers (SAMs) of carboxyl-terminated monoterpenoids (O2 C(C9 HX)) and alkanoates (O2 C(C7 HX)) with different degrees of unsaturation, supported on silver (AgTS ) bottom electrodes, with Ga2 O3 /EGaIn top electrodes. Measurements of current density of SAMs of linear length-matched hydrocarbons-both saturated and unsaturated-show that completely unsaturated molecules transport charge faster than those that are completely saturated by approximately a factor of ten. This increase in relative rates of charge transport correlates with the number of carbon-carbon double bonds, but not with the extent of conjugation. These results suggest that polyisoprenoids-even fully unsaturated-are not sufficiently good tunneling conductors for their conductivity to have favored them as building blocks in the prebiotic world.
Collapse
Affiliation(s)
- Brian J Cafferty
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA, 02138, USA
| | - Li Yuan
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA, 02138, USA
| | - Mostafa Baghbanzadeh
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA, 02138, USA
| | - Dmitrij Rappoport
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA, 02138, USA
| | - M Hassan Beyzavi
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA, 02138, USA.,Current address: Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, 72701, USA
| | - George M Whitesides
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA, 02138, USA.,Kalvi Institute for Bionano Science and Technology, Harvard University, 29 Oxford Street, Cambridge, MA, 02138, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, 60 Oxford Street, Cambridge, MA, 02138, USA
| |
Collapse
|
6
|
Dibrova DV, Chudetsky MY, Galperin MY, Koonin EV, Mulkidjanian AY. The role of energy in the emergence of biology from chemistry. ORIGINS LIFE EVOL B 2012; 42:459-68. [PMID: 23100130 PMCID: PMC3974900 DOI: 10.1007/s11084-012-9308-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Any scenario of the transition from chemistry to biology should include an "energy module" because life can exist only when supported by energy flow(s). We addressed the problem of primordial energetics by combining physico-chemical considerations with phylogenomic analysis. We propose that the first replicators could use abiotically formed, exceptionally photostable activated cyclic nucleotides both as building blocks and as the main energy source. Nucleoside triphosphates could replace cyclic nucleotides as the principal energy-rich compounds at the stage of the first cells, presumably because the metal chelates of nucleoside triphosphates penetrated membranes much better than the respective metal complexes of nucleoside monophosphates. The ability to exploit natural energy flows for biogenic production of energy-rich molecules could evolve only gradually, after the emergence of sophisticated enzymes and ion-tight membranes. We argue that, in the course of evolution, sodium-dependent membrane energetics preceded the proton-based energetics which evolved independently in bacteria and archaea.
Collapse
Affiliation(s)
- Daria V. Dibrova
- School of Physics, University of Osnabrück, D-49069 Osnabrück, Germany
- School of Bioengineering and Bioinformatics, Moscow State University, Moscow 119992, Russia
| | - Michail Y. Chudetsky
- Institute of Oil and Gas Problems, Russian Academy of Sciences, Gubkina 3, Moscow, 119991 Russia
| | - Michael Y. Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
| | - Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
| | - Armen Y. Mulkidjanian
- School of Physics, University of Osnabrück, D-49069 Osnabrück, Germany
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119992, Russia
| |
Collapse
|