1
|
Wang J, Yin J, Imtiaz H, Wang H, Li Y. Enantioselective Total Synthesis of (-)-Cyathin B 2: A Desymmetric Double-Allylboration Approach. J Am Chem Soc 2024; 146:25078-25087. [PMID: 39196853 DOI: 10.1021/jacs.4c08042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Abstract
A powerful Pt-catalyzed asymmetric diboration/desymmetric double-allylboration cascade reaction has been developed for the construction of synthetically useful, densely functionalized hydrindanes with five stereocenters, including three quaternary ones, in good yields and excellent enantiomeric excess (ee) values within a single synthetic operation. A unified strategy utilizing this key tandem methodology enabled the concise asymmetric total synthesis of cyathane diterpene (-)-Cyathin B2 in 14 steps from commercially available starting materials, thereby demonstrating its remarkable potential in the synthesis of hydrindane-containing natural products and pharmaceuticals.
Collapse
Affiliation(s)
- Jianping Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Jiacheng Yin
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Hayatullah Imtiaz
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Hongyu Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Yun Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
2
|
Adarshan S, Sree VSS, Muthuramalingam P, Nambiar KS, Sevanan M, Satish L, Venkidasamy B, Jeelani PG, Shin H. Understanding Macroalgae: A Comprehensive Exploration of Nutraceutical, Pharmaceutical, and Omics Dimensions. PLANTS (BASEL, SWITZERLAND) 2023; 13:113. [PMID: 38202421 PMCID: PMC10780804 DOI: 10.3390/plants13010113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/17/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024]
Abstract
Driven by a surge in global interest in natural products, macroalgae or seaweed, has emerged as a prime source for nutraceuticals and pharmaceutical applications. Characterized by remarkable genetic diversity and a crucial role in marine ecosystems, these organisms offer not only substantial nutritional value in proteins, fibers, vitamins, and minerals, but also a diverse array of bioactive molecules with promising pharmaceutical properties. Furthermore, macroalgae produce approximately 80% of the oxygen in the atmosphere, highlighting their ecological significance. The unique combination of nutritional and bioactive attributes positions macroalgae as an ideal resource for food and medicine in various regions worldwide. This comprehensive review consolidates the latest advancements in the field, elucidating the potential applications of macroalgae in developing nutraceuticals and therapeutics. The review emphasizes the pivotal role of omics approaches in deepening our understanding of macroalgae's physiological and molecular characteristics. By highlighting the importance of omics, this review also advocates for continued exploration and utilization of these extraordinary marine organisms in diverse domains, including drug discovery, functional foods, and other industrial applications. The multifaceted potential of macroalgae warrants further research and development to unlock their full benefits and contribute to advancing global health and sustainable industries.
Collapse
Affiliation(s)
- Sivakumar Adarshan
- Department of Biotechnology, Alagappa University, Karaikudi 630003, Tamil Nadu, India;
| | - Vairavel Sivaranjani Sivani Sree
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore 641114, Tamil Nadu, India; (V.S.S.S.); (K.S.N.); (M.S.)
| | - Pandiyan Muthuramalingam
- Division of Horticultural Science, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52725, Republic of Korea;
- Department of Oral and Maxillofacial Surgery, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Dental College and Hospitals, Saveetha University, Chennai 600077, Tamil Nadu, India;
| | - Krishnanjana S Nambiar
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore 641114, Tamil Nadu, India; (V.S.S.S.); (K.S.N.); (M.S.)
| | - Murugan Sevanan
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore 641114, Tamil Nadu, India; (V.S.S.S.); (K.S.N.); (M.S.)
| | - Lakkakula Satish
- Applied Phycology and Biotechnology Division, Marine Algal Research Station, CSIR—Central Salt and Marine Chemicals Research Institute, Mandapam 623519, Tamil Nadu, India;
| | - Baskar Venkidasamy
- Department of Oral and Maxillofacial Surgery, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Dental College and Hospitals, Saveetha University, Chennai 600077, Tamil Nadu, India;
| | - Peerzada Gh Jeelani
- Department of Biotechnology, Microbiology & Bioinformatics, National College Trichy, Tiruchirapalli 620001, Tamil Nadu, India;
| | - Hyunsuk Shin
- Division of Horticultural Science, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52725, Republic of Korea;
| |
Collapse
|
3
|
Gribble GW. Naturally Occurring Organohalogen Compounds-A Comprehensive Review. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2023; 121:1-546. [PMID: 37488466 DOI: 10.1007/978-3-031-26629-4_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
The present volume is the third in a trilogy that documents naturally occurring organohalogen compounds, bringing the total number-from fewer than 25 in 1968-to approximately 8000 compounds to date. Nearly all of these natural products contain chlorine or bromine, with a few containing iodine and, fewer still, fluorine. Produced by ubiquitous marine (algae, sponges, corals, bryozoa, nudibranchs, fungi, bacteria) and terrestrial organisms (plants, fungi, bacteria, insects, higher animals) and universal abiotic processes (volcanos, forest fires, geothermal events), organohalogens pervade the global ecosystem. Newly identified extraterrestrial sources are also documented. In addition to chemical structures, biological activity, biohalogenation, biodegradation, natural function, and future outlook are presented.
Collapse
Affiliation(s)
- Gordon W Gribble
- Department of Chemistry, Dartmouth College, Hanover, NH, 03755, USA.
| |
Collapse
|
4
|
Lenzi M, Leporatti Persiano M, Gennaro P. Invasive behaviour of the marine Rhodophyta Sphaerococcus coronopifolius Stackhouse, in a hypereutrophic Mediterranean lagoon. MARINE POLLUTION BULLETIN 2022; 181:113885. [PMID: 35779386 DOI: 10.1016/j.marpolbul.2022.113885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Between 2017 and 2022, sediment labile organic matter, physico-chemical and nutrient content of the water column, biomass and C, N, P, S content of Sphaerococcus coronopifolius, a Rhodophyta that produced vegetative blooms in an area of the Orbetello lagoon (Italy) not far from the effluents of two land-based fish-farms, were examined and compared with an area even further away from that source where the species was not found. In order to understand the reasons for an important mat development in only one specific area, microcosm experiments were also carried out. Results suggest the species developed in dense and extensive mats under high orthophosphate and nitrate nitrogen ion concentrations conditions, behaving as an opportunistic species.
Collapse
Affiliation(s)
- M Lenzi
- Lagoon Ecology and Aquaculture Laboratory (LEALab), Pinalti 6, Orbetello 58015, Italy.
| | - M Leporatti Persiano
- Lagoon Ecology and Aquaculture Laboratory (LEALab), Pinalti 6, Orbetello 58015, Italy
| | - P Gennaro
- ISPRA, Italian Institute for Environmental Protection and Research, Leghorn, Italy
| |
Collapse
|
5
|
Asimakis E, Shehata AA, Eisenreich W, Acheuk F, Lasram S, Basiouni S, Emekci M, Ntougias S, Taner G, May-Simera H, Yilmaz M, Tsiamis G. Algae and Their Metabolites as Potential Bio-Pesticides. Microorganisms 2022; 10:microorganisms10020307. [PMID: 35208762 PMCID: PMC8877611 DOI: 10.3390/microorganisms10020307] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/23/2022] [Accepted: 01/25/2022] [Indexed: 01/27/2023] Open
Abstract
An increasing human population necessitates more food production, yet current techniques in agriculture, such as chemical pesticide use, have negative impacts on the ecosystems and strong public opposition. Alternatives to synthetic pesticides should be safe for humans, the environment, and be sustainable. Extremely diverse ecological niches and millions of years of competition have shaped the genomes of algae to produce a myriad of substances that may serve humans in various biotechnological areas. Among the thousands of described algal species, only a small number have been investigated for valuable metabolites, yet these revealed the potential of algal metabolites as bio-pesticides. This review focuses on macroalgae and microalgae (including cyanobacteria) and their extracts or purified compounds, that have proven to be effective antibacterial, antiviral, antifungal, nematocides, insecticides, herbicides, and plant growth stimulants. Moreover, the mechanisms of action of the majority of these metabolites against plant pests are thoroughly discussed. The available information demonstrated herbicidal activities via inhibition of photosynthesis, antimicrobial activities via induction of plant defense responses, inhibition of quorum sensing and blocking virus entry, and insecticidal activities via neurotoxicity. The discovery of antimetabolites also seems to hold great potential as one recent example showed antimicrobial and herbicidal properties. Algae, especially microalgae, represent a vast untapped resource for discovering novel and safe biopesticide compounds.
Collapse
Affiliation(s)
- Elias Asimakis
- Laboratory of Systems Microbiology and Applied Genomics, Department of Environmental Engineering, University of Patras, 2 Seferi St., 30131 Agrinio, Greece;
| | - Awad A. Shehata
- Research and Development Section, PerNaturam GmbH, 56290 Gödenroth, Germany;
| | - Wolfgang Eisenreich
- Bavarian NMR Center—Structural Membrane Biochemistry, Department of Chemistry, Technische Universität München, 85748 Garching, Germany;
| | - Fatma Acheuk
- Laboratory for Valorization and Conservation of Biological Resources, Faculty of Sciences, University M’Hamed Bougara of Boumerdes, Boumerdes 35000, Algeria;
| | - Salma Lasram
- Laboratory of Molecular Physiology of Plants, Borj-Cedria Biotechnology Center. BP. 901, Hammam-Lif 2050, Tunisia;
| | - Shereen Basiouni
- Institute of Molecular Physiology, Johannes Gutenberg-University of Mainz, 55128 Mainz, Germany; (S.B.); (H.M.-S.)
| | - Mevlüt Emekci
- Department of Plant Protection, Faculty of Agriculture, Ankara University, Keçiören, Ankara 06135, Turkey;
| | - Spyridon Ntougias
- Department of Environmental Engineering, Democritus University of Thrace, Vas. Sofias 12, 67132 Xanthi, Greece;
| | - Gökçe Taner
- Department of Bioengineering, Bursa Technical University, Bursa 16310, Turkey;
| | - Helen May-Simera
- Institute of Molecular Physiology, Johannes Gutenberg-University of Mainz, 55128 Mainz, Germany; (S.B.); (H.M.-S.)
| | - Mete Yilmaz
- Department of Bioengineering, Bursa Technical University, Bursa 16310, Turkey;
- Correspondence: (M.Y.); (G.T.)
| | - George Tsiamis
- Laboratory of Systems Microbiology and Applied Genomics, Department of Environmental Engineering, University of Patras, 2 Seferi St., 30131 Agrinio, Greece;
- Correspondence: (M.Y.); (G.T.)
| |
Collapse
|
6
|
He Y, Wang H, Xu L, Li DY, Ge JH, Feng DF, Feng W, Zou G, Liu PN. Direct Access to Bridged Polycyclic Skeletons by Merging Oxidative C-H Annulation and Cascade [4 + 2] Cycloaddition. Org Lett 2021; 24:121-126. [PMID: 34931834 DOI: 10.1021/acs.orglett.1c03652] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We report a step-economic strategy for the direct synthesis of bridged polycyclic skeletons by merging oxidative C-H annulation and cascade cycloaddition. In the protocol, spiro[cyclopentane-1,3'-indoline]-2,4-dien-2'-ones were first synthesized by oxidative C-H annulation of ethylideneoxindoles with alkynes. Subsequent cascade [4 + 2] cycloaddition with dienophiles gave the bridged bicyclo[2.2.1]quinolin-2(1H)-ones and enabled the one-pot construction of two quaternary carbon centers and three C-C bonds. Mechanistic investigations of the latter suggest a cascade ring-opening, 1,5-sigmatropic rearrangement, and [4 + 2] cycloaddition process.
Collapse
Affiliation(s)
- Yan He
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China.,School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, China
| | - Heng Wang
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| | - Li Xu
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| | - Deng-Yuan Li
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| | - Ji-Hong Ge
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| | - Da-Fu Feng
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| | - Wei Feng
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| | - Gang Zou
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| | - Pei-Nian Liu
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
7
|
Bhowmick S, Mazumdar A, Moulick A, Adam V. Algal metabolites: An inevitable substitute for antibiotics. Biotechnol Adv 2020; 43:107571. [PMID: 32505655 DOI: 10.1016/j.biotechadv.2020.107571] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 05/22/2020] [Accepted: 05/29/2020] [Indexed: 12/11/2022]
Abstract
Antibiotic resistance is rising at a pace that is difficult to cope with; circumvention of this issue requires fast and efficient alternatives to conventional antibiotics. Algae inhabit a wide span of ecosystems, which contributes to their ability to synthesize diverse classes of highly active biogenic metabolites. Here, for the first time, we reviewed all possible algal metabolites with broad spectra antibacterial activity against pathogenic bacteria, including antibiotic-resistant strains, and categorized different metabolites of both freshwater and marine algae, linking them on the basis of their target sites and mechanistic actions along with their probable nanoconjugates. Algae can be considered a boon for novel drug discovery in the era of antibiotic resistance, as various algal primary and secondary metabolites possess potential antibacterial properties. The diversity of these metabolites from indigenous sources provides a promising gateway enabling researchers and pharmaceutical companies to develop novel nontoxic, cost-effective and highly efficient antibacterial medicines.
Collapse
Affiliation(s)
- Sukanya Bhowmick
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno CZ-613 00, Czech Republic; Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno CZ-612 00, Czech Republic
| | - Aninda Mazumdar
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno CZ-613 00, Czech Republic; Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno CZ-612 00, Czech Republic
| | - Amitava Moulick
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno CZ-612 00, Czech Republic.
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno CZ-613 00, Czech Republic; Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno CZ-612 00, Czech Republic.
| |
Collapse
|
8
|
Ismail MM, Alotaibi BS, EL-Sheekh MM. Therapeutic Uses of Red Macroalgae. Molecules 2020; 25:molecules25194411. [PMID: 32992919 PMCID: PMC7583832 DOI: 10.3390/molecules25194411] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 12/12/2022] Open
Abstract
Red Seaweed “Rhodophyta” are an important group of macroalgae that include approximately 7000 species. They are a rich source of structurally diverse bioactive constituents, including protein, sulfated polysaccharides, pigments, polyunsaturated fatty acids, vitamins, minerals, and phenolic compounds with nutritional, medical, and industrial importance. Polysaccharides are the main components in the cell wall of red algae and represent about 40–50% of the dry weight, which are extensively utilized in industry and pharmaceutical compounds, due to their thickening and gelling properties. The hydrocolloids galactans carrageenans and agars are the main red seaweed cell wall polysaccharides, which had broad-spectrum therapeutic characters. Generally, the chemical contents of seaweed are different according to the algal species, growth stage, environment, and external conditions, e.g., the temperature of the water, light intensity, nutrient concentrations in the ecosystem. Economically, they can be recommended as a substitute source for natural ingredients that contribute to a broad range of bioactivities like cancer therapy, anti-inflammatory agents, and acetylcholinesterase inhibitory. This review touches on the main points of the pharmaceutical applications of red seaweed, as well as the exploitation of their specific compounds and secondary metabolites with vital roles.
Collapse
Affiliation(s)
- Mona M. Ismail
- National Institute of Oceanography and Fisheries, NIOF, Alexandria 21556, Egypt;
| | - Badriyah S. Alotaibi
- Pharmaceutical Sciences Department, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
| | - Mostafa M. EL-Sheekh
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
- Correspondence: ; Tel.: +20-1224106666; Fax: +20-403350804
| |
Collapse
|
9
|
Abstract
The urgent need to replace fossil fuels has seen macroalgae advancing as a potential feedstock for anaerobic digestion. The natural methane productivity (dry weight per hectare) of seaweeds is greater than in many terrestrial plant systems. As part of their defence systems, seaweeds, unlike terrestrial plants, produce a range of halogenated secondary metabolites, especially chlorinated and brominated compounds. Some orders of brown seaweeds also accumulate iodine, up to 1.2% of their dry weight. Fluorine remains rather unusual within the chemical structure. Halogenated hydrocarbons have moderate to high toxicities. In addition, halogenated organic compounds constitute a large group of environmental chemicals due to their extensive use in industry and agriculture. In recent years, concerns over the environmental fate and release of these halogenated organic compounds have resulted in research into their biodegradation and the evidence emerging shows that many of these compounds are more easily degraded under strictly anaerobic conditions compared to aerobic biodegradation. Biosorption via seaweed has become an alternative to the existing technologies in removing these pollutants. Halogenated compounds are known inhibitors of methane production from ruminants and humanmade anaerobic digesters. The focus of this paper is reviewing the available information on the effects of halogenated organic compounds on anaerobic digestion.
Collapse
|
10
|
Cotas J, Leandro A, Pacheco D, Gonçalves AMM, Pereira L. A Comprehensive Review of the Nutraceutical and Therapeutic Applications of Red Seaweeds (Rhodophyta). Life (Basel) 2020; 10:E19. [PMID: 32110890 PMCID: PMC7151636 DOI: 10.3390/life10030019] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/21/2020] [Accepted: 02/24/2020] [Indexed: 12/15/2022] Open
Abstract
The red seaweed group (Rhodophyta) is one of the phyla of macroalgae, among the groups Phaeophyceae and Chlorophyta, brown and green seaweeds, respectively. Nowadays, all groups of macroalgae are getting the attention of the scientific community due to the bioactive substances they produce. Several macroalgae products have exceptional properties with nutraceutical, pharmacological, and biomedical interest. The main compounds studied are the fatty acids, pigments, phenols, and polysaccharides. Polysaccharides are the most exploited molecules, which are already widely used in various industries and are, presently, entering into more advanced applications from the therapeutic point of view. The focuses of this review are the red seaweeds' compounds, its proprieties, and its uses. Moreover, this work discusses new possible applications of the compounds of the red seaweeds.
Collapse
Affiliation(s)
- João Cotas
- MARE—Marine and Environmental Sciences Centre, Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, 3001-456 Coimbra, Portugal; (J.C.); (A.L.); (D.P.); (A.M.M.G.)
| | - Adriana Leandro
- MARE—Marine and Environmental Sciences Centre, Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, 3001-456 Coimbra, Portugal; (J.C.); (A.L.); (D.P.); (A.M.M.G.)
| | - Diana Pacheco
- MARE—Marine and Environmental Sciences Centre, Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, 3001-456 Coimbra, Portugal; (J.C.); (A.L.); (D.P.); (A.M.M.G.)
| | - Ana M. M. Gonçalves
- MARE—Marine and Environmental Sciences Centre, Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, 3001-456 Coimbra, Portugal; (J.C.); (A.L.); (D.P.); (A.M.M.G.)
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Leonel Pereira
- MARE—Marine and Environmental Sciences Centre, Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, 3001-456 Coimbra, Portugal; (J.C.); (A.L.); (D.P.); (A.M.M.G.)
| |
Collapse
|
11
|
Smyrniotopoulos V, de Andrade Tomaz AC, Vanderlei de Souza MDF, Leitão da Cunha EV, Kiss R, Mathieu V, Ioannou E, Roussis V. Halogenated Diterpenes with In Vitro Antitumor Activity from the Red Alga Sphaerococcus coronopifolius. Mar Drugs 2019; 18:E29. [PMID: 31905719 PMCID: PMC7024270 DOI: 10.3390/md18010029] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 12/24/2019] [Accepted: 12/25/2019] [Indexed: 11/17/2022] Open
Abstract
Eight new (1-8) structurally diverse diterpenes featuring five different carbocycles were isolated from the organic extracts of the red alga Sphaerococcus coronopifolius collected from the coastline of the Ionian Sea in Greece. The structures of the new natural products, seven of which were halogenated, and the relative configuration of their stereocenters were determined on the basis of comprehensive spectroscopic analyses, including NMR and HRMS data. Compounds 5 and 8 were found to possess in vitro antitumor activity against one murine and five human cancer cell lines with mean IC50 values 15 and 16 μM, respectively.
Collapse
Affiliation(s)
- Vangelis Smyrniotopoulos
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (V.S.); (A.C.d.A.T.); (E.I.)
| | - Anna Cláudia de Andrade Tomaz
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (V.S.); (A.C.d.A.T.); (E.I.)
- Postgraduate Program in Bioactive Natural and Synthetic Products, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051-970, PB, Brazil; (M.d.F.V.d.S.); (E.V.L.d.C.)
| | - Maria de Fátima Vanderlei de Souza
- Postgraduate Program in Bioactive Natural and Synthetic Products, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051-970, PB, Brazil; (M.d.F.V.d.S.); (E.V.L.d.C.)
| | - Emídio Vasconcelos Leitão da Cunha
- Postgraduate Program in Bioactive Natural and Synthetic Products, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051-970, PB, Brazil; (M.d.F.V.d.S.); (E.V.L.d.C.)
| | - Robert Kiss
- Fonds National de la Recherche Scientifique, 1050 Bruxelles, Belgium;
| | - Véronique Mathieu
- Department of Pharmacotherapy and Pharmaceutics, Université Libre de Bruxelles, Boulevard du Triomphe, 1050 Brussels, Belgium;
- ULB Cancer Research Center, Université Libre de Bruxelles, Boulevard du Triomphe, 1050 Brussels, Belgium
| | - Efstathia Ioannou
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (V.S.); (A.C.d.A.T.); (E.I.)
| | - Vassilios Roussis
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (V.S.); (A.C.d.A.T.); (E.I.)
| |
Collapse
|
12
|
Alves C, Silva J, Pinteus S, Gaspar H, Alpoim MC, Botana LM, Pedrosa R. From Marine Origin to Therapeutics: The Antitumor Potential of Marine Algae-Derived Compounds. Front Pharmacol 2018; 9:777. [PMID: 30127738 PMCID: PMC6089330 DOI: 10.3389/fphar.2018.00777] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 06/26/2018] [Indexed: 11/13/2022] Open
Abstract
Marine environment has demonstrated to be an interesting source of compounds with uncommon and unique chemical features on which the molecular modeling and chemical synthesis of new drugs can be based with greater efficacy and specificity for the therapeutics. Cancer is a growing public health threat, and despite the advances in biomedical research and technology, there is an urgent need for the development of new anticancer drugs. In this field, it is estimated that more than 60% of commercially available anticancer drugs are natural biomimetic inspired. Among the marine organisms, algae have revealed to be one of the major sources of new compounds of marine origin, including those exhibiting antitumor and cytotoxic potential. These compounds demonstrated ability to mediate specific inhibitory activities on a number of key cellular processes, including apoptosis pathways, angiogenesis, migration and invasion, in both in vitro and in vivo models, revealing their potential to be used as anticancer drugs. This review will focus on the bioactive molecules from algae with antitumor potential, from their origin to their potential uses, with special emphasis to the alga Sphaerococcus coronopifolius as a producer of cytotoxic compounds.
Collapse
Affiliation(s)
- Celso Alves
- MARE - Marine and Environmental Sciences Centre, ESTM, Polytechnic Institute of Leiria, Peniche, Portugal.,Biology Department, DoMar Doctoral Programme on Marine Science, Technology and Management, University of Aveiro, Aveiro, Portugal
| | - Joana Silva
- MARE - Marine and Environmental Sciences Centre, ESTM, Polytechnic Institute of Leiria, Peniche, Portugal
| | - Susete Pinteus
- MARE - Marine and Environmental Sciences Centre, ESTM, Polytechnic Institute of Leiria, Peniche, Portugal
| | - Helena Gaspar
- MARE - Marine and Environmental Sciences Centre, ESTM, Polytechnic Institute of Leiria, Peniche, Portugal.,Faculty of Sciences, BioISI - Biosystems and Integrative Sciences Institute, University of Lisboa, Lisbon, Portugal
| | - Maria C Alpoim
- Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal.,Center of Investigation in Environment, Genetics and Oncobiology, University of Coimbra, Coimbra, Portugal.,Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Luis M Botana
- Departament of Pharmacology, Faculty of Veterinary, University of Santiago de Compostela, Lugo, Spain
| | - Rui Pedrosa
- MARE - Marine and Environmental Sciences Centre, ESTM, Polytechnic Institute of Leiria, Peniche, Portugal
| |
Collapse
|
13
|
Smyrniotopoulos V, Kiss R, Mathieu V, Vagias C, Roussis V. Diterpenes with Unprecedented Skeletons from the Red AlgaSphaerococcus coronopifolius. European J Org Chem 2015. [DOI: 10.1002/ejoc.201500133] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
14
|
Rodrigues D, Alves C, Horta A, Pinteus S, Silva J, Culioli G, Thomas OP, Pedrosa R. Antitumor and antimicrobial potential of bromoditerpenes isolated from the red alga, Sphaerococcus coronopifolius. Mar Drugs 2015; 13:713-26. [PMID: 25629386 PMCID: PMC4344597 DOI: 10.3390/md13020713] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Accepted: 01/07/2015] [Indexed: 12/20/2022] Open
Abstract
Cancer and infectious diseases continue to be a major public health problem, and new drugs are necessary. As marine organisms are well known to provide a wide range of original compounds, the aim of this study was to investigate the bioactivity of the main constituents of the cosmopolitan red alga, Sphaerococcus coronopifolius. The structure of several bromoditerpenes was determined by extensive spectroscopic analysis and comparison with literature data. Five molecules were isolated and characterized which include a new brominated diterpene belonging to the rare dactylomelane family and named sphaerodactylomelol (1), along with four already known sphaerane bromoditerpenes (2-5). Antitumor activity was assessed by cytotoxicity and anti-proliferative assays on an in vitro model of human hepatocellular carcinoma (HepG-2 cells). Antimicrobial activity was evaluated against four pathogenic microorganisms: Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Candida albicans. Compound 4 exhibited the highest antimicrobial activity against S. aureus (IC50 6.35 µM) and compound 5 the highest anti-proliferative activity on HepG-2 cells (IC50 42.9 µM). The new diterpene, sphaerodactylomelol (1), induced inhibition of cell proliferation (IC50 280 µM) and cytotoxicity (IC50 720 µM) on HepG-2 cells and showed antimicrobial activity against S. aureus (IC50 96.3 µM).
Collapse
Affiliation(s)
- Daniel Rodrigues
- Marine Resources Research Group (GIRM), ESTM, Polytechnic Institute of Leiria, 2520-641 Peniche, Portugal.
| | - Celso Alves
- Marine Resources Research Group (GIRM), ESTM, Polytechnic Institute of Leiria, 2520-641 Peniche, Portugal.
| | - André Horta
- Marine Resources Research Group (GIRM), ESTM, Polytechnic Institute of Leiria, 2520-641 Peniche, Portugal.
| | - Susete Pinteus
- Marine Resources Research Group (GIRM), ESTM, Polytechnic Institute of Leiria, 2520-641 Peniche, Portugal.
| | - Joana Silva
- Marine Resources Research Group (GIRM), ESTM, Polytechnic Institute of Leiria, 2520-641 Peniche, Portugal.
| | - Gérald Culioli
- Nice Institute of Chemistry-PCRE, UMR 7272 CNRS, University de Nice-Sophia Antipolis, Parc Valrose, 06108 Nice, France.
| | - Olivier P Thomas
- Nice Institute of Chemistry-PCRE, UMR 7272 CNRS, University de Nice-Sophia Antipolis, Parc Valrose, 06108 Nice, France.
| | - Rui Pedrosa
- Marine Resources Research Group (GIRM), ESTM, Polytechnic Institute of Leiria, 2520-641 Peniche, Portugal.
| |
Collapse
|
15
|
|