1
|
Glucosinolates: Natural Occurrence, Biosynthesis, Accessibility, Isolation, Structures, and Biological Activities. Molecules 2020; 25:molecules25194537. [PMID: 33022970 PMCID: PMC7582585 DOI: 10.3390/molecules25194537] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/28/2020] [Accepted: 09/28/2020] [Indexed: 12/13/2022] Open
Abstract
Glucosinolates (GSLs) are secondary plant metabolites abundantly found in plant order Brassicales. GSLs are constituted by an S-β-d-glucopyrano unit anomerically connected to O-sulfated (Z)-thiohydroximate moiety. The side-chain of the O-sulfate thiohydroximate moiety, which is derived from a different amino acid, contributes to the diversity of natural GSL, with more than 130 structures identified and validated to this day. Both the structural diversity of GSL and their biological implication in plants have been biochemically studied. Although chemical syntheses of GSL have been devised to give access to these secondary metabolites, direct extraction from biomass remains the conventional method to isolate natural GSL. While intact GSLs are biologically inactive, various products, including isothiocyanates, nitriles, epithionitriles, and cyanides obtained through their hydrolysis of GSLs, exhibit many different biological activities, among which several therapeutic benefits have been suggested. This article reviews natural occurrence, accessibility via chemical, synthetic biochemical pathways of GSL, and the current methodology of extraction, purification, and characterization. Structural information, including the most recent classification of GSL, and their stability and storage conditions will also be discussed. The biological perspective will also be explored to demonstrate the importance of these prominent metabolites.
Collapse
|
2
|
Blažević I, Montaut S, Burčul F, Olsen CE, Burow M, Rollin P, Agerbirk N. Glucosinolate structural diversity, identification, chemical synthesis and metabolism in plants. PHYTOCHEMISTRY 2020; 169:112100. [PMID: 31771793 DOI: 10.1016/j.phytochem.2019.112100] [Citation(s) in RCA: 264] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 07/04/2019] [Accepted: 08/18/2019] [Indexed: 05/05/2023]
Abstract
The glucosinolates (GSLs) is a well-defined group of plant metabolites characterized by having an S-β-d-glucopyrano unit anomerically connected to an O-sulfated (Z)-thiohydroximate function. After enzymatic hydrolysis, the sulfated aglucone can undergo rearrangement to an isothiocyanate, or form a nitrile or other products. The number of GSLs known from plants, satisfactorily characterized by modern spectroscopic methods (NMR and MS) by mid-2018, is 88. In addition, a group of partially characterized structures with highly variable evidence counts for approximately a further 49. This means that the total number of characterized GSLs from plants is somewhere between 88 and 137. The diversity of GSLs in plants is critically reviewed here, resulting in significant discrepancies with previous reviews. In general, the well-characterized GSLs show resemblance to C-skeletons of the amino acids Ala, Val, Leu, Trp, Ile, Phe/Tyr and Met, or to homologs of Ile, Phe/Tyr or Met. Insufficiently characterized, still hypothetic GSLs include straight-chain alkyl GSLs and chain-elongated GSLs derived from Leu. Additional reports (since 2011) of insufficiently characterized GSLs are reviewed. Usually the crucial missing information is correctly interpreted NMR, which is the most effective tool for GSL identification. Hence, modern use of NMR for GSL identification is also reviewed and exemplified. Apart from isolation, GSLs may be obtained by organic synthesis, allowing isotopically labeled GSLs and any kind of side chain. Enzymatic turnover of GSLs in plants depends on a considerable number of enzymes and other protein factors and furthermore depends on GSL structure. Identification of GSLs must be presented transparently and live up to standard requirements in natural product chemistry. Unfortunately, many recent reports fail in these respects, including reports based on chromatography hyphenated to MS. In particular, the possibility of isomers and isobaric structures is frequently ignored. Recent reports are re-evaluated and interpreted as evidence of the existence of "isoGSLs", i.e. non-GSL isomers of GSLs in plants. For GSL analysis, also with MS-detection, we stress the importance of using authentic standards.
Collapse
Affiliation(s)
- Ivica Blažević
- Department of Organic Chemistry, Faculty of Chemistry and Technology, University of Split, Ruđera Boškovića 35, 21000, Split, Croatia.
| | - Sabine Montaut
- Department of Chemistry and Biochemistry, Biomolecular Sciences Programme, Laurentian University, 935 Ramsey Lake Road, Sudbury, ON P3E 2C6, Canada
| | - Franko Burčul
- Department of Analytical Chemistry, Faculty of Chemistry and Technology, University of Split, Ruđera Boškovića 35, 21000, Split, Croatia
| | - Carl Erik Olsen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Meike Burow
- DynaMo Center and Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Patrick Rollin
- Institut de Chimie Organique et Analytique (ICOA), Université d'Orléans et CNRS, UMR 7311, BP 6759, F-45067, Orléans Cedex 2, France
| | - Niels Agerbirk
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark.
| |
Collapse
|
3
|
Glucosinolates: Novel Sources and Biological Potential. REFERENCE SERIES IN PHYTOCHEMISTRY 2017. [DOI: 10.1007/978-3-319-25462-3_1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
4
|
Hamed AI, Said RB, Kontek B, Al-Ayed AS, Kowalczyk M, Moldoch J, Stochmal A, Olas B. LC-ESI-MS/MS profile of phenolic and glucosinolate compounds in samh flour (Mesembryanthemum forsskalei Hochst. ex Boiss) and the inhibition of oxidative stress by these compounds in human plasma. Food Res Int 2016; 85:282-290. [PMID: 29544846 DOI: 10.1016/j.foodres.2016.04.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Revised: 04/01/2016] [Accepted: 04/09/2016] [Indexed: 12/29/2022]
Abstract
Samh flour (Mesembryanthemum forsskalei) is a foodstuff with high protein content, which can be used as a replacement for wheat flour. It is often consumed by Bedouin tribes of northern Saudi Arabia. Very little is known about bioactive molecules present in samh flour, therefore we analyzed its extracts to evaluate the contents of secondary metabolites. A total of 43 secondary metabolites present in 60% MeOH extract of samh flour were tentatively identified using LC-ESI-MS/MS. These compounds represented five major categories: glucosinolates, sinapic acid and sinapoylglycosides, acylated flavonoids, flavonoids, and amide derivatives. Their effect on oxidative damage of proteins and lipids was determined in vitro by assessing levels of protein thiol groups and concentrations of thiobarbituric acid reactive species (TBARS) in human plasma. Obtained results indicated that samh flour is a rich source of compounds with antioxidant activity.
Collapse
Affiliation(s)
- Arafa I Hamed
- Phytochemistry Laboratory, Department of Botany, Faculty of Science, Aswan University, Aswan 81528, Egypt; Department of Chemistry, College of Science & Arts at Al-Rass, Qassim University, P.O. 53, Kingdom of Saudi Arabia; Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute, ul. Czartoryskich 8, 24-100 Pulawy, Poland
| | - Ridha Ben Said
- Unité Physico Chimie des Matériaux Condensés-UR11ES19, Département de Chimie, Faculté des Sciences de Tunis Université, Tunis El Manar Campus Universitaire, MANAR II, Tunis, Tunisia; Department of Chemistry, College of Science & Arts at Al-Rass, Qassim University, P.O. 53, Kingdom of Saudi Arabia
| | - Bogdan Kontek
- Department of General Biochemistry, Institute of Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/3, 90-236 Lodz, Poland
| | - Abdullah S Al-Ayed
- Department of Chemistry, College of Science & Arts at Al-Rass, Qassim University, P.O. 53, Kingdom of Saudi Arabia
| | - Mariusz Kowalczyk
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute, ul. Czartoryskich 8, 24-100 Pulawy, Poland
| | - Jaroslaw Moldoch
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute, ul. Czartoryskich 8, 24-100 Pulawy, Poland
| | - Anna Stochmal
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute, ul. Czartoryskich 8, 24-100 Pulawy, Poland
| | - Beata Olas
- Department of General Biochemistry, Institute of Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/3, 90-236 Lodz, Poland.
| |
Collapse
|
5
|
Blažević I, De Nicola GR, Montaut S, Rollin P. Glucosinolates in Two Endemic Plants of the Aurinia Genus and their Chemotaxonomic Significance. Nat Prod Commun 2013. [DOI: 10.1177/1934578x1300801032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Glucosinolates (GLs) were characterized in the seed and root of Aurinia leucadea (Guss.) C. Koch and A. sinuata (L.) Griseb., and quantified according to the ISO 9167–1 official method based on the HPLC analysis of desulfo-GLs. Glucoalyssin (GAL, 1), glucobrassicanapin (GBN, 2) and glucoberteroin (GBE, 3) were the major GLs identified in A. leucadea and A. sinuata. GC/MS analysis of the volatile fractions obtained after enzyme hydrolysis showed that they mostly contain isothiocyanates (ITCs) originating from the parent GLs. On this basis and from previous reports, C-5 alkyl GLs 1, 2, and 3 can be considered as chemotaxonomic markers of the Aurinia genus.
Collapse
Affiliation(s)
- Ivica Blažević
- University of Split, Faculty of Chemistry and Technology, Department of Organic Chemistry, Teslina 10/V, 21000 Split, Croatia
| | - Gina Rosalinda De Nicola
- Consiglio per la Ricerca e la Sperimentazione in Agricoltura - Centro di Ricerca per le Colture Industriali (CRA-CIN), Via di Corticella 133, I-40128 Bologna, Italy
| | - Sabine Montaut
- Department of Chemistry and Biochemistry, Laurentian University, 935 Ramsey Lake Road, Sudbury, ON P3E 2C6, Canada
| | - Patrick Rollin
- ICOA-UMR 7311, Université d'Orléans, B.P. 6759, F-45067 Orléans Cedex 2, France
| |
Collapse
|
6
|
Blazevic I, Burcul F, Ruscic M, Mastelic J. Glucosinolates, volatile constituents, and acetylcholinesterase inhibitory activity of Alyssoides utriculata. Chem Nat Compd 2013. [DOI: 10.1007/s10600-013-0613-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|