1
|
Doerner B, Della Sala F, Wang S, Webb SJ. Reaction, Recognition, Relay: Anhydride Hydrolysis Reported by Conformationally Responsive Fluorinated Foldamers in Micelles. Angew Chem Int Ed Engl 2024; 63:e202405924. [PMID: 38703400 DOI: 10.1002/anie.202405924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/23/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024]
Abstract
Natural membrane receptors are proteins that can report on changes in the concentration of external chemical messengers. Messenger binding to a receptor produces conformational changes that are relayed through the membrane into the cell; this information allows cells to adapt to changes in their environment. Artificial membrane receptors (R)-1 and (S)-1 are helical α-aminoisobutyric acid (Aib) foldamers that replicate key parts of this information relay. Solution-phase 19F NMR spectroscopy of zinc(II)-capped receptor 1, either in organic solvent or in membrane-mimetic micelles, showed messenger binding produced an enrichment of either left- or right-handed screw-sense; the chirality of the bound messenger was relayed to the other receptor terminus. Furthermore, in situ production of a chemical messenger in the external aqueous environment could be detected in real-time by a racemic mixture of receptor 1 in micelles. The hydrolysis of insoluble anhydrides produced carboxylate in the aqueous phase, which bound to the receptors and gave a distinct 19F NMR output from inside the hydrophobic region of the micelles.
Collapse
Affiliation(s)
- Benedicte Doerner
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
| | - Flavio Della Sala
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
| | - Siyuan Wang
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
| | - Simon J Webb
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| |
Collapse
|
2
|
Miles SA, Nillama JA, Hunter L. Tinker, Tailor, Soldier, Spy: The Diverse Roles That Fluorine Can Play within Amino Acid Side Chains. Molecules 2023; 28:6192. [PMID: 37687021 PMCID: PMC10489206 DOI: 10.3390/molecules28176192] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/17/2023] [Accepted: 08/17/2023] [Indexed: 09/10/2023] Open
Abstract
Side chain-fluorinated amino acids are useful tools in medicinal chemistry and protein science. In this review, we outline some general strategies for incorporating fluorine atom(s) into amino acid side chains and for elaborating such building blocks into more complex fluorinated peptides and proteins. We then describe the diverse benefits that fluorine can offer when located within amino acid side chains, including enabling 19F NMR and 18F PET imaging applications, enhancing pharmacokinetic properties, controlling molecular conformation, and optimizing target-binding.
Collapse
Affiliation(s)
| | | | - Luke Hunter
- School of Chemistry, The University of New South Wales (UNSW), Sydney 2052, Australia
| |
Collapse
|
3
|
The Emericellipsins A-E from an Alkalophilic Fungus Emericellopsis alkalina Show Potent Activity against Multidrug-Resistant Pathogenic Fungi. J Fungi (Basel) 2021; 7:jof7020153. [PMID: 33669976 PMCID: PMC7924852 DOI: 10.3390/jof7020153] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/18/2021] [Accepted: 02/18/2021] [Indexed: 11/17/2022] Open
Abstract
Novel antimicrobial peptides with antifungal and cytotoxic activity were derived from the alkalophilic fungus Emericellopsis alkalina VKPM F1428. We previously reported that this strain produced emericellipsin A (EmiA), which has strong antifungal and cytotoxic properties. Further analyses of the metabolites obtained under a special alkaline medium resulted in the isolation of four new homologous (Emi B-E). In this work, we report the complete primary structure and detailed biological activity for the newly synthesized nonribosomal antimicrobial peptides called emericellipsins B-E. The inhibitory activity of themajor compound, EmiA, against drug-resistant pathogenic fungi was similar to that of amphotericin B (AmpB). At the same time, EmiA had no hemolytic activity towards human erythrocytes. In addition, EmiA demonstrated low cytotoxic activity towards the normal HPF line, but possessed cancer selectivity to the K-562 and HCT-116 cell lines. Emericillipsins from the alkalophilic fungus Emericellopsis alkaline are promising treatment alternatives to licensed antifungal drugs for invasive mycosis therapy, especially for multidrug-resistant aspergillosis and cryptococcosis.
Collapse
|
4
|
Salnikov ES, De Zotti M, Bobone S, Mazzuca C, Raya J, Siano AS, Peggion C, Toniolo C, Stella L, Bechinger B. Trichogin GA IV Alignment and Oligomerization in Phospholipid Bilayers. Chembiochem 2019; 20:2141-2150. [PMID: 31125169 DOI: 10.1002/cbic.201900263] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Indexed: 12/21/2022]
Abstract
Trichogin GA IV is a short peptaibol with antimicrobial activity. This uncharged, but amphipathic, sequence is aligned at the membrane interface and undergoes a transition to an aggregated state that inserts more deeply into the membrane, an assembly that predominates at a peptide-to-lipid ratio (P/L) of 1:20. In this work, the natural trichogin sequence was prepared and reconstituted into oriented lipid bilayers. The 15 N NMR chemical shift is indicative of a well-defined alignment of the peptide parallel to the membrane surface at P/Ls of 1:120 and 1:20. When the P/L is increased to 1:8, an additional peptide topology is observed that is indicative of a heterogeneous orientation, with helix alignments ranging from around the magic angle to perfectly in-plane. The topological preference of the trichogin helix for an orientation parallel to the membrane surface was confirmed by attenuated total reflection FTIR spectroscopy. Furthermore, 19 F CODEX experiments were performed on a trichogin sequence with 19 F-Phe at position 10. The CODEX decay is in agreement with a tetrameric complex, in which the 19 F sites are about 9-9.5 Å apart. Thus, a model emerges in which the monomeric peptide aligns along the membrane surface. When the peptide concentration increases, first dimeric and then tetrameric assemblies form, made up from helices oriented predominantly parallel to the membrane surface. The formation of these aggregates correlates with the release of vesicle contents including relatively large molecules.
Collapse
Affiliation(s)
- Evgeniy S Salnikov
- Institut de Chimie, University of Strasbourg, CNRS, UMR 7177, 4, rue Blaise Pascal, 67070, Strasbourg, France
| | - Marta De Zotti
- ICB, Padova Unit, CNR', Department of Chemistry, University of Padova, via Marzolo 1, 35131, Padova, Italy
| | - Sara Bobone
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, via della Ricerca Scientifica 1, 00133, Rome, Italy
| | - Claudia Mazzuca
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, via della Ricerca Scientifica 1, 00133, Rome, Italy
| | - Jesus Raya
- Institut de Chimie, University of Strasbourg, CNRS, UMR 7177, 4, rue Blaise Pascal, 67070, Strasbourg, France
| | - Alvaro S Siano
- Departamento de Química Organica, Facultad de Bioquímica y Ciencias Biologicas, Universidad Nacional del Litoral, Ciudad Universitaria UNL, Ruta Nacional N° 168, Km 472, Santa Fe, 3000, Argentina
| | - Cristina Peggion
- ICB, Padova Unit, CNR', Department of Chemistry, University of Padova, via Marzolo 1, 35131, Padova, Italy
| | - Claudio Toniolo
- ICB, Padova Unit, CNR', Department of Chemistry, University of Padova, via Marzolo 1, 35131, Padova, Italy
| | - Lorenzo Stella
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, via della Ricerca Scientifica 1, 00133, Rome, Italy
| | - Burkhard Bechinger
- Institut de Chimie, University of Strasbourg, CNRS, UMR 7177, 4, rue Blaise Pascal, 67070, Strasbourg, France
| |
Collapse
|
5
|
Das S, Ben Haj Salah K, Djibo M, Inguimbert N. Peptaibols as a model for the insertions of chemical modifications. Arch Biochem Biophys 2018; 658:16-30. [DOI: 10.1016/j.abb.2018.09.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 09/05/2018] [Accepted: 09/18/2018] [Indexed: 12/13/2022]
|
6
|
Krátký M, Štěpánková Š, Vorčáková K, Navrátilová L, Trejtnar F, Stolaříková J, Vinšová J. Synthesis of readily available fluorophenylalanine derivatives and investigation of their biological activity. Bioorg Chem 2017; 71:244-256. [PMID: 28245905 DOI: 10.1016/j.bioorg.2017.02.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 02/10/2017] [Accepted: 02/18/2017] [Indexed: 12/13/2022]
Abstract
A series of thirty novel N-acetylated fluorophenylalanine-based aromatic amides and esters was synthesized using N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide or phosphorus trichloride in pyridine. They were characterized by spectral methods and screened against various microbes (Mycobacterium tuberculosis, non-tuberculous mycobacteria, other bacteria, fungi), for their inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) and cytotoxicity. All amino acids derivatives revealed a moderate inhibition of both cholinesterases with IC50 values for AChE and BChE of 57.88-130.75µM and 8.25-289.0µM, respectively. Some derivatives were comparable or superior to rivastigmine, an established drug. Phenyl 2-acetamido-3-(4-fluorophenyl)propanoate was identified as the selective and most potent inhibitor of BChE. The esterification and amidation of parent acids led to an improved BChE inhibition. The esters are better inhibitors of BChE than the amides. The introduction of NO2 and CH3 groups into aniline ring and CF3 moiety in phenol is translated into lower IC50 values. Seven compounds showed selectivity index higher than 10 for at least one cholinesterase. Especially the esters exhibited a mild activity against Gram-positive bacteria, mycobacteria and several fungal strains with minimum inhibitory concentrations starting from 125µM. The highest susceptibility was recorded for Trichophyton mentagrophytes fungus.
Collapse
Affiliation(s)
- Martin Krátký
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic.
| | - Šárka Štěpánková
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic
| | - Katarína Vorčáková
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic
| | - Lucie Navrátilová
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - František Trejtnar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Jiřina Stolaříková
- Laboratory for Mycobacterial Diagnostics and Tuberculosis, Regional Institute of Public Health in Ostrava, Partyzánské námĕstí 7, 702 00 Ostrava, Czech Republic
| | - Jarmila Vinšová
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| |
Collapse
|
7
|
Bortolus M, Dalzini A, Maniero AL, Panighel G, Siano A, Toniolo C, De Zotti M, Formaggio F. Insights into peptide-membrane interactions of newly synthesized, nitroxide-containing analogs of the peptaibiotic trichogin GAIV using EPR. Biopolymers 2017; 108. [DOI: 10.1002/bip.22913] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 06/21/2016] [Accepted: 06/29/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Marco Bortolus
- Department of Chemistry; University of Padova; Padova 35131 Italy
| | - Annalisa Dalzini
- Department of Chemistry; University of Padova; Padova 35131 Italy
| | | | - Giacomo Panighel
- Department of Chemistry; University of Padova; Padova 35131 Italy
| | - Alvaro Siano
- Department of Chemistry; University of Padova; Padova 35131 Italy
- Departamento de Química Orgánica; Facultad de Bioquímica y Ciencias Biológicas (FBCB), Universidad Nacional del Litoral (UNL); 3000 Santa Fe Argentina
| | - Claudio Toniolo
- Department of Chemistry; University of Padova; Padova 35131 Italy
- Institute of Biomolecular Chemistry, Padova Unit, CNR; Padova 35131 Italy
| | - Marta De Zotti
- Department of Chemistry; University of Padova; Padova 35131 Italy
| | - Fernando Formaggio
- Department of Chemistry; University of Padova; Padova 35131 Italy
- Institute of Biomolecular Chemistry, Padova Unit, CNR; Padova 35131 Italy
| |
Collapse
|
8
|
Dalzini A, Bergamini C, Biondi B, De Zotti M, Panighel G, Fato R, Peggion C, Bortolus M, Maniero AL. The rational search for selective anticancer derivatives of the peptide Trichogin GA IV: a multi-technique biophysical approach. Sci Rep 2016; 6:24000. [PMID: 27039838 PMCID: PMC4819177 DOI: 10.1038/srep24000] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 03/18/2016] [Indexed: 02/07/2023] Open
Abstract
Peptaibols are peculiar peptides produced by fungi as weapons against other microorganisms. Previous studies showed that peptaibols are promising peptide-based drugs because they act against cell membranes rather than a specific target, thus lowering the possibility of the onset of multi-drug resistance, and they possess non-coded α-amino acid residues that confer proteolytic resistance. Trichogin GA IV (TG) is a short peptaibol displaying antimicrobial and cytotoxic activity. In the present work, we studied thirteen TG analogues, adopting a multidisciplinary approach. We showed that the cytotoxicity is tuneable by single amino-acids substitutions. Many analogues maintain the same level of non-selective cytotoxicity of TG and three analogues are completely non-toxic. Two promising lead compounds, characterized by the introduction of a positively charged unnatural amino-acid in the hydrophobic face of the helix, selectively kill T67 cancer cells without affecting healthy cells. To explain the determinants of the cytotoxicity, we investigated the structural parameters of the peptides, their cell-binding properties, cell localization, and dynamics in the membrane, as well as the cell membrane composition. We show that, while cytotoxicity is governed by the fine balance between the amphipathicity and hydrophobicity, the selectivity depends also on the expression of negatively charged phospholipids on the cell surface.
Collapse
Affiliation(s)
- Annalisa Dalzini
- Dipartimento di Chimica, Università di Padova, via Marzolo 1, 35131, Padova, Italy
| | - Christian Bergamini
- Dipartimento di Farmacia e Biotecnologie, Università di Bologna, via Irnerio 48, 40126, Bologna, Italy
| | - Barbara Biondi
- Dipartimento di Chimica, Università di Padova, via Marzolo 1, 35131, Padova, Italy
| | - Marta De Zotti
- Dipartimento di Chimica, Università di Padova, via Marzolo 1, 35131, Padova, Italy
| | - Giacomo Panighel
- Dipartimento di Chimica, Università di Padova, via Marzolo 1, 35131, Padova, Italy
| | - Romana Fato
- Dipartimento di Farmacia e Biotecnologie, Università di Bologna, via Irnerio 48, 40126, Bologna, Italy
| | - Cristina Peggion
- Dipartimento di Chimica, Università di Padova, via Marzolo 1, 35131, Padova, Italy
| | - Marco Bortolus
- Dipartimento di Chimica, Università di Padova, via Marzolo 1, 35131, Padova, Italy.,Dipartimento di Scienza dei Materiali, Università degli Studi di Milano Bicocca, 20126, Milano, Italy
| | - Anna Lisa Maniero
- Dipartimento di Chimica, Università di Padova, via Marzolo 1, 35131, Padova, Italy
| |
Collapse
|