1
|
Werby SH, Brčić J, Chosy MB, Sun J, Rendell JT, Neville LF, Wender PA, Cegelski L. Detection of intact vancomycin-arginine as the active antibacterial conjugate in E. coli by whole-cell solid-state NMR. RSC Med Chem 2023; 14:1192-1198. [PMID: 37360389 PMCID: PMC10285746 DOI: 10.1039/d3md00173c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 05/13/2023] [Indexed: 06/28/2023] Open
Abstract
The introduction of new and improved antibacterial agents based on facile synthetic modifications of existing antibiotics represents a promising strategy to deliver urgently needed antibacterial candidates to treat multi-drug resistant bacterial infections. Using this strategy, vancomycin was transformed into a highly active agent against antibiotic-resistant Gram-negative organisms in vitro and in vivo through the addition of a single arginine to yield vancomycin-arginine (V-R). Here, we report detection of the accumulation of V-R in E. coli by whole-cell solid-state NMR using 15N-labeled V-R. 15N CPMAS NMR revealed that the conjugate remained fully amidated without loss of arginine, demonstrating that intact V-R represents the active antibacterial agent. Furthermore, C{N}REDOR NMR in whole cells with all carbons at natural abundance 13C levels exhibited the sensitivity and selectivity to detect the directly bonded 13C-15N pairs of V-R within E. coli cells. Thus, we also present an effective methodology to directly detect and evaluate active drug agents and their accumulation within bacteria without the need for potentially perturbative cell lysis and analysis protocols.
Collapse
Affiliation(s)
- Sabrina H Werby
- Department of Chemistry, Stanford University Stanford CA 94305 USA
| | - Jasna Brčić
- Department of Chemistry, Stanford University Stanford CA 94305 USA
| | - Madeline B Chosy
- Department of Chemistry, Stanford University Stanford CA 94305 USA
| | - Jiuzhi Sun
- Department of Chemistry, Stanford University Stanford CA 94305 USA
| | | | | | - Paul A Wender
- Department of Chemistry, Stanford University Stanford CA 94305 USA
- Department of Chemical and Systems Biology, Stanford University Stanford CA 94305 USA
| | - Lynette Cegelski
- Department of Chemistry, Stanford University Stanford CA 94305 USA
| |
Collapse
|
2
|
Gan BH, Gaynord J, Rowe SM, Deingruber T, Spring DR. The multifaceted nature of antimicrobial peptides: current synthetic chemistry approaches and future directions. Chem Soc Rev 2021; 50:7820-7880. [PMID: 34042120 PMCID: PMC8689412 DOI: 10.1039/d0cs00729c] [Citation(s) in RCA: 207] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Indexed: 12/13/2022]
Abstract
Bacterial infections caused by 'superbugs' are increasing globally, and conventional antibiotics are becoming less effective against these bacteria, such that we risk entering a post-antibiotic era. In recent years, antimicrobial peptides (AMPs) have gained significant attention for their clinical potential as a new class of antibiotics to combat antimicrobial resistance. In this review, we discuss several facets of AMPs including their diversity, physicochemical properties, mechanisms of action, and effects of environmental factors on these features. This review outlines various chemical synthetic strategies that have been applied to develop novel AMPs, including chemical modifications of existing peptides, semi-synthesis, and computer-aided design. We will also highlight novel AMP structures, including hybrids, antimicrobial dendrimers and polypeptides, peptidomimetics, and AMP-drug conjugates and consider recent developments in their chemical synthesis.
Collapse
Affiliation(s)
- Bee Ha Gan
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| | - Josephine Gaynord
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| | - Sam M Rowe
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| | - Tomas Deingruber
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| | - David R Spring
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| |
Collapse
|
3
|
Skwarecki AS, Nowak MG, Milewska MJ. Synthetic strategies in construction of organic low molecular-weight carrier-drug conjugates. Bioorg Chem 2020; 104:104311. [PMID: 33142423 DOI: 10.1016/j.bioorg.2020.104311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/31/2020] [Accepted: 09/20/2020] [Indexed: 12/30/2022]
Abstract
Inefficient transportation of polar metabolic inhibitors through cell membranes of eukaryotic and prokaryotic cells precludes their direct use as drug candidates in chemotherapy. One of the possible solutions to this problem is application of the 'Trojan horse' strategy, i.e. conjugation of an active substance with a molecular carrier of organic or inorganic nature, facilitating membrane penetration. In this work, the synthetic strategies used in rational design and preparation of conjugates of bioactive agents with three types of organic low molecular-weight carriers have been reviewed. These include iron-chelating agents, siderophores and cell-penetrating peptides. Moreover, a less known but very promising "molecular umbrella" conjugation strategy has been presented. Special attention has been paid on appropriate linking strategies, especially these allowing intracellular drug release after internalisation of a conjugate.
Collapse
Affiliation(s)
- Andrzej S Skwarecki
- Department of Pharmaceutical Technology and Biochemistry, Gdańsk University of Technology, 11/12 Gabriela Narutowicza Street, 80-233 Gdańsk, Poland.
| | - Michał G Nowak
- Department of Organic Chemistry, Gdańsk University of Technology, 11/12 Gabriela Narutowicza Street, 80-233 Gdańsk, Poland
| | - Maria J Milewska
- Department of Organic Chemistry, Gdańsk University of Technology, 11/12 Gabriela Narutowicza Street, 80-233 Gdańsk, Poland
| |
Collapse
|
4
|
Ptaszyńska N, Gucwa K, Olkiewicz K, Heldt M, Serocki M, Stupak A, Martynow D, Dębowski D, Gitlin-Domagalska A, Lica J, Łęgowska A, Milewski S, Rolka K. Conjugates of Ciprofloxacin and Levofloxacin with Cell-Penetrating Peptide Exhibit Antifungal Activity and Mammalian Cytotoxicity. Int J Mol Sci 2020; 21:ijms21134696. [PMID: 32630159 PMCID: PMC7369900 DOI: 10.3390/ijms21134696] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/22/2020] [Accepted: 06/30/2020] [Indexed: 01/02/2023] Open
Abstract
Seven conjugates composed of well-known fluoroquinolone antibacterial agents, ciprofloxacin (CIP) or levofloxacin (LVX), and a cell-penetrating peptide transportan 10 (TP10-NH2) were synthesised. The drugs were covalently bound to the peptide via an amide bond, methylenecarbonyl moiety, or a disulfide bridge. Conjugation of fluoroquinolones to TP10-NH2 resulted in congeners demonstrating antifungal in vitro activity against human pathogenic yeasts of the Candida genus (MICs in the 6.25–100 µM range), whereas the components were poorly active. The antibacterial in vitro activity of most of the conjugates was lower than the activity of CIP or LVX, but the antibacterial effect of CIP-S-S-TP10-NH2 was similar to the mother fluoroquinolone. Additionally, for two representative CIP and LVX conjugates, a rapid bactericidal effect was shown. Compared to fluoroquinolones, TP10-NH2 and the majority of its conjugates generated a relatively low level of reactive oxygen species (ROS) in human embryonic kidney cells (HEK293) and human myeloid leukemia cells (HL-60). The conjugates exhibited cytotoxicity against three cell lines, HEK293, HepG2 (human liver cancer cell line), and LLC-PK1 (old male pig kidney cells), with IC50 values in the 10–100 µM range and hemolytic activity. The mammalian toxicity was due to the intrinsic cytoplasmic membrane disruption activity of TP10-NH2 since fluoroquinolones themselves were not cytotoxic. Nevertheless, the selectivity index values of the conjugates, both for the bacteria and human pathogenic yeasts, remained favourable.
Collapse
Affiliation(s)
- Natalia Ptaszyńska
- Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdansk, 80-308 Gdańsk, Poland; (N.P.); (K.G.); (K.O.); (D.D.); (A.G.-D.); (A.Ł.); (K.R.)
| | - Katarzyna Gucwa
- Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdansk, 80-308 Gdańsk, Poland; (N.P.); (K.G.); (K.O.); (D.D.); (A.G.-D.); (A.Ł.); (K.R.)
| | - Katarzyna Olkiewicz
- Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdansk, 80-308 Gdańsk, Poland; (N.P.); (K.G.); (K.O.); (D.D.); (A.G.-D.); (A.Ł.); (K.R.)
| | - Mateusz Heldt
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdansk University of Technology, 80-233 Gdańsk, Poland; (M.H.); (M.S.); (D.M.); (S.M.)
| | - Marcin Serocki
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdansk University of Technology, 80-233 Gdańsk, Poland; (M.H.); (M.S.); (D.M.); (S.M.)
| | - Anna Stupak
- Laboratory of Bacterial Genetics, Faculty of Chemistry, Gdansk University of Technology, 80-233 Gdańsk, Poland;
| | - Dorota Martynow
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdansk University of Technology, 80-233 Gdańsk, Poland; (M.H.); (M.S.); (D.M.); (S.M.)
| | - Dawid Dębowski
- Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdansk, 80-308 Gdańsk, Poland; (N.P.); (K.G.); (K.O.); (D.D.); (A.G.-D.); (A.Ł.); (K.R.)
| | - Agata Gitlin-Domagalska
- Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdansk, 80-308 Gdańsk, Poland; (N.P.); (K.G.); (K.O.); (D.D.); (A.G.-D.); (A.Ł.); (K.R.)
| | - Jan Lica
- Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdansk, 80-308 Gdańsk, Poland; (N.P.); (K.G.); (K.O.); (D.D.); (A.G.-D.); (A.Ł.); (K.R.)
- Correspondence:
| | - Anna Łęgowska
- Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdansk, 80-308 Gdańsk, Poland; (N.P.); (K.G.); (K.O.); (D.D.); (A.G.-D.); (A.Ł.); (K.R.)
| | - Sławomir Milewski
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdansk University of Technology, 80-233 Gdańsk, Poland; (M.H.); (M.S.); (D.M.); (S.M.)
| | - Krzysztof Rolka
- Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdansk, 80-308 Gdańsk, Poland; (N.P.); (K.G.); (K.O.); (D.D.); (A.G.-D.); (A.Ł.); (K.R.)
| |
Collapse
|
5
|
Siddiqui H, Haniffa HM, Ahmed A, Choudhary MI. Synthesis of new Enrofloxacin Derivatives as Potential Antibiofilm Drugs Against Staphylococcus Aureus and Klebsiella Pneumoniae. Med Chem 2020; 17:85-96. [PMID: 32238140 DOI: 10.2174/1573406416666200402151705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 01/21/2020] [Accepted: 02/24/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The antimicrobial resistance due to biofilm formation among bacteria is a significant problem in the healthcare and food industries. OBJECTIVE The current study describes the synthesis of enrofloxacin derivatives 2-17, and the evaluation of their anti-bacterial and anti-biofilm activities. METHODS Compounds 2-17 were synthesized through the acylation of enrofloxacin with thionyl chloride, followed by reaction with different aromatic amines. The new analogues identified among the sixteen compounds were 2-7, 11, 14, and 17. RESULTS Compound 2 appeared to be effective against pathogens S. aureus as well as K. pneumonia, whereas, compound 11 was found active against K. pneumonia only. Compound 2 inhibited >75% biofilm formation of S. aureus at 20 μg/mL and K. pneumonia at 10 μg/mL concentrations. These doses are far below the bactericidal concentration of compound 2, suggesting the anti-virulence mechanism of these compounds. Compound 11 inhibited 60% biofilm formation of K. pneumoniae at 70 μg/mL concentration. Compound 5 inhibited the biofilm of K. pneumoniae at 62 μg/mL concentration but also had bactericidal properties at this concentration. Interestingly, compound 2 eradicated the preformed biofilm of both the pathogens at much lower doses as compared to control drug, gentamycin and substrate, enrofloxacin. Cytotoxicity of compounds 2-17 was checked by a standard method using 3T3 normal cell lines (mouse fibroblast), all compounds were found to be noncytotoxic. CONCLUSION These compounds can be used alone or with FDA approved drugs to overcome biofilm related K. pneumoniae and S. aureus infections.
Collapse
Affiliation(s)
- Hina Siddiqui
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan
| | - Haroon M Haniffa
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan
| | - Ayaz Ahmed
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan
| | - Muhammad I Choudhary
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan
| |
Collapse
|
6
|
Laurent Q, Berthet M, Cheng Y, Sakai N, Barluenga S, Winssinger N, Matile S. Probing for Thiol-Mediated Uptake into Bacteria. Chembiochem 2020; 21:69-73. [PMID: 31603284 DOI: 10.1002/cbic.201900378] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Indexed: 01/02/2023]
Abstract
Cellular uptake mediated by cyclic oligochalcogenides (COCs) is emerging as a conceptually innovative method to penetrate mammalian cells. Their mode of action is based on dynamic covalent oligochalcogenide exchange with cellular thiols. To test thiol-mediated uptake in bacteria, five antibiotics have been equipped with up to three different COCs: One diselenolane and two dithiolanes. We found that the COCs do not activate antibiotics in Gram-negative bacteria. In Gram-positive bacteria, the COCs inactivate antibiotics that act in the cytoplasm and reduce the activity of antibiotics that act on the cell surface. These results indicate that thiol-mediated uptake operates in neither of the membranes of bacteria. COCs are likely to exchange with thiols on the inner, maybe also on the outer membrane, but do not move on. Concerning mammalian cells, the absence of a COC-mediated uptake into bacteria observed in this study disfavors trivial mechanisms, such as passive diffusion, and supports the existence of more sophisticated, so far poorly understood uptake pathways.
Collapse
Affiliation(s)
- Quentin Laurent
- National Centre of Competence in Research (NCCR), Chemical Biology, School of Chemistry and Biochemistry, University of Geneva, 1211, Geneva, Switzerland
| | - Mathéo Berthet
- National Centre of Competence in Research (NCCR), Chemical Biology, School of Chemistry and Biochemistry, University of Geneva, 1211, Geneva, Switzerland
| | - Yangyang Cheng
- National Centre of Competence in Research (NCCR), Chemical Biology, School of Chemistry and Biochemistry, University of Geneva, 1211, Geneva, Switzerland
| | - Naomi Sakai
- National Centre of Competence in Research (NCCR), Chemical Biology, School of Chemistry and Biochemistry, University of Geneva, 1211, Geneva, Switzerland
| | - Sofia Barluenga
- National Centre of Competence in Research (NCCR), Chemical Biology, School of Chemistry and Biochemistry, University of Geneva, 1211, Geneva, Switzerland
| | - Nicolas Winssinger
- National Centre of Competence in Research (NCCR), Chemical Biology, School of Chemistry and Biochemistry, University of Geneva, 1211, Geneva, Switzerland
| | - Stefan Matile
- National Centre of Competence in Research (NCCR), Chemical Biology, School of Chemistry and Biochemistry, University of Geneva, 1211, Geneva, Switzerland
| |
Collapse
|
7
|
Ciprofloxacin-1,2,3-triazole-isatin hybrids tethered via amide: Design, synthesis, and in vitro anti-mycobacterial activity evaluation. Bioorg Med Chem Lett 2019; 29:2635-2637. [DOI: 10.1016/j.bmcl.2019.07.041] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/21/2019] [Accepted: 07/23/2019] [Indexed: 01/14/2023]
|
8
|
Ding Z, Hou P, Liu B. Gatifloxacin‐1,2,3‐triazole‐isatin hybrids and their antimycobacterial activities. Arch Pharm (Weinheim) 2019; 352:e1900135. [PMID: 31441087 DOI: 10.1002/ardp.201900135] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/18/2019] [Accepted: 07/23/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Zhen Ding
- Department of PharmacyBozhou People's Hospital Bozhou China
| | - Panfei Hou
- Department of Clinical LaboratoryLianshui County People's Hospital Lianshui China
| | - Bi Liu
- School of Nuclear Technology and Chemistry and BiologyHubei University of Science and Technology Xianning China
| |
Collapse
|
9
|
Gao F, Ye L, Kong F, Huang G, Xiao J. Design, synthesis and antibacterial activity evaluation of moxifloxacin-amide-1,2,3-triazole-isatin hybrids. Bioorg Chem 2019; 91:103162. [PMID: 31382058 DOI: 10.1016/j.bioorg.2019.103162] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 07/24/2019] [Accepted: 07/27/2019] [Indexed: 11/30/2022]
Abstract
In this work, a series of novel moxifloxacin-amide-1,2,3-triazole-isatin hybrids 7a-l were designed and synthesized. The in vitro antibacterial activity against a panel of clinically important Gram-positive and Gram-negative bacteria including drug-resistant pathogens was also evaluated. All hybrids showed considerable activity against the tested pathogens with MIC values of ≤0.03 to 128 μg/mL, and some of them such as hybrids 7e, 7g and 7j were comparable to or better than the parent moxifloxacin (MIC: ≤0.03-8 μg/mL). Moreover, hybrids 7e, 7g and 7j also demonstrated low cytotoxicity towards CHO cells. However, the in vivo pharmacokinetic profiles of these three hybrids were generally far inferior to the parent moxifloxacin. The structure-activity relationship and structure-cytotoxicity relationship were also studied and discussed which may help with the identification of new chemical entities as potent antibacterial agents.
Collapse
Affiliation(s)
- Feng Gao
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, PR China; Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, PR China
| | - Lei Ye
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, PR China
| | - Fangong Kong
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, PR China
| | - Gang Huang
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, PR China.
| | - Jiaqi Xiao
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, PR China; Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, PR China.
| |
Collapse
|
10
|
Degradation and transformation of fluoroquinolones by microorganisms with special emphasis on ciprofloxacin. Appl Microbiol Biotechnol 2019; 103:6933-6948. [DOI: 10.1007/s00253-019-10017-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/08/2019] [Accepted: 07/09/2019] [Indexed: 12/19/2022]
|
11
|
Antonoplis A, Zang X, Huttner MA, Chong KKL, Lee YB, Co JY, Amieva MR, Kline KA, Wender PA, Cegelski L. A Dual-Function Antibiotic-Transporter Conjugate Exhibits Superior Activity in Sterilizing MRSA Biofilms and Killing Persister Cells. J Am Chem Soc 2018; 140:16140-16151. [PMID: 30388366 PMCID: PMC6430714 DOI: 10.1021/jacs.8b08711] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
New strategies are urgently needed to target MRSA, a major global health problem and the leading cause of mortality from antibiotic-resistant infections in many countries. Here, we report a general approach to this problem exemplified by the design and synthesis of a vancomycin-d-octaarginine conjugate (V-r8) and investigation of its efficacy in addressing antibiotic-insensitive bacterial populations. V-r8 eradicated MRSA biofilm and persister cells in vitro, outperforming vancomycin by orders of magnitude. It also eliminated 97% of biofilm-associated MRSA in a murine wound infection model and displayed no acute dermal toxicity. This new dual-function conjugate displays enhanced cellular accumulation and membrane perturbation as compared to vancomycin. Based on its rapid and potent activity against biofilm and persister cells, V-r8 is a promising agent against clinical MRSA infections.
Collapse
Affiliation(s)
- Alexandra Antonoplis
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Xiaoyu Zang
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Melanie A. Huttner
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Kelvin K. L. Chong
- Singapore Centre for Environmental Life Science Engineering (SCELSE), School of Biological Sciences, Nanyang Technological University, Singapore 637551
- Nanyang Technological University Institute for Health Technologies, Interdisciplinary Graduate School, Nanyang Technological University, Singapore 637553
| | - Yu B. Lee
- Singapore Centre for Environmental Life Science Engineering (SCELSE), School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - Julia Y. Co
- Department of Pediatrics, Division of Infectious Diseases, Stanford University, Stanford, California 94305, United States
| | - Manuel R. Amieva
- Department of Pediatrics, Division of Infectious Diseases, Stanford University, Stanford, California 94305, United States
- Department of Microbiology & Immunology, Stanford University, Stanford, California 94305, United States
| | - Kimberly A. Kline
- Singapore Centre for Environmental Life Science Engineering (SCELSE), School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - Paul A. Wender
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Department of Chemical and Systems Biology, Stanford University, Stanford, California 94305, United States
| | - Lynette Cegelski
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
12
|
Grogg M, Hilvert D, Ebert MO, Beck AK, Seebach D, Kurth F, Dittrich PS, Sparr C, Wittlin S, Rottmann M, Mäser P. Cell Penetration, Herbicidal Activity, and in-vivo-Toxicity of Oligo-Arginine Derivatives and of Novel Guanidinium-Rich Compounds Derived from the Biopolymer Cyanophycin. Helv Chim Acta 2018; 101:e1800112. [PMID: 30905972 PMCID: PMC6426238 DOI: 10.1002/hlca.201800112] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 08/02/2018] [Indexed: 11/10/2022]
Abstract
Oligo-arginines are thoroughly studied cell-penetrating peptides (CPPs, Figures 1 and 2). Previous in-vitro investigations with the octaarginine salt of the phosphonate fosmidomycin (herbicide and anti-malaria drug) have shown a 40-fold parasitaemia inhibition with P. falciparum, compared to fosmidomycin alone (Figure 3). We have now tested this salt, as well as the corresponding phosphinate salt of the herbicide glufosinate, for herbicidal activity with whole plants by spray application, hoping for increased activities, i.e. decreased doses. However, both salts showed low herbicidal activity, indicating poor foliar uptake (Table 1). Another pronounced difference between in-vitro and in-vivo activity was demonstrated with various cell-penetrating octaarginine salts of fosmidomycin: intravenous injection to mice caused exitus of the animals within minutes, even at doses as low as 1.4 μmol/kg (Table 2). The results show that use of CPPs for drug delivery, for instance to cancer cells and tissues, must be considered with due care. The biopolymer cyanophycin is a poly-aspartic acid containing argininylated side chains (Figure 4); its building block is the dipeptide H-βAsp-αArg-OH (H-Adp-OH). To test and compare the biological properties with those of octaarginines we synthesized Adp8-derivatives (Figure 5). Intravenouse injection of H-Adp8-NH2 into the tail vein of mice with doses as high as 45 μmol/kg causes no symptoms whatsoever (Table 3), but H-Adp8-NH2 is not cell penetrating (HEK293 and MCF-7 cells, Figure 6). On the other hand, the fluorescently labeled octamers FAM-(Adp(OMe))8-NH2 and FAM-(Adp(NMe2))8-NH2 with ester and amide groups in the side chains exhibit mediocre to high cell-wall permeability (Figure 6), and are toxic (Table 3). Possible reasons for this behavior are discussed (Figure 7) and corresponding NMR spectra are presented (Figure 8).
Collapse
Affiliation(s)
- Marcel Grogg
- Laboratorium für Organische Chemie, Departement Chemie und Angewandte Biowissenschaften, ETH-Zürich, Hönggerberg HCI, Vladimir-Prelog-Weg 3, CH-8093 Zürich, Switzerland
| | - Donald Hilvert
- Laboratorium für Organische Chemie, Departement Chemie und Angewandte Biowissenschaften, ETH-Zürich, Hönggerberg HCI, Vladimir-Prelog-Weg 3, CH-8093 Zürich, Switzerland
| | - Marc-Olivier Ebert
- Laboratorium für Organische Chemie, Departement Chemie und Angewandte Biowissenschaften, ETH-Zürich, Hönggerberg HCI, Vladimir-Prelog-Weg 3, CH-8093 Zürich, Switzerland
| | - Albert K. Beck
- Laboratorium für Organische Chemie, Departement Chemie und Angewandte Biowissenschaften, ETH-Zürich, Hönggerberg HCI, Vladimir-Prelog-Weg 3, CH-8093 Zürich, Switzerland
| | - Dieter Seebach
- Laboratorium für Organische Chemie, Departement Chemie und Angewandte Biowissenschaften, ETH-Zürich, Hönggerberg HCI, Vladimir-Prelog-Weg 3, CH-8093 Zürich, Switzerland
| | - Felix Kurth
- Department of Biosystems Science and Engineering, ETH Zürich, BSD H 368, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Petra S. Dittrich
- Department of Biosystems Science and Engineering, ETH Zürich, BSD H 368, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Christof Sparr
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, CH-4056 Basel, Switzerland
| | - Sergio Wittlin
- Swiss Tropical and Public Health Institute, Socinstrasse 57, CH-4051 Basel, Switzerland
| | - Matthias Rottmann
- Swiss Tropical and Public Health Institute, Socinstrasse 57, CH-4051 Basel, Switzerland
| | - Pascal Mäser
- Swiss Tropical and Public Health Institute, Socinstrasse 57, CH-4051 Basel, Switzerland
| |
Collapse
|
13
|
Fedorowicz J, Sączewski J. Modifications of quinolones and fluoroquinolones: hybrid compounds and dual-action molecules. MONATSHEFTE FUR CHEMIE 2018; 149:1199-1245. [PMID: 29983452 PMCID: PMC6006264 DOI: 10.1007/s00706-018-2215-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 05/01/2018] [Indexed: 01/27/2023]
Abstract
ABSTRACT This review is aimed to provide extensive survey of quinolones and fluoroquinolones for a variety of applications ranging from metal complexes and nanoparticle development to hybrid conjugates with therapeutic uses. The review covers the literature from the past 10 years with emphasis placed on new applications and mechanisms of pharmacological action of quinolone derivatives. The following are considered: metal complexes, nanoparticles and nanodrugs, polymers, proteins and peptides, NO donors and analogs, anionic compounds, siderophores, phosphonates, and prodrugs with enhanced lipophilicity, phototherapeutics, fluorescent compounds, triazoles, hybrid drugs, bis-quinolones, and other modifications. This review provides a comprehensive resource, summarizing a broad range of important quinolone applications with great utility as a resource concerning both chemical modifications and also novel hybrid bifunctional therapeutic agents. GRAPHICAL ABSTRACT
Collapse
Affiliation(s)
- Joanna Fedorowicz
- Department of Organic Chemistry, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416 Gdańsk, Poland
| | - Jarosław Sączewski
- Department of Organic Chemistry, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416 Gdańsk, Poland
| |
Collapse
|
14
|
Zhang GF, Liu X, Zhang S, Pan B, Liu ML. Ciprofloxacin derivatives and their antibacterial activities. Eur J Med Chem 2018; 146:599-612. [PMID: 29407984 DOI: 10.1016/j.ejmech.2018.01.078] [Citation(s) in RCA: 195] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/13/2018] [Accepted: 01/24/2018] [Indexed: 02/06/2023]
Abstract
Bacterial infections represent a significant health threat globally, and are responsible for the majority of hospital-acquired infections, leading to extensive mortality and burden on global healthcare systems. The second generation fluoroquinolone ciprofloxacin which exhibits excellent antimicrobial activity and pharmacokinetic properties as well as few side effects is introduced into clinical practice for the treatment of various bacterial infections for around 3 decades. The emergency and widely spread of drug-resistant pathogens making ciprofloxacin more and more ineffective, so it's imperative to develop novel antibacterials. Numerous of ciprofloxacin derivatives have been synthesized for seeking for new antibacterials, and some of them exhibited promising potency. This review aims to summarize the recent advances made towards the discovery of ciprofloxacin derivatives as antibacterial agents and the structure-activity relationship of these derivatives was also discussed.
Collapse
Affiliation(s)
- Gui-Fu Zhang
- School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Hubei, PR China
| | - Xiaofeng Liu
- Zhejiang Xianju Junye Pharmaceutical Co., Ltd, Xianju, Zhejiang, 317300, PR China; School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, Hubei 430081, PR China.
| | - Shu Zhang
- Pony Testing International Group (Wuhan), Hubei, PR China.
| | - Baofeng Pan
- Zhejiang Xianju Junye Pharmaceutical Co., Ltd, Xianju, Zhejiang, 317300, PR China
| | - Ming-Liang Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China.
| |
Collapse
|
15
|
Klahn P, Brönstrup M. Bifunctional antimicrobial conjugates and hybrid antimicrobials. Nat Prod Rep 2017; 34:832-885. [PMID: 28530279 DOI: 10.1039/c7np00006e] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Covering: up to the end of 2016Novel antimicrobial drugs are continuously needed to counteract bacterial resistance development. An innovative molecular design strategy for novel antibiotic drugs is based on the hybridization of an antibiotic with a second functional entity. Such conjugates can be grouped into two major categories. In the first category (antimicrobial hybrids), both functional elements of the hybrid exert antimicrobial activity. Due to the dual targeting, resistance development can be significantly impaired, the pharmacokinetic properties can be superior compared to combination therapies with the single antibiotics, and the antibacterial potency is often enhanced in a synergistic manner. In the second category (antimicrobial conjugates), one functional moiety controls the accumulation of the other part of the conjugate, e.g. by mediating an active transport into the bacterial cell or blocking the efflux. This approach is mostly applied to translocate compounds across the cell envelope of Gram-negative bacteria through membrane-embedded transporters (e.g. siderophore transporters) that provide nutrition and signalling compounds to the cell. Such 'Trojan Horse' approaches can expand the antibacterial activity of compounds against Gram-negative pathogens, or offer new options for natural products that could not be developed as standalone antibiotics, e.g. due to their toxicity.
Collapse
Affiliation(s)
- P Klahn
- Department for Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany. and Institute for Organic Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany.
| | - M Brönstrup
- Department for Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany.
| |
Collapse
|
16
|
Skwarecki AS, Milewski S, Schielmann M, Milewska MJ. Antimicrobial molecular nanocarrier–drug conjugates. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 12:2215-2240. [DOI: 10.1016/j.nano.2016.06.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 05/17/2016] [Accepted: 06/06/2016] [Indexed: 01/07/2023]
|
17
|
Kolesinska B, Eyer K, Robinson T, Dittrich PS, Beck AK, Seebach D, Walde P. Interaction of β(3) /β(2) -peptides, consisting of Val-Ala-Leu segments, with POPC giant unilamellar vesicles (GUVs) and white blood cancer cells (U937)--a new type of cell-penetrating peptides, and a surprising chain-length dependence of their vesicle- and cell-lysing activity. Chem Biodivers 2016; 12:697-732. [PMID: 26010661 DOI: 10.1002/cbdv.201500085] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Indexed: 01/28/2023]
Abstract
Many years ago, β(2) /β(3) -peptides, consisting of alternatively arranged β(2) - and β(3) h-amino-acid residues, have been found to undergo folding to a unique type of helix, the 10/12-helix, and to exhibit non-polar, lipophilic properties (Helv. Chim. Acta 1997, 80, 2033). We have now synthesized such 'mixed' hexa-, nona-, dodeca-, and octadecapeptides, consisting of Val-Ala-Leu triads, with N-terminal fluorescein (FAM) labels, i.e., 1-4, and studied their interactions with POPC (=1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) giant unilamellar vesicles (GUVs) and with human white blood cancer cells U937. The methods used were microfluidic technology, fluorescence correlation spectroscopy (FCS), a flow-cytometry assay, a membrane-toxicity assay with the dehydrogenase G6PDH as enzymatic reporter, and visual microscopy observations. All β(3) /β(2) -peptide derivatives penetrate the GUVs and/or the cells. As shown with the isomeric β(3) /β(2) -, β(3) -, and β(2) -nonamers, 2, 5, and 6, respectively, the derivatives 5 and 6 consisting exclusively of β(3) - or β(2) -amino-acid residues, respectively, interact neither with the vesicles nor with the cells. Depending on the method of investigation and on the pretreatment of the cells, the β(3) /β(2) -nonamer and/or the β(3) /β(2) -dodecamer derivative, 2 and/or 3, respectively, cause a surprising disintegration or lysis of the GUVs and cells, comparable with the action of tensides, viral fusion peptides, and host-defense antimicrobial peptides. Possible sources of the chain-length-dependent destructive potential of the β(3) /β(2) -nona- and β(3) /β(2) -dodecapeptide derivatives, and a possible relationship with the phosphate-to-phosphate and hydrocarbon thicknesses of GUVs, and eukaryotic cells are discussed. Further investigations with other types of GUVs and of eukaryotic or prokaryotic cells will be necessary to elucidate the mechanism(s) of interaction of 'mixed' β(3) /β(2) -peptides with membranes and to evaluate possible biomedical applications.
Collapse
Affiliation(s)
- Beata Kolesinska
- Institute of Organic Chemistry, Technical University of Łodz, Zeromskiego 116, PL-90-924 Łodz (phone: +48-42-631-3149).
| | - Klaus Eyer
- Laboratorium für Organische Chemie, Departement Chemie und Angewandte Biowissenschaften, ETH-Zürich, Hönggerberg HCI, Vladimir-Prelog-Weg 3, CH-8093 Zürich, (phone: +41-44-632-2990; fax: +41-44-632-114).,École Supérieure de Physique et de Chimie Industrielle de la Ville de Paris, 10 Rue de Vauquelin, FR-75005 Paris
| | - Tom Robinson
- Laboratorium für Organische Chemie, Departement Chemie und Angewandte Biowissenschaften, ETH-Zürich, Hönggerberg HCI, Vladimir-Prelog-Weg 3, CH-8093 Zürich, (phone: +41-44-632-2990; fax: +41-44-632-114).,Max Planck Institute of Colloids and Interfaces, Department of Theory and Bio-Systems, Am Mühlenberg 1, DE-14476 Potsdam-Golm
| | - Petra S Dittrich
- Laboratorium für Organische Chemie, Departement Chemie und Angewandte Biowissenschaften, ETH-Zürich, Hönggerberg HCI, Vladimir-Prelog-Weg 3, CH-8093 Zürich, (phone: +41-44-632-2990; fax: +41-44-632-114).
| | - Albert K Beck
- Laboratorium für Organische Chemie, Departement Chemie und Angewandte Biowissenschaften, ETH-Zürich, Hönggerberg HCI, Vladimir-Prelog-Weg 3, CH-8093 Zürich, (phone: +41-44-632-2990; fax: +41-44-632-114)
| | - Dieter Seebach
- Laboratorium für Organische Chemie, Departement Chemie und Angewandte Biowissenschaften, ETH-Zürich, Hönggerberg HCI, Vladimir-Prelog-Weg 3, CH-8093 Zürich, (phone: +41-44-632-2990; fax: +41-44-632-114).
| | - Peter Walde
- Institut für Polymere, Departement Materialwissenschaft, ETH-Zürich, Hönggerberg HCI, Vladimir-Prelog-Weg 5, CH-8093 Zürich, (phone: +41-44-632-0473; fax: +41-44-632-126).
| |
Collapse
|