1
|
Zhao H, Sun J, Cheng Y, Nie S, Li W. Advances in peptide/polymer antimicrobial assemblies. J Mater Chem B 2024. [PMID: 39714335 DOI: 10.1039/d4tb02144d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Antimicrobial peptides (AMPs) have been extensively exploited as promising drugs to cope with antibiotic-resistant bacteria in clinical treatment. Peptide/polymer assembly provides a particularly important contribution to this topic and has emerged as a new paradigm for the development of nano-antimicrobial systems with previously unattainable outcomes. In this review article, we systematically summarize the recent advances in antimicrobial peptide/polymer assemblies. We describe a brief background and several classified systems based on peptide/polymer assemblies. We discuss the molecular design and the general rules behind the assembled nanostructures and bioactivities. The key role of polymers in improving the antimicrobial activity, stability, cytotoxicity, and bioavailability of peptides is emphasized based on the reported systems. The resulting peptide/polymer assemblies with stimuli-responsiveness, value-added properties and potential applications are demonstrated. The outlook of the antimicrobial peptide/polymer assemblies is also presented from the viewpoint of bio-applications.
Collapse
Affiliation(s)
- He Zhao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Avenue 2699, Changchun 130012, China.
| | - Jiayi Sun
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Avenue 2699, Changchun 130012, China.
| | - Yi Cheng
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Avenue 2699, Changchun 130012, China.
| | - Shuaishuai Nie
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Avenue 2699, Changchun 130012, China.
| | - Wen Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Avenue 2699, Changchun 130012, China.
| |
Collapse
|
2
|
Goulart MO, Paulino JM, Silveira NN, Bertonha AF, Berlinck RGS, Santos RA. Isolation and comparative genotoxicity screening of trichokonins VI and VIII on CHO-K1 cells. Drug Chem Toxicol 2024:1-9. [PMID: 39262131 DOI: 10.1080/01480545.2024.2389977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 07/10/2024] [Accepted: 08/04/2024] [Indexed: 09/13/2024]
Abstract
Peptaibols are fungal peptides that exhibit efficacy against pathogen microorganisms. Trichokonin VI (TK-VI) and trichokonin VIII (TK-VIII) are known peptaibols isolated from the endolichenic fungi Hypocrea sp. Previous investigations reported that trichokonin VI presents antiproliferative effects on tumor cells. This study is pioneering in elucidating the genotoxic effects of TK-VI and TK-VIII, contributing to the thorough assessment of their safety as potential therapeutic agents. The present investigation aimed to evaluate the genotoxicity of TK-VI and TK-VIII on CHO-K1 cells. Cytotoxicity was evaluated using the XTT assay and clonogenic survival assays, followed by evaluation of DNA damage using the comet assay and micronucleus test conducted in vitro. The XTT assay results indicated IC50 values of 10.30 µM and 9.89 µM for TK-VI and TK-VIII, respectively. The clonogenic survival assay indicated that concentrations of 10 µM or higher completely inhibited the cell colony formation. In the comet assay, both TK-VI and TK-VIII increased the DNA damage score and the frequency of comet nuclei in all tested concentrations. In the micronucleus assay, TK-VI and TK-VIII at 10 µM increased the frequency of MN in CHO-K1 cells. Both TK-VI and TK-VIII exhibited genotoxic effects. Our findings underscore the importance of considering the genotoxicological safety of peptaibols, particularly when assessing their potential for other biological activities.
Collapse
Affiliation(s)
| | | | | | - Ariane F Bertonha
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP, Brasil
| | - Roberto G S Berlinck
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP, Brasil
| | | |
Collapse
|
3
|
Yang H, Wu X, Sun C, Wang L. Unraveling the metabolic potential of biocontrol fungi through omics data: a key to enhancing large-scaleapplication strategies. Acta Biochim Biophys Sin (Shanghai) 2024; 56:825-832. [PMID: 38686460 PMCID: PMC11214957 DOI: 10.3724/abbs.2024056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/07/2024] [Indexed: 05/02/2024] Open
Abstract
Biological control of pests and pathogens has attracted much attention due to its green, safe and effective characteristics. However, it faces the dilemma of insignificant effects in large-scale applications. Therefore, an in-depth exploration of the metabolic potential of biocontrol fungi based on big omics data is crucial for a comprehensive and systematic understanding of the specific modes of action operated by various biocontrol fungi. This article analyzes the preferences for extracellular carbon and nitrogen source degradation, secondary metabolites (nonribosomal peptides, polyketide synthases) and their product characteristics and the conversion relationship between extracellular primary metabolism and intracellular secondary metabolism for eight different filamentous fungi with characteristics appropriate for the biological control of bacterial pathogens and phytopathogenic nematodes. Further clarification is provided that Paecilomyces lilacinus, encoding a large number of hydrolase enzymes capable of degrading pathogen protection barrier, can be directly applied in the field as a predatory biocontrol fungus, whereas Trichoderma, as an antibiosis-active biocontrol control fungus, can form dominant strains on preferred substrates and produce a large number of secondary metabolites to achieve antibacterial effects. By clarifying the levels of biological control achievable by different biocontrol fungi, we provide a theoretical foundation for their application to cropping habitats.
Collapse
Affiliation(s)
- Haolin Yang
- />State Key Laboratory of Microbial TechnologyInstitute of Microbial TechnologyShandong UniversityQingdao266237China
| | - Xiuyun Wu
- />State Key Laboratory of Microbial TechnologyInstitute of Microbial TechnologyShandong UniversityQingdao266237China
| | - Caiyun Sun
- />State Key Laboratory of Microbial TechnologyInstitute of Microbial TechnologyShandong UniversityQingdao266237China
| | - Lushan Wang
- />State Key Laboratory of Microbial TechnologyInstitute of Microbial TechnologyShandong UniversityQingdao266237China
| |
Collapse
|
4
|
Song YP, Ji NY. Chemistry and biology of marine-derived Trichoderma metabolites. NATURAL PRODUCTS AND BIOPROSPECTING 2024; 14:14. [PMID: 38302800 PMCID: PMC10834931 DOI: 10.1007/s13659-024-00433-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/17/2024] [Indexed: 02/03/2024]
Abstract
Marine-derived fungi of the genus Trichoderma have been surveyed for pharmaceuticals and agrochemicals since 1993, with various new secondary metabolites being characterized from the strains of marine animal, plant, sediment, and water origin. Chemical structures and biological activities of these metabolites are comprehensively reviewed herein up to the end of 2022 (covering 30 years). More than 70 strains that belong to at least 18 known Trichoderma species have been chemically investigated during this period. As a result, 445 new metabolites, including terpenes, steroids, polyketides, peptides, alkaloids, and others, have been identified, with over a half possessing antimicroalgal, zooplankton-toxic, antibacterial, antifungal, cytotoxic, anti-inflammatory, and other activities. The research is highlighted by the molecular diversity and antimicroalgal potency of terpenes and steroids. In addition, metabolic relevance along with co-culture induction in the production of new compounds is also concluded. Trichoderma strains of marine origin can transform and degrade heterogeneous molecules, but these functions need further exploration.
Collapse
Affiliation(s)
- Yin-Ping Song
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, People's Republic of China
| | - Nai-Yun Ji
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, People's Republic of China.
| |
Collapse
|
5
|
Caracciolo R, Sella L, De Zotti M, Bolzonello A, Armellin M, Trainotti L, Favaron F, Tundo S. Efficacy of Trichoderma longibrachiatum Trichogin GA IV Peptaibol analogs against the Black Rot Pathogen Xanthomonas campestris pv. campestris and other Phytopathogenic Bacteria. Microorganisms 2023; 11:microorganisms11020480. [PMID: 36838445 PMCID: PMC9967956 DOI: 10.3390/microorganisms11020480] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 02/17/2023] Open
Abstract
Black rot caused by the Gram-negative bacterial pathogen Xanthomonas campestris pv. campestris (Xcc) is considered one of the most destructive diseases affecting crucifers. Xcc is a seedborne pathogen able to infect the host at any growth stage. The management of the pathogen mainly relies on the use of copper-based products with possible negative effects on human health and the environment. Searching for protection alternatives is crucial for achieving a sustainable management of Xcc. Trichoderma spp. has been largely used as a biocontrol agent against several phytopathogens. Among Trichoderma species, Trichoderma longibrachiatum produces the peptaibol trichogin GA IV, a secondary metabolite with antimicrobial activity against Gram-positive bacteria, as well as filamentous and yeast-like fungi. In this work, we tested, at micromolar concentrations, 25 synthetic analogs of the peptaibol trichogin GA IV for their bacteriostatic and bactericidal activity toward the bacterium Xcc. One of the most effective peptides (4r) was also tested against the Gram-negative bacteria Xanthomonas arboricola, Pseudomonas corrugata, Pseudomonas savastanoi pv. savastanoi, Agrobacterium tumefaciens, Ralstonia solanacearum, and Erwinia carotovora subsp. carotovora, as well as the Gram-positive bacterium Bacillus subtilis. The peptide 4r reduced black rot symptoms on cauliflower plants when administered both before and 24 h after inoculation with Xcc. The cytotoxic activity of the peptide 4r was also evaluated towards suspensions of tobacco cells by Evans Blue assay.
Collapse
Affiliation(s)
- Rocco Caracciolo
- Department of Land, Environment, Agriculture and Forestry (TESAF), University of Padova, 35020 Legnaro, Italy
| | - Luca Sella
- Department of Land, Environment, Agriculture and Forestry (TESAF), University of Padova, 35020 Legnaro, Italy
| | - Marta De Zotti
- Department of Chemistry, University of Padova, 35131 Padova, Italy
| | - Angela Bolzonello
- Department of Land, Environment, Agriculture and Forestry (TESAF), University of Padova, 35020 Legnaro, Italy
| | - Marco Armellin
- Department of Biology (DiBio), University of Padova, 35121 Padova, Italy
| | - Livio Trainotti
- Department of Biology (DiBio), University of Padova, 35121 Padova, Italy
| | - Francesco Favaron
- Department of Land, Environment, Agriculture and Forestry (TESAF), University of Padova, 35020 Legnaro, Italy
| | - Silvio Tundo
- Department of Land, Environment, Agriculture and Forestry (TESAF), University of Padova, 35020 Legnaro, Italy
- Correspondence:
| |
Collapse
|
6
|
Trichoderma and Its Products From Laboratory to Patient Bedside in Medical Science: An Emerging Aspect. Fungal Biol 2022. [DOI: 10.1007/978-3-030-91650-3_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Lam YTH, Ricardo MG, Rennert R, Frolov A, Porzel A, Brandt W, Stark P, Westermann B, Arnold N. Rare Glutamic Acid Methyl Ester Peptaibols from Sepedonium ampullosporum Damon KSH 534 Exhibit Promising Antifungal and Anticancer Activity. Int J Mol Sci 2021; 22:ijms222312718. [PMID: 34884518 PMCID: PMC8657771 DOI: 10.3390/ijms222312718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/17/2021] [Accepted: 11/23/2021] [Indexed: 01/29/2023] Open
Abstract
Fungal species of genus Sepedonium are rich sources of diverse secondary metabolites (e.g., alkaloids, peptaibols), which exhibit variable biological activities. Herein, two new peptaibols, named ampullosporin F (1) and ampullosporin G (2), together with five known compounds, ampullosporin A (3), peptaibolin (4), chrysosporide (5), c(Trp-Ser) (6) and c(Trp-Ala) (7), have been isolated from the culture of Sepedonium ampullosporum Damon strain KSH534. The structures of 1 and 2 were elucidated based on ESI-HRMSn experiments and intense 1D and 2D NMR analyses. The sequence of ampullosporin F (1) was determined to be Ac-Trp1-Ala2-Aib3-Aib4-Leu5-Aib6-Gln7-Aib8-Aib9-Aib10-GluOMe11-Leu12-Aib13-Gln14-Leuol15, while ampullosporin G (2) differs from 1 by exchanging the position of Gln7 with GluOMe11. Furthermore, the total synthesis of 1 and 2 was carried out on solid-phase to confirm the absolute configuration of all chiral amino acids as L. In addition, ampullosporin F (1) and G (2) showed significant antifungal activity against B. cinerea and P. infestans, but were inactive against S. tritici. Cell viability assays using human prostate (PC-3) and colorectal (HT-29) cancer cells confirmed potent anticancer activities of 1 and 2. Furthermore, a molecular docking study was performed in silico as an attempt to explain the structure-activity correlation of the characteristic ampullosporins (1–3).
Collapse
Affiliation(s)
- Yen T. H. Lam
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, D-06120 Halle (Saale), Germany; (Y.T.H.L.); (M.G.R.); (R.R.); (A.F.); (A.P.); (W.B.); (P.S.); (B.W.)
- Department of Organic Chemistry, Faculty of Chemistry, Hanoi National University of Education, Hanoi 100000, Vietnam
| | - Manuel G. Ricardo
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, D-06120 Halle (Saale), Germany; (Y.T.H.L.); (M.G.R.); (R.R.); (A.F.); (A.P.); (W.B.); (P.S.); (B.W.)
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, D-14476 Potsdam, Germany
| | - Robert Rennert
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, D-06120 Halle (Saale), Germany; (Y.T.H.L.); (M.G.R.); (R.R.); (A.F.); (A.P.); (W.B.); (P.S.); (B.W.)
| | - Andrej Frolov
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, D-06120 Halle (Saale), Germany; (Y.T.H.L.); (M.G.R.); (R.R.); (A.F.); (A.P.); (W.B.); (P.S.); (B.W.)
- Department of Biochemistry, Faculty of Biology, St. Petersburg State University, 199004 St. Petersburg, Russia
| | - Andrea Porzel
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, D-06120 Halle (Saale), Germany; (Y.T.H.L.); (M.G.R.); (R.R.); (A.F.); (A.P.); (W.B.); (P.S.); (B.W.)
| | - Wolfgang Brandt
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, D-06120 Halle (Saale), Germany; (Y.T.H.L.); (M.G.R.); (R.R.); (A.F.); (A.P.); (W.B.); (P.S.); (B.W.)
| | - Pauline Stark
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, D-06120 Halle (Saale), Germany; (Y.T.H.L.); (M.G.R.); (R.R.); (A.F.); (A.P.); (W.B.); (P.S.); (B.W.)
| | - Bernhard Westermann
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, D-06120 Halle (Saale), Germany; (Y.T.H.L.); (M.G.R.); (R.R.); (A.F.); (A.P.); (W.B.); (P.S.); (B.W.)
| | - Norbert Arnold
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, D-06120 Halle (Saale), Germany; (Y.T.H.L.); (M.G.R.); (R.R.); (A.F.); (A.P.); (W.B.); (P.S.); (B.W.)
- Correspondence: ; Tel.: +49-345-5582-1310
| |
Collapse
|
8
|
Gavryushina IA, Georgieva ML, Kuvarina AE, Sadykova VS. Peptaibols as Potential Antifungal and Anticancer Antibiotics: Current and Foreseeable Development (Review). APPL BIOCHEM MICRO+ 2021. [DOI: 10.1134/s0003683821050070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
van Bohemen AI, Ruiz N, Zalouk-Vergnoux A, Michaud A, Robiou du Pont T, Druzhinina I, Atanasova L, Prado S, Bodo B, Meslet-Cladiere L, Cochereau B, Bastide F, Maslard C, Marchi M, Guillemette T, Pouchus YF. Pentadecaibins I-V: 15-Residue Peptaibols Produced by a Marine-Derived Trichoderma sp. of the Harzianum Clade. JOURNAL OF NATURAL PRODUCTS 2021; 84:1271-1282. [PMID: 33600182 DOI: 10.1021/acs.jnatprod.0c01355] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In the course of investigations on peptaibol chemodiversity from marine-derived Trichoderma spp., five new 15-residue peptaibols named pentadecaibins I-V (1-5) were isolated from the solid culture of the strain Trichoderma sp. MMS1255 belonging to the T. harzianum species complex. Phylogenetic analyses allowed precise positioning of the strain close to T. lentiforme lineage inside the Harzianum clade. Peptaibol sequences were elucidated on the basis of their MS/MS fragmentation and extensive 2D NMR experiments. Amino acid configurations were determined by Marfey's analyses. The pentadecaibins are based on the sequences Ac-Aib1-Gly2-Ala3-Leu4-Aib/Iva5-Gln6-Aib/Iva7-Val/Leu8-Aib9-Ala10-Aib11-Aib12-Aib13-Gln14-Pheol15. Characteristic of the pentadecaibin sequences is the lack of the Aib-Pro motif commonly present in peptaibols produced by Trichoderma spp. Genome sequencing of Trichoderma sp. MMS1255 allowed the detection of a 15-module NRPS-encoding gene closely associated with pentadecaibin biosynthesis. Pentadecaibins were assessed for their potential antiproliferative and antimicrobial activities.
Collapse
Affiliation(s)
| | - Nicolas Ruiz
- Université de Nantes, MMS - EA2160, 44000 Nantes, France
| | | | - Aurore Michaud
- Université de Nantes, MMS - EA2160, 44000 Nantes, France
| | | | - Irina Druzhinina
- Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, 1040 Vienna, Austria
- Fungal Genomics Laboratory (FungiG), Nanjing Agricultural University, 210095 Nanjing, China
| | - Lea Atanasova
- Department of Food Science and Technology, University of Natural Resources and Life Sciences - BOKU, 1190 Vienna, Austria
| | - Soizic Prado
- Muséum National d'Histoire Naturelle, Unité Molécules de Communication et Adaptation des Micro-organismes, UMR 7245, CP 54, 57 Rue Cuvier, 75005 Paris, France
| | - Bernard Bodo
- Muséum National d'Histoire Naturelle, Unité Molécules de Communication et Adaptation des Micro-organismes, UMR 7245, CP 54, 57 Rue Cuvier, 75005 Paris, France
| | - Laurence Meslet-Cladiere
- Université de Brest, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, 29280 Plouzané, France
| | - Bastien Cochereau
- Université de Nantes, MMS - EA2160, 44000 Nantes, France
- Université de Brest, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, 29280 Plouzané, France
| | - Franck Bastide
- IRHS-UMR1345, Université d'Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, 49071 Beaucouzé, France
| | - Corentin Maslard
- IRHS-UMR1345, Université d'Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, 49071 Beaucouzé, France
| | - Muriel Marchi
- IRHS-UMR1345, Université d'Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, 49071 Beaucouzé, France
| | - Thomas Guillemette
- IRHS-UMR1345, Université d'Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, 49071 Beaucouzé, France
| | | |
Collapse
|
10
|
Song C, Yang J, Zhang M, Ding G, Jia C, Qin J, Guo L. Marine Natural Products: The Important Resource of Biological Insecticide. Chem Biodivers 2021; 18:e2001020. [PMID: 33855815 DOI: 10.1002/cbdv.202001020] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/23/2021] [Indexed: 12/21/2022]
Abstract
Due to the unique environmental conditions and vast territory, marine habitat breeds more abundant biological resources than terrestrial environment. Massive marine biological species provide valuable resources for obtaining a large number of natural products with diverse structure and excellent activity. In recent years, new breakthroughs have been made in the application of marine natural products in drug development. In addition, the use of marine natural products to develop insecticides and other pesticide products has also been widely concerned. Targeting marine plants, animals, and microorganisms, we have collected information on marine natural products with insecticidal activity for nearly decade, including alkaloids, terpenes, flavonoids and phenols fatty acids, peptides, and proteins, et al. In addition, some active crude extracts are also included. This review describes the insecticidal activities of marine natural products and their broad applications for future research in agriculture and health.
Collapse
Affiliation(s)
- Chenggang Song
- College of Plant Science, Jilin University, Changchun, 130062, P. R. China
| | - Jian Yang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100193, P. R. China
| | - Mingzhe Zhang
- College of Plant Science, Jilin University, Changchun, 130062, P. R. China
| | - Gang Ding
- Institute of Medicinal Plant Department, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, P. R. China
| | - Chengguo Jia
- College of Plant Science, Jilin University, Changchun, 130062, P. R. China
| | - Jianchun Qin
- College of Plant Science, Jilin University, Changchun, 130062, P. R. China
| | - Lanping Guo
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100193, P. R. China
| |
Collapse
|
11
|
Mayer AMS, Guerrero AJ, Rodríguez AD, Taglialatela-Scafati O, Nakamura F, Fusetani N. Marine Pharmacology in 2016-2017: Marine Compounds with Antibacterial, Antidiabetic, Antifungal, Anti-Inflammatory, Antiprotozoal, Antituberculosis and Antiviral Activities; Affecting the Immune and Nervous Systems, and Other Miscellaneous Mechanisms of Action. Mar Drugs 2021; 19:49. [PMID: 33494402 PMCID: PMC7910995 DOI: 10.3390/md19020049] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 12/12/2022] Open
Abstract
The review of the 2016-2017 marine pharmacology literature was prepared in a manner similar as the 10 prior reviews of this series. Preclinical marine pharmacology research during 2016-2017 assessed 313 marine compounds with novel pharmacology reported by a growing number of investigators from 54 countries. The peer-reviewed literature reported antibacterial, antifungal, antiprotozoal, antituberculosis, and antiviral activities for 123 marine natural products, 111 marine compounds with antidiabetic and anti-inflammatory activities as well as affecting the immune and nervous system, while in contrast 79 marine compounds displayed miscellaneous mechanisms of action which upon further investigation may contribute to several pharmacological classes. Therefore, in 2016-2017, the preclinical marine natural product pharmacology pipeline generated both novel pharmacology as well as potentially new lead compounds for the growing clinical marine pharmaceutical pipeline, and thus sustained with its contributions the global research for novel and effective therapeutic strategies for multiple disease categories.
Collapse
Affiliation(s)
- Alejandro M. S. Mayer
- Department of Pharmacology, College of Graduate Studies, Midwestern University, 555 31st Street, Downers Grove, IL 60515, USA;
| | - Aimee J. Guerrero
- Department of Pharmacology, College of Graduate Studies, Midwestern University, 555 31st Street, Downers Grove, IL 60515, USA;
| | - Abimael D. Rodríguez
- Molecular Sciences Research Center, University of Puerto Rico, 1390 Ponce de León Avenue, San Juan, PR 00926, USA;
| | | | - Fumiaki Nakamura
- Department of Chemistry and Biochemistry, Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan;
| | | |
Collapse
|
12
|
Abstract
Invasive fungal infections in humans are generally associated with high mortality, making the choice of antifungal drug crucial for the outcome of the patient. The limited spectrum of antifungals available and the development of drug resistance represent the main concerns for the current antifungal treatments, requiring alternative strategies. Antimicrobial peptides (AMPs), expressed in several organisms and used as first-line defenses against microbial infections, have emerged as potential candidates for developing new antifungal therapies, characterized by negligible host toxicity and low resistance rates. Most of the current literature focuses on peptides with antibacterial activity, but there are fewer studies of their antifungal properties. This review focuses on AMPs with antifungal effects, including their in vitro and in vivo activities, with the biological repercussions on the fungal cells, when known. The classification of the peptides is based on their mode of action: although the majority of AMPs exert their activity through the interaction with membranes, other mechanisms have been identified, including cell wall inhibition and nucleic acid binding. In addition, antifungal compounds with unknown modes of action are also described. The elucidation of such mechanisms can be useful to identify novel drug targets and, possibly, to serve as the templates for the synthesis of new antimicrobial compounds with increased activity and reduced host toxicity.
Collapse
|
13
|
Macías-Rodríguez L, Contreras-Cornejo HA, Adame-Garnica SG, Del-Val E, Larsen J. The interactions of Trichoderma at multiple trophic levels: inter-kingdom communication. Microbiol Res 2020; 240:126552. [PMID: 32659716 DOI: 10.1016/j.micres.2020.126552] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/29/2020] [Accepted: 07/03/2020] [Indexed: 02/07/2023]
Abstract
Trichoderma spp. are universal saprotrophic fungi in terrestrial ecosystems, and as rhizosphere inhabitants, they mediate interactions with other soil microorganisms, plants, and arthropods at multiple trophic levels. In the rhizosphere, Trichoderma can reduce the abundance of phytopathogenic microorganisms, which involves the action of potent inhibitory molecules, such as gliovirin and siderophores, whereas endophytic associations between Trichoderma and the seeds and roots of host plants can result in enhanced plant growth and crop productivity, as well as the alleviation of abiotic stress. Such beneficial effects are mediated via the activation of endogenous mechanisms controlled by phytohormones such as auxins and abscisic acid, as well as by alterations in host plant metabolism. During either root colonization or in the absence of physical contact, Trichoderma can trigger early defense responses mediated by Ca2+ and reactive oxygen species, and subsequently stimulate plant immunity by enhancing resistance mechanisms regulated by the phytohormones salicylic acid, jasmonic acid, and ethylene. In addition, Trichoderma release volatile organic compounds and nitrogen or oxygen heterocyclic compounds that serve as signaling molecules, which have effects on plant growth, phytopathogen levels, herbivorous insects, and at the third trophic level, play roles in attracting the natural enemies (predators and parasitoids) of herbivores. In this paper, we review some of the most recent advances in our understanding of the environmental influences of Trichoderma spp., with particular emphasis on their multiple interactions at different trophic levels.
Collapse
Affiliation(s)
- Lourdes Macías-Rodríguez
- Instituto De Investigaciones Químico Biológicas, Universidad Michoacana De San Nicolás De Hidalgo, Gral. Francisco J. Mujica S/N, Ciudad Universitaria, C.P. 58030, Morelia, Michoacán, Mexico.
| | - Hexon Angel Contreras-Cornejo
- Instituto De Investigaciones Químico Biológicas, Universidad Michoacana De San Nicolás De Hidalgo, Gral. Francisco J. Mujica S/N, Ciudad Universitaria, C.P. 58030, Morelia, Michoacán, Mexico; Instituto De Investigaciones En Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma De México, Antigua Carretera a Pátzcuaro # 8701, Ex-Hacienda De San José De La Huerta, C.P. 58190, Morelia, Michoacán, MeXico.
| | - Sandra Goretti Adame-Garnica
- Instituto De Investigaciones Químico Biológicas, Universidad Michoacana De San Nicolás De Hidalgo, Gral. Francisco J. Mujica S/N, Ciudad Universitaria, C.P. 58030, Morelia, Michoacán, Mexico
| | - Ek Del-Val
- Instituto De Investigaciones En Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma De México, Antigua Carretera a Pátzcuaro # 8701, Ex-Hacienda De San José De La Huerta, C.P. 58190, Morelia, Michoacán, MeXico
| | - John Larsen
- Instituto De Investigaciones En Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma De México, Antigua Carretera a Pátzcuaro # 8701, Ex-Hacienda De San José De La Huerta, C.P. 58190, Morelia, Michoacán, MeXico
| |
Collapse
|
14
|
Niu X, Thaochan N, Hu Q. Diversity of Linear Non-Ribosomal Peptide in Biocontrol Fungi. J Fungi (Basel) 2020; 6:E61. [PMID: 32408496 PMCID: PMC7345191 DOI: 10.3390/jof6020061] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/27/2020] [Accepted: 05/09/2020] [Indexed: 12/16/2022] Open
Abstract
Biocontrol fungi (BFs) play a key role in regulation of pest populations. BFs produce multiple non-ribosomal peptides (NRPs) and other secondary metabolites that interact with pests, plants and microorganisms. NRPs-including linear and cyclic peptides (L-NRPs and C-NRPs)-are small peptides frequently containing special amino acids and other organic acids. They are biosynthesized in fungi through non-ribosomal peptide synthases (NRPSs). Compared with C-NRPs, L-NRPs have simpler structures, with only a linear chain and biosynthesis without cyclization. BFs mainly include entomopathogenic and mycoparasitic fungi, that are used to control insect pests and phytopathogens in fields, respectively. NRPs play an important role of in the interactions of BFs with insects or phytopathogens. On the other hand, the residues of NRPs may contaminate food through BFs activities in the environment. In recent decades, C-NRPs in BFs have been thoroughly reviewed. However, L-NRPs are rarely investigated. In order to better understand the species and potential problems of L-NRPs in BFs, this review lists the L-NRPs from entomopathogenic and mycoparasitic fungi, summarizes their sources, structures, activities and biosynthesis, and details risks and utilization prospects.
Collapse
Affiliation(s)
- Xiaoyan Niu
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou 510642, China;
| | - Narit Thaochan
- Pest Management Biotechnology and Plant Physiology Laboratory, Faculty of Natural Resources, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand;
| | - Qiongbo Hu
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou 510642, China;
| |
Collapse
|
15
|
Zhao P, Xue Y, Li X, Li J, Zhao Z, Quan C, Gao W, Zu X, Bai X, Feng S. Fungi-derived lipopeptide antibiotics developed since 2000. Peptides 2019; 113:52-65. [PMID: 30738838 DOI: 10.1016/j.peptides.2019.02.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 02/04/2019] [Accepted: 02/05/2019] [Indexed: 12/12/2022]
Abstract
Lipopeptide antibiotics have linear or cyclic structures with one or more hydrocarbon tails linked to the N-terminus of a short oligopeptide that may be chemically modified and/or contain unusual amino acid residues in their structures. They possess huge potential as pharmaceutical drugs and biocontrol agents, and ˜30 representative genera of fungi are known to produce them. Some chemically synthesised derivatives have already been developed into commercial products or subjected to clinical trials, including cilofungin, caspofungin, micafungin, anidulafungin, rezafungin, emodepside, fusafungine and destruxins. This review summarizes 200 fungi-derived compounds reported since 2000, including 95 cyclic depsipeptides, 67 peptaibiotics (including 35 peptaibols, eight lipoaminopeptides, and five lipopeptaibols), and 38 non-depsipeptide and non-peptaibiotic lipopeptides. Their sources, structural sequences, antibiotic activities (e.g. antibacterial, antifungal, antiviral, antimycobacterial, antimycoplasmal, antimalarial, antileishmanial, insecticidal, antitrypanosomal and nematicidal), structure-activity relationships, mechanisms of action, and specific relevance are discussed. These compounds have attracted considerable interest within the pharmaceutical and agrochemical industries.
Collapse
Affiliation(s)
- Pengchao Zhao
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Yun Xue
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China.
| | - Xin Li
- Life Science College, Yuncheng University, Yuncheng, 044000, China
| | - Jinghua Li
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Zhanqin Zhao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471023, China
| | - Chunshan Quan
- Department of Life Science, Dalian Nationalities University, Dalian, 116600, China
| | - Weina Gao
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Xiangyang Zu
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Xuefei Bai
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Shuxiao Feng
- College of Chemical Engineering and Pharmacy, Henan University of Science and Technology, Luoyang, 471023, China
| |
Collapse
|
16
|
Tyagi C, Marik T, Szekeres A, Vágvölgyi C, Kredics L, Ötvös F. Tripleurin XIIc: Peptide Folding Dynamics in Aqueous and Hydrophobic Environment Mimic Using Accelerated Molecular Dynamics. Molecules 2019; 24:E358. [PMID: 30669493 PMCID: PMC6359335 DOI: 10.3390/molecules24020358] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 01/14/2019] [Accepted: 01/18/2019] [Indexed: 01/11/2023] Open
Abstract
Peptaibols are a special class of fungal peptides with an acetylated N-terminus and a C-terminal 1,2-amino alcohol along with non-standard amino acid residues. New peptaibols named tripleurins were recently identified from a strain of the filamentous fungal species Trichoderma pleuroti, which is known to cause green mould disease on cultivated oyster mushrooms. To understand the mode of action of these peptaibols, the three-dimensional structure of tripleurin (TPN) XIIc, an 18-mer peptide, was elucidated using an enhanced sampling method, accelerated MD, in water and chloroform solvents. Non-standard residues were parameterized by the Restrained Electrostatic Potential (RESP) charge fitting method. The dihedral distribution indicated towards a right-handed helical formation for TPN XIIc in both solvents. Dihedral angle based principal component analysis revealed a propensity for a slightly bent, helical folded conformation in water solvent, while two distinct conformations were revealed in chloroform: One that folds into highly bent helical structure that resembles a beta-hairpin and another with an almost straight peptide backbone appearing as a rare energy barrier crossing event. The hinge-like movement of the terminals was also observed and is speculated to be functionally relevant. The convergence and efficient sampling is addressed using Cartesian PCA and Kullback-Leibler divergence methods.
Collapse
Affiliation(s)
- Chetna Tyagi
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Közép fasor 52, H-6726 Szeged, Hungary.
- Doctoral School of Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Közép fasor 52, H-6726 Szeged, Hungary.
| | - Tamás Marik
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Közép fasor 52, H-6726 Szeged, Hungary.
| | - András Szekeres
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Közép fasor 52, H-6726 Szeged, Hungary.
| | - Csaba Vágvölgyi
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Közép fasor 52, H-6726 Szeged, Hungary.
| | - László Kredics
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Közép fasor 52, H-6726 Szeged, Hungary.
| | - Ferenc Ötvös
- Institute of Biochemistry, Biological Research Centre, Szeged, Temesvári krt. 62, H-6726 Szeged, Hungary.
| |
Collapse
|
17
|
Hyporientalin A, an anti-Candida peptaibol from a marine Trichoderma orientale. World J Microbiol Biotechnol 2018; 34:98. [PMID: 29922855 DOI: 10.1007/s11274-018-2482-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 06/14/2018] [Indexed: 10/28/2022]
Abstract
A Trichoderma orientale strain LSBA1 was isolated from the Mediterranean marine sponge Cymbaxinella damicornis. The crude extract of T. orientale mycelium showed inhibitory activity against growth of Gram-positive and Gram-negative bacteria as well as clinical isolates of Candida albicans. Purification of the anti-Candida component was performed using a combination of open silica gel-60 column and reverse phase high performance liquid chromatography. The active compound called hyporientalin A has been identified as a peptaibol analogue of longibrachin-A-II using mass spectrometry. It exhibited fungicidal activity against clinical isolates of C. albicans with minimal inhibitory concentrations (MICs) ranging from 2.49 to 19.66 µM, comparable to that of the antifungal agent amphotericin B. Our data support the use of hyporientalin A as a promising new and efficient antifungal drug in the treatment of candidiasis while controlling toxicity.
Collapse
|
18
|
Cariaco Y, Lima WR, Sousa R, Nascimento LAC, Briceño MP, Fotoran WL, Wunderlich G, Dos Santos JL, Silva NM. Ethanolic extract of the fungus Trichoderma stromaticum decreases inflammation and ameliorates experimental cerebral malaria in C57BL/6 mice. Sci Rep 2018; 8:1547. [PMID: 29367729 PMCID: PMC5784021 DOI: 10.1038/s41598-018-19840-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 01/05/2018] [Indexed: 01/31/2023] Open
Abstract
Increased resistance to the first-line treatment against P. falciparum malaria, artemisinin-based combination therapies, has been reported. Here, we tested the effect of crude ethanolic extract of the fungus Trichoderma stromaticum (Ext-Ts) on the growth of P. falciparum NF54 in infected human red blood cells (ihRBCs) and its anti-malarial and anti-inflammatory properties in a mouse model of experimental cerebral malaria. For this purpose, ihRBCs were treated with Ext-Ts and analysed for parasitaemia; C57BL/6 mice were infected with P. berghei ANKA (PbA), treated daily with Ext-Ts, and clinical, biochemical, histological and immunological features of the disease were monitored. It was observed that Ext-Ts presented a dose-dependent ability to control P. falciparum in ihRBCs. In addition, it was demonstrated that Ext-Ts treatment of PbA-infected mice was able to increase survival, prevent neurological signs and decrease parasitaemia at the beginning of infection. These effects were associated with systemically decreased levels of lipids and IFN-γ, ICAM-1, VCAM-1 and CCR5 cerebral expression, preserving blood brain barrier integrity and attenuating the inflammatory lesions in the brain, liver and lungs. These results suggest that Ext-Ts could be a source of immunomodulatory and antimalarial compounds that could improve the treatment of cerebral malaria.
Collapse
Affiliation(s)
- Yusmaris Cariaco
- Laboratory of Immunopathology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, 38400-902, Minas Gerais, Brazil
| | - Wânia Rezende Lima
- Institute of Exact and Natural Sciences, Federal University of Mato Grosso, Rondonópolis, 78735-901, Mato Grosso, Brazil
| | - Romulo Sousa
- Laboratory of Immunopathology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, 38400-902, Minas Gerais, Brazil
| | - Layane Alencar Costa Nascimento
- Laboratory of Immunopathology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, 38400-902, Minas Gerais, Brazil
| | - Marisol Pallete Briceño
- Laboratory of Immunopathology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, 38400-902, Minas Gerais, Brazil
| | | | - Gerhard Wunderlich
- Department of Parasitology, University of São Paulo, São Paulo, 05508-900, Brazil
| | | | - Neide Maria Silva
- Laboratory of Immunopathology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, 38400-902, Minas Gerais, Brazil.
| |
Collapse
|
19
|
Abstract
Covering: 2016. Previous review: Nat. Prod. Rep., 2017, 34, 235-294This review covers the literature published in 2016 for marine natural products (MNPs), with 757 citations (643 for the period January to December 2016) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1277 in 432 papers for 2016), together with the relevant biological activities, source organisms and country of origin. Reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included.
Collapse
Affiliation(s)
- John W Blunt
- School of Physical and Chemical Sciences, University of Canterbury, Christchurch, New Zealand
| | | | | | | | | | | |
Collapse
|