1
|
Dos Santos GS. Plant endophytes: Secondary metabolites and biological activities. Fitoterapia 2025; 182:106416. [PMID: 39924364 DOI: 10.1016/j.fitote.2025.106416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Affiliation(s)
- Gustavo Souza Dos Santos
- Department of Biochemistry and Organic Chemistry, Institute of Chemistry, Universidade Estadual Paulista Julio de Mesquita Filho, UNESP, Araraquara, São Paulo, Brazil; Department of Life Sciences, Universidade do Estado da Bahia, UNEB, Salvador, Bahia, Brazil.
| |
Collapse
|
2
|
Alsehli BR, Al-Hakkani MF, Alluhayb AH, M. Saleh S, Abdelrahem MM, Hassane AM, Hassan MH. Sustainable Myco-Synthesis of antimony oxide nanoparticles using endophytic Penicillium chrysogenum Extract: Characterization, antimicrobial Potency, and cytotoxicity assays. INORG CHEM COMMUN 2025; 173:113793. [DOI: 10.1016/j.inoche.2024.113793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
3
|
Prem P, Naveenkumar S, Kamaraj C, Ragavendran C, Priyadharsan A, Manimaran K, Alharbi NS, Rarokar N, Cherian T, Sugumar V, Thiruvengadam M, Kumarasamy V, Subramaniyan V. Valeriana jatamansiroot extract a potent source for biosynthesis of silver nanoparticles and their biomedical applications, and photocatalytic decomposition. GREEN CHEMISTRY LETTERS AND REVIEWS 2024; 17. [DOI: 10.1080/17518253.2024.2305142] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Affiliation(s)
- Pradisha Prem
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology (SRMIST), Chennai, India
| | - Selvam Naveenkumar
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology (SRMIST), Chennai, India
| | - Chinnaperumal Kamaraj
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology (SRMIST), Chennai, India
- Interdisciplinary Institute of Indian System of Medicine, Directorate of Research, SRM Institute of Science and Technology, Chennai, India
| | - Chinnasamy Ragavendran
- Department of Conservative Dentistry and Endodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Arumugam Priyadharsan
- Department of Conservative Dentistry and Endodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, India
- Research Center for Advanced Materials – National Research and Innovation Agency (BRIN), Banten, Indonesia
| | - Kumar Manimaran
- Research Center for Applied Microbiology, National Research and Innovation Agency (BRIN), Cibinong, Indonesia
| | - Naify S Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Tijo Cherian
- School of Biosciences, Mar Athanasios College for Advanced Studies Tiruvalla (MACFAST), Tiruvalla, India
| | - Vimal Sugumar
- Department of Biochemistry, Saveetha Medical College & Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Sciences, Konkuk University, Seoul, Republic of Korea
| | - Vinoth Kumarasamy
- Department of Parasitology and Medical Entomology, Faculty of Medicine, University Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Vetriselvan Subramaniyan
- Pharmacology Unit, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Selangor Darul Ehsan, Malaysia
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
4
|
Mady MS, Elsayed HE, Tawfik NF, Moharram FA. Volatiles extracted from Melaleuca Rugulosa (Link) Craven leaves: comparative profiling, bioactivity screening, and metabolomic analysis. BMC Complement Med Ther 2024; 24:394. [PMID: 39538246 PMCID: PMC11562704 DOI: 10.1186/s12906-024-04683-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Melaleuca species (family Myrtaceae) are characterized by their wide-ranging applications as antimicrobials and in skin-related conditions. Herein, we estimated the volatile profile and biological significance of M. rugulosa (Link) leaves for the first time supported by a dereplication protocol. MATERIALS AND METHODS Volatile components were extracted using hydrodistillation (HD), supercritical fluid (SF), and headspace (HS) techniques and identified using GC/MS. The variations among the three extracts were assessed using principal component analysis and orthogonal partial least square discriminant analysis (OPLS-DA). The extracted volatiles were tested for radical scavenging activity, anti-aging, and anti-hyperpigmentation potential. Finally, disc diffusion and broth microdilution assays were implemented to explore the antibacterial capacity against Streptococcus pyogenes, Staphylococcus aureus, Clostridium perfringens, and Pseudomonas aeruginosa. RESULTS The yield of the SF technique (0.8%) was three times higher than HD. GC/MS analysis revealed that the oxygenated compounds are the most proponents in the three extracts being 95.93% (HD), 80.94% (HS), and 48.4% (SF). Moreover, eucalyptol (1,8-cineol) represents the major component in the HD-EO (89.60%) and HS (73.13%) volatiles, while dl-α-tocopherol (16.27%) and α-terpineol (11.89%) represent the highest percentage in SF extract. Regarding the bioactivity profile, the HD-EO and SF-extract showed antioxidant potential in terms of oxygen radical absorbance capacity, and β- carotene assays, while exerting weak activity towards DPPH. In addition, they displayed potent anti-elastase and moderate anti-collagenase activities. The HD-EO exhibited potent anti-tyrosinase activity, while the SF extract showed a moderate level compared to tested controls. OPLS-DA and dereplication studies predicted that the selective antibacterial activity of HD-EO to S. aureus was related to eucalyptol, while SF extract to C. perfringens was related to α-tocopherol. CONCLUSIONS M. rugulosa leaves are considered a vital source of bioactive volatile components that are promoted for controlling skin aging and infection. However, further safety and clinical studies are recommended.
Collapse
Affiliation(s)
- Mohamed S Mady
- Department of Pharmacognosy, Faculty of Pharmacy, Helwan University, Cairo, 11795, Egypt.
| | - Heba E Elsayed
- Department of Pharmacognosy, Faculty of Pharmacy, Helwan University, Cairo, 11795, Egypt
| | - Nashwa F Tawfik
- Department of Pharmacognosy, Faculty of Pharmacy, Helwan University, Cairo, 11795, Egypt
| | - Fatma A Moharram
- Department of Pharmacognosy, Faculty of Pharmacy, Helwan University, Cairo, 11795, Egypt
| |
Collapse
|
5
|
Abdelhafez OH, Elmaidomy AH, Hisham M, Glaeser SP, Kämpfer P, Wu J, Abdelmohsen UR. Hyrtios sp.-associated Cladosporium sp. UR3 as a potential source of antiproliferative metabolites. BMC Microbiol 2024; 24:445. [PMID: 39487417 PMCID: PMC11529160 DOI: 10.1186/s12866-024-03560-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 09/30/2024] [Indexed: 11/04/2024] Open
Abstract
BACKGROUND Sponge-associated microorganisms are promising resources for the production of bioactive compounds with cytotoxic potential. The main goal of our study is to isolate the fungal endophytes from the Red Sea sponge Hyrtios sp. followed by investigating their cytotoxicity against number of cell lines. RESULTS The fungal strain UR3 was isolated from the Red Sea sponge using Sabouraud dextrose agar media. It was identified based on partial 18 S rRNA gene and ITS sequence analyses as Cladosporium sp. UR3. The in vitro cytotoxic potential of the ethyl acetate extract of the fungal isolate was evaluated using MTT assay against three cancer cell lines: CACO2, MCF7, and HEPG2. Metabolomics profiling of the obtained ethyl acetate extract using LC-HR-ESI-MS, along with molecular docking and pharmacological network studies for the dereplicated compounds were performed to explore its chemical profile and the possible cytotoxic mechanism of the sponge-associated fungi. CONCLUSION These results highlighted the role of sponge-associated fungi as a fruitful resource for the discovery of cytotoxic metabolites.
Collapse
Affiliation(s)
- Omnia Hesham Abdelhafez
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, New Minia City, Minia, Egypt
| | - Abeer H Elmaidomy
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Mohamed Hisham
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Deraya University, New-Minia, 61512, Egypt
| | - Stefanie P Glaeser
- Institute of Applied Microbiology, Justus-Liebig University Gießen, Gießen, Germany
| | - Peter Kämpfer
- Institute of Applied Microbiology, Justus-Liebig University Gießen, Gießen, Germany
| | - Jun Wu
- Guangdong Key Laboratory for Research and Development of Natural Drugs, College of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Usama Ramadan Abdelmohsen
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, New Minia City, Minia, Egypt.
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt.
| |
Collapse
|
6
|
He B, Yang R, Li C, Sun G, Yin T, Cai L. Antimicrobial and anti-acetylcholinesterase activities of secondary metabolites isolated from Aspergillus fumigatus MNY-14. Nat Prod Res 2024:1-11. [PMID: 39429230 DOI: 10.1080/14786419.2024.2417848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 09/23/2024] [Accepted: 10/13/2024] [Indexed: 10/22/2024]
Abstract
A systematic investigation of the secondary metabolites of Aspergillus fumigatus MNY-14, which was isolated from the ripe leaves of Achyranthes longifolia, led to the isolation of eighteen compounds, including twelve indole diketopiperazine alkaloids (1-12), an α-pyrone meroterpenoid (13), a nortriterpenoid (14), two benzophenones (15-16), and two quinoline alkaloids (17-18). Among them, compounds 8, 17 and 18 were isolated for the first time from A. fumigatus. The chemotaxonomic significance of the secondary metabolites was discussed. Some of the isolates (6, 10, 11, 10, 15 and 16) could be used as chemical markers for strain identification of this fungus. In addition, some of the isolates showed certain antimicrobial and acetylcholinesterase inhibitory activities.
Collapse
Affiliation(s)
- Bijian He
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, China
- School of Bioengineering, Zunyi Medical University, Zhuhai, China
| | - Ruidang Yang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, China
| | - Chenzhe Li
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, China
| | - Guangqian Sun
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, China
| | - Tianpeng Yin
- School of Bioengineering, Zunyi Medical University, Zhuhai, China
| | - Le Cai
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, China
| |
Collapse
|
7
|
Lai P, Wang L, Deng C, Xu Y, Ma XY, Cheng CR, Huang SX. Asperidulins A and B, two new prenylxanthone derivatives from an apple-derived fungus Aspergillus nidulans KIB-HACM-01. Nat Prod Res 2024; 38:2498-2504. [PMID: 36876408 DOI: 10.1080/14786419.2023.2185889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/19/2023] [Accepted: 02/25/2023] [Indexed: 03/07/2023]
Abstract
Two new prenylxanthone derivatives, asperidulins A (1) and B (2), along with a known emodin analogue (3) were isolated from an apple-derived fungus Aspergillus nidulans KIB-HACM-01. Their structures were elucidated by interpretation of HRMS, NMR, and comparisons of specific optical rotation. Asperidulin B (2) exhibited a moderate cytotoxicity against A549 and BEAS-2B with an IC50 values of 13.62 ± 0.41 and 11.27 ± 0.52 μM, and methyl-averantin (3) showed moderate cytotoxicities against all six tested cell lines (HL-60, A549, SMMC-7721, MDA-MB-231, SW480, BEAS-2B) with IC50 values ranging from 8.93 ± 0.56 to 35.27 ± 0.25 μM.
Collapse
Affiliation(s)
- Peng Lai
- College of Chemical Engineering, Institute of Pharmaceutical Engineering Technology and Application, Key Laboratory of Green Chemistry of Sichuan Institutes of Higher Education, Sichuan University of Science & Engineering, Zigong 643000 Sichuan, PR China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, CAS Center for Excellence in Molecular Plant Sciences, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Li Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, CAS Center for Excellence in Molecular Plant Sciences, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Chenjie Deng
- College of Chemical Engineering, Institute of Pharmaceutical Engineering Technology and Application, Key Laboratory of Green Chemistry of Sichuan Institutes of Higher Education, Sichuan University of Science & Engineering, Zigong 643000 Sichuan, PR China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, CAS Center for Excellence in Molecular Plant Sciences, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Yixin Xu
- College of Chemical Engineering, Institute of Pharmaceutical Engineering Technology and Application, Key Laboratory of Green Chemistry of Sichuan Institutes of Higher Education, Sichuan University of Science & Engineering, Zigong 643000 Sichuan, PR China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, CAS Center for Excellence in Molecular Plant Sciences, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Xiao-Yan Ma
- College of Chemical Engineering, Institute of Pharmaceutical Engineering Technology and Application, Key Laboratory of Green Chemistry of Sichuan Institutes of Higher Education, Sichuan University of Science & Engineering, Zigong 643000 Sichuan, PR China
| | - Chun-Ru Cheng
- College of Chemical Engineering, Institute of Pharmaceutical Engineering Technology and Application, Key Laboratory of Green Chemistry of Sichuan Institutes of Higher Education, Sichuan University of Science & Engineering, Zigong 643000 Sichuan, PR China
| | - Sheng-Xiong Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, CAS Center for Excellence in Molecular Plant Sciences, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
8
|
El Amir D, Sayed AM, El-Hawary SS, Elsakhawy OM, Attia EZ, Abdelmohsen UR, Mohammed R. Metabolomic profiling of Medicago sativa-derived fungal endophytes and evaluation of their biological activities. RSC Adv 2024; 14:14296-14302. [PMID: 38690109 PMCID: PMC11059938 DOI: 10.1039/d4ra00790e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/07/2024] [Indexed: 05/02/2024] Open
Abstract
This study aimed to discover the potential of Medicago sativa-derived fungal endophytes as a prospective source of bioactive metabolites. In the present study, three different strains of fungal endophyte Aspergillus terreus were isolated from leaves L, roots T and stems St of Medicago sativa to explore their biological and chemical diversity. These isolated fungi were exposed to different fermentation conditions by adding various chemical elicitors to their solid fermentation media. According to LC-HRESIMS-based metabolomics and multivariate analysis, each chemical treatment had a different effect on the chemical profiles of the fungi. Orthogonal Projections to Latent Structures Discriminant Analysis (OPLS-DA) proposed several compounds with anticancer action against MCF-7 (a human breast cancer cell line) and MDA-MB-231 (a human epithelial breast cancer cell line).
Collapse
Affiliation(s)
- Dalia El Amir
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University 62514 Beni-Suef Egypt
| | - Ahmed M Sayed
- Department of Pharmacognosy, Collage of Pharmacy, Almaaqal University 61014 Basrah Iraq
| | - Seham S El-Hawary
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University 11936 Cairo Egypt
| | - Omnia M Elsakhawy
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University 62514 Beni-Suef Egypt
| | - Eman Zekry Attia
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University 61519 Minia Egypt
| | - Usama Ramadan Abdelmohsen
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University 61519 Minia Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University 61111 New Minia Egypt
| | - Rabab Mohammed
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University 62514 Beni-Suef Egypt
| |
Collapse
|
9
|
Reyes Castillo N, Díaz CE, Andres MF, Imperial J, Valcárcel F, González Coloma AA. Optimization of fungicidal and acaricidal metabolite production by endophytic fungus Aspergillus sp. SPH2. BIORESOUR BIOPROCESS 2024; 11:28. [PMID: 38647905 PMCID: PMC10992823 DOI: 10.1186/s40643-024-00745-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/20/2024] [Indexed: 04/25/2024] Open
Abstract
The endophytic fungus Aspergillus sp. SPH2 was isolated from the stems of the endemic plant Bethencourtia palmensis and its extracts were found to have strong fungicidal effects against Botrytis cinerea and ixodicidal effects against Hyalomma lusitanicum at different fermentation times. In this study, the fungus was grown using three different culture media and two methodologies, Microparticulate Enhancement Cultivation (MPEC) and Semi-Solid-State Fermentation (Semi-SSF), to increase the production of secondary metabolites during submerged fermentation. The addition of an inert support to the culture medium (Semi-SSF) resulted in a significant increase in the extract production. However, when talcum powder was added to different culture media, unexpected results were observed, with a decrease in the production of the biocompounds of interest. Metabolomic analyses showed that the production of aspergillic, neoaspergillic, and neohydroxyaspergillic acids peaked in the first few days of fermentation, with notable differences observed among the methodologies and culture media. Mellein production was particularly affected by the addition of an inert support to the culture medium. These results highlight the importance of surface properties and morphology of spores and mycelia during fermentation by this fungal species.
Collapse
Affiliation(s)
- Nicolas Reyes Castillo
- Consejo Superior de Investigaciones Científicas (CSIC), Instituto de Ciencias Agrarias (ICA), Calle de Serrano 115B, 28006, Madrid, Spain.
| | - Carmen E Díaz
- Instituto de Productos Naturales y Agrobiología (IPNA) - CSIC, Avda. Astrofísico F. Sánchez, 3, Tenerife, 38206, La Laguna, Spain
| | - M Fe Andres
- Consejo Superior de Investigaciones Científicas (CSIC), Instituto de Ciencias Agrarias (ICA), Calle de Serrano 115B, 28006, Madrid, Spain
| | - Juan Imperial
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón, 28223, Madrid, Spain
| | - Félix Valcárcel
- Grupo de Parasitología Animal, Departamento de Reproducción Animal, INIA-CSIC, Carretera de La Coruña, Km 5,9, 28040, Madrid, Spain
- Grupo de Trabajo ESGARIBER, Sociedad Española de Parasitología,, Plaza de Ramón y Cajal s/n, Ciudad Universitaria, 28040, Madrid, Spain
| | - Ana Azucena González Coloma
- Consejo Superior de Investigaciones Científicas (CSIC), Instituto de Ciencias Agrarias (ICA), Calle de Serrano 115B, 28006, Madrid, Spain.
| |
Collapse
|
10
|
Taher Mohie El-Dien R, Mahmoud BK, Abdelwahab MF, Khedr AIM, Kamel MS, Yahia R, Mohamed NM, Zawily AE, Kamel ES, Salem AK, Abdelmohsen UR, Fouad MA. Paralemnalia thyrsoides-associated fungi: phylogenetic diversity, cytotoxic potential, metabolomic profiling and docking analysis. BMC Microbiol 2023; 23:308. [PMID: 37884900 PMCID: PMC10601334 DOI: 10.1186/s12866-023-03045-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 10/06/2023] [Indexed: 10/28/2023] Open
Abstract
BACKGROUND Cancer continues to be one of the biggest causes of death that affects human health. Chemical resistance is still a problem in conventional cancer treatments. Fortunately, numerous natural compounds originating from different microbes, including fungi, possess cytotoxic characteristics that are now well known. This study aims to investigate the anticancer prospects of five fungal strains that were cultivated and isolated from the Red Sea soft coral Paralemnalia thyrsoides. The in vitro cytotoxic potential of the ethyl acetate extracts of the different five isolates were evaluated using MTS assay against four cancer cell lines; A549, CT-26, MDA-MB-231, and U87. Metabolomics profiling of the different extracts using LC-HR-ESI-MS, besides molecular docking studies for the dereplicated compounds were performed to unveil the chemical profile and the cytotoxic mechanism of the soft coral associated fungi. RESULTS The five isolated fungal strains were identified as Penicillium griseofulvum (RD1), Cladosporium sphaerospermum (RD2), Cladosporium liminiforme (RD3), Penicillium chrysogenum (RD4), and Epicoccum nigrum (RD5). The in vitro study showed that the ethyl acetate extract of RD4 exhibited the strongest cytotoxic potency against three cancer cell lines A549, CT-26 and MDA-MB-231 with IC50 values of 1.45 ± 8.54, 1.58 ± 6.55 and 1.39 ± 2.0 µg/mL, respectively, also, RD3 revealed selective cytotoxic potency against A549 with IC50 value of 6.99 ± 3.47 µg/mL. Docking study of 32 compounds dereplicated from the metabolomics profiling demonstrated a promising binding conformation with EGFR tyrosine kinase that resembled its co-crystallized ligand albeit with better binding energy score. CONCLUSION Our results highlight the importance of soft coral-associated fungi as a promising source for anticancer metabolites for future drug discovery.
Collapse
Affiliation(s)
- Radwa Taher Mohie El-Dien
- Department of Pharmacognosy, Faculty of pharmacy, New Valley University, New Valley City, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, 61111, New Minia City, Minia, Egypt
| | - Basma Khalaf Mahmoud
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, 61519, Minia, Egypt
| | - Miada F Abdelwahab
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, 61519, Minia, Egypt
| | - Amgad I M Khedr
- Department of Pharmacognosy, Faculty of Pharmacy, Port Said University, 42526, Port Said, Egypt
| | - Mohamed Salah Kamel
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, 61519, Minia, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, 61111, New Minia City, Minia, Egypt
| | - Ramadan Yahia
- Department of Microbiology and immunology, Faculty of Pharmacy, Deraya University, 61111, New Minia City, Minia, Egypt
| | - Nada M Mohamed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Modern University for Technology and Information (MTI), Cairo, Egypt
| | - Amr El Zawily
- Department of Plant and Microbiology, Faculty of Science, Damanhour University, 22511, Damanhour, Egypt.
- Division of Pharmaceutics and Translational Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, 52242, USA.
| | - Eman S Kamel
- Division of Pharmaceutics and Translational Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, 52242, USA
| | - Aliasger K Salem
- Division of Pharmaceutics and Translational Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, 52242, USA
| | - Usama Ramadan Abdelmohsen
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, 61519, Minia, Egypt.
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, 61111, New Minia City, Minia, Egypt.
| | - Mostafa A Fouad
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, 61519, Minia, Egypt
| |
Collapse
|
11
|
Spina R, Ropars A, Bouazzi S, Dadi S, Lemiere P, Dupire F, Khiralla A, Yagi S, Frippiat JP, Laurain-Mattar D. Screening of Anti-Inflammatory Activity and Metabolomics Analysis of Endophytic Fungal Extracts; Identification and Characterization of Perylenequinones and Terpenoids from the Interesting Active Alternaria Endophyte. Molecules 2023; 28:6531. [PMID: 37764307 PMCID: PMC10534442 DOI: 10.3390/molecules28186531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/24/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Patients suffering from inflammatory chronic diseases are classically treated with anti-inflammatory drugs but unfortunately are highly susceptible to becoming resistant to their treatment. Finding new drugs is therefore crucial and urgent and research on endophytic fungi is a promising way forward. Endophytic fungi are microorganisms that colonize healthy plants and live within their intercellular tissues. They are able to produce a large variety of secondary metabolites while allowing their host to stay healthy. A number of these molecules are endowed with antioxidant or antimicrobial as well as cytotoxic properties, making them very interesting/promising in the field of human therapy. The aim of our study was to investigate whether extracts from five endophytic fungi isolated from plants are endowed with anti-inflammatory activity. Extracts of the endophytic fungi Alternaria alternata from Calotropis procera leaves and Aspergillus terreus from Trigonella foenum-graecum seeds were able to counteract the lipopolysaccharide (LPS) pro-inflammatory effect on THP-1 cells differentiated into macrophages. Moreover, they were able to induce an anti-inflammatory state, rendering them less sensitive to the LPS pro-inflammatory stimulus. Taken together, these results show that these both endophytic fungi could be interesting alternatives to conventional anti-inflammatory drugs. To gain more detailed knowledge of their chemical richness, phytochemical analysis of the ethyl acetate extracts of the five endophytic fungi studied was performed using HPTLC, GC-MS and LC-MS with the Global Natural Products Social (GNPS) platform and the MolNetEnhancer tool. A large family of metabolites (carboxylic acids and derivatives, steroid derivatives, alkaloids, hydroxyanthraquinones, valerolactones and perylenequinones) were detected. The purification of endophytic fungus extract of Alternaria alternate, which diminished TNF-α production of 66% at 20 µg/mL, incubated one hour before LPS addition, led to the characterization of eight pure compounds. These molecules are altertoxins I, II, III, tricycloalternarenes 3a, 1b, 2b, anthranilic acid, and o-acetamidobenzoic acid. In the future, all these pure compounds will be evaluated for their anti-inflammatory activity, while altertoxin II has been shown in the literature as the most active mycotoxin in terms of anti-inflammatory activity.
Collapse
Affiliation(s)
- Rosella Spina
- Université de Lorraine, INRAE, LAE, F-54000 Nancy, France;
| | - Armelle Ropars
- Université de Lorraine, SIMPA, F-54000 Nancy, France; (A.R.); (J.-P.F.)
| | - Sihem Bouazzi
- Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France; (S.B.); (S.D.); (P.L.); (F.D.)
| | - Safa Dadi
- Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France; (S.B.); (S.D.); (P.L.); (F.D.)
| | - Pascal Lemiere
- Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France; (S.B.); (S.D.); (P.L.); (F.D.)
| | - François Dupire
- Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France; (S.B.); (S.D.); (P.L.); (F.D.)
| | - Afra Khiralla
- Botany Department, Faculty of Sciences and Technologies, Shendi University, Shendi 11111, Sudan;
| | - Sakina Yagi
- Department of Botany, Faculty of Science, University of Khartoum, Khartoum 11115, Sudan;
| | - Jean-Pol Frippiat
- Université de Lorraine, SIMPA, F-54000 Nancy, France; (A.R.); (J.-P.F.)
| | | |
Collapse
|
12
|
Wijayawardene NN, Dai DQ, Jayasinghe PK, Gunasekara SS, Nagano Y, Tibpromma S, Suwannarach N, Boonyuen N. Ecological and Oceanographic Perspectives in Future Marine Fungal Taxonomy. J Fungi (Basel) 2022; 8:1141. [PMID: 36354908 PMCID: PMC9696965 DOI: 10.3390/jof8111141] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/21/2022] [Accepted: 10/22/2022] [Indexed: 11/07/2023] Open
Abstract
Marine fungi are an ecological rather than a taxonomic group that has been widely researched. Significant progress has been made in documenting their phylogeny, biodiversity, ultrastructure, ecology, physiology, and capacity for degradation of lignocellulosic compounds. This review (concept paper) summarizes the current knowledge of marine fungal diversity and provides an integrated and comprehensive view of their ecological roles in the world's oceans. Novel terms for 'semi marine fungi' and 'marine fungi' are proposed based on the existence of fungi in various oceanic environments. The major maritime currents and upwelling that affect species diversity are discussed. This paper also forecasts under-explored regions with a greater diversity of marine taxa based on oceanic currents. The prospects for marine and semi-marine mycology are highlighted, notably, technological developments in culture-independent sequencing approaches for strengthening our present understanding of marine fungi's ecological roles.
Collapse
Affiliation(s)
- Nalin N. Wijayawardene
- Centre for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China
- Section of Genetics, Institute for Research and Development in Health and Social Care, No: 393/3, Lily Avenue, Off Robert Gunawardane Mawatha, Battaramulla 10120, Sri Lanka
- National Institute of Fundamental Studies, Hantana Road, Kandy 20000, Sri Lanka
| | - Don-Qin Dai
- Centre for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China
| | - Prabath K. Jayasinghe
- National Aquatic Resources Research and Development Agency (NARA), Crow Island, Colombo 00150, Sri Lanka
| | - Sudheera S. Gunasekara
- National Aquatic Resources Research and Development Agency (NARA), Crow Island, Colombo 00150, Sri Lanka
| | - Yuriko Nagano
- Deep-Sea Biodiversity Research Group, Marine Biodiversity and Environmental Assessment Research Center, Research Institute for Global Change (RIGC), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
| | - Saowaluck Tibpromma
- Centre for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China
| | - Nakarin Suwannarach
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nattawut Boonyuen
- Plant Microbe Interaction Research Team (APMT), National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| |
Collapse
|
13
|
Mathur P, Chaturvedi P, Sharma C, Bhatnagar P. Improved seed germination and plant growth mediated by compounds synthesized by endophytic Aspergillus niger (isolate 29) isolated from Albizia lebbeck (L.) Benth. 3 Biotech 2022; 12:271. [PMID: 36105862 PMCID: PMC9464679 DOI: 10.1007/s13205-022-03332-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 08/25/2022] [Indexed: 11/01/2022] Open
Abstract
Plant-microbe interactions are remarkably diverse and dynamic. These interactions can be in the form of endophytic association. Colonization of endophytic microflora in crop plants improves crop health leading to crop enhancement. They stimulate the overall growth of plants by facilitating nutrient uptake and regulating various hormones. This eventually improves the plant biomass and grain yield. Owing to the assistance of the endophytes to the host plants, augmentation of crop plants with potential fungal endophytes or their extracted bioactive compound can upsurge the overall crop production and provide promising solutions for environmentally sustainable agriculture. In this light, the present study deals with the prospects of bioactive metabolites produced by endophytic fungi in Albizia lebbeck (L.) Benth, a medicinal native plant of Rajasthan. The metabolomic analysis of a partially purified extract of Aspergillus niger (isolate 29) showed the presence of a total of 919 compounds using UHPLC-MS/MS. The metabolic pathway analysis revealed that these compounds were influencing super pathway of gibberellin and isoflavonoid biosynthesis. Significant increase in seed germination percentage (73-93%), seed vigour index (834.44-1498.21) and germination index (2.54-3.67 seeds/day) was found in treated seeds compared to untreated. There was a significant improvement in root (45-185%) and shoot length (215-295%) of wheat, barley and millet and a significant increase in root number (38-97%) in wheat and barley. Positive correlation was observed in the growth parameters of all the crops upon treatment. Overall, the results indicated that the partially purified fraction of A. niger (isolate 29) improved seed germination and promoted plant growth in cash crops. The results emphasize towards the importance of secondary metabolites in seed germination and enhancement of plant growth. These results also suggest a probable mutualistic role of endophyte with the host plant. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03332-x.
Collapse
Affiliation(s)
- Parikshana Mathur
- Department of Botany, Shri Nakoda Parshvanath Jain Mahavidyalaya, Jodhpur, 342005 India
- Department of Biotechnology, IIS (Deemed to be University), Jaipur, 302020 India
| | - Payal Chaturvedi
- Department of Biotechnology, IIS (Deemed to be University), Jaipur, 302020 India
| | - Charu Sharma
- Department of Biotechnology, IIS (Deemed to be University), Jaipur, 302020 India
| | - Pradeep Bhatnagar
- Department of Biotechnology, IIS (Deemed to be University), Jaipur, 302020 India
| |
Collapse
|
14
|
Liu SS, Huang R, Zhang SP, Xu TC, Hu K, Wu SH. Antimicrobial secondary metabolites from an endophytic fungus Aspergillus polyporicola. Fitoterapia 2022; 162:105297. [PMID: 36096278 DOI: 10.1016/j.fitote.2022.105297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/02/2022] [Accepted: 09/03/2022] [Indexed: 11/19/2022]
Abstract
Two new nucleoside derivatives, kipukasins O (1) and P (2), one new cyclohexenone derivative, arthropsadiol D (5), and one new natural product, (+)-2,5-dimethyl-3(2H)-benzofuranone (6), together with eleven known compounds (3, 4, 7-15), were obtained from the culture broth of the endophytic fungus Aspergillus polyporicola R2 isolated from the roots of Synsepalum dulcificum. Among them, the absolute configuration of compound 5 was determined by quantum chemical calculations of NMR chemical shifts and ECD spectrum. The antimicrobial activities of these compounds were evaluated. Compound 11 exhibited obvious inhibitory activity against MRSA, Staphylococcus aureus, Salmonella typhimurium, Botrytis cinerea, and Fusarium graminearum with MIC values of 4, 4, 4, 32, and 16 μg/mL, respectively. Compound 12 exhibited antibacterial activity against S. typhimurium and MRSA with MIC values of 4 and 16 μg/mL. Compound 6 exhibited antifungal activity against F. graminearum with MIC value of 32 μg/mL.
Collapse
Affiliation(s)
- Si-Si Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Rong Huang
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Shou-Peng Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Tang-Chang Xu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Kun Hu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming 650201, China
| | - Shao-Hua Wu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming 650091, China.
| |
Collapse
|
15
|
Mishra S, Priyanka, Sharma S. Metabolomic Insights Into Endophyte-Derived Bioactive Compounds. Front Microbiol 2022; 13:835931. [PMID: 35308367 PMCID: PMC8926391 DOI: 10.3389/fmicb.2022.835931] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/31/2022] [Indexed: 11/26/2022] Open
Abstract
Among the various plant-associated microbiota, endophytes (the microbial communities inhabiting plant endosphere without causing disease symptoms) exhibit the most intimate and specific association with host plants. Endophytic microbes influence various aspects of plant responses (such as increasing availability of nutrients, tolerance against biotic and abiotic stresses, etc.) by modulating the primary and secondary metabolism of the host. Besides, endophytic microbes produce a diverse array of bioactive compounds, which have potential applications in the pharmaceutical, food, and cosmetic industries. Further, there is sufficient evidence for endophyte-derived plant metabolites, which could be pursued as alternative sources of commercially important plant metabolites. The field of bioprospecting, the discovery of novel chemistries, and endophyte-mediated production of plant metabolites have witnessed a boom with the advent of omics technologies (especially metabolomics) in endophyte research. The high throughput study of small metabolites at a particular timepoint or tissue forms the core of metabolomics. Being downstream to transcriptome and proteome, the metabolome provides the most direct reflection of the phenotype of an organism. The contribution of plant and microbial metabolomics for answering fundamental questions of plant-endophyte interaction, such as the effect of endophyte inoculation on plant metabolome, composition of metabolites on the impact of environmental stressors (biotic and abiotic), etc., have also been discussed.
Collapse
Affiliation(s)
- Sushma Mishra
- Plant Biotechnology Laboratory, Dayalbagh Educational Institute, Deemed-to-be-University, Agra, India
| | - Priyanka
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| | - Shilpi Sharma
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| |
Collapse
|
16
|
Caesar LK, Montaser R, Keller NP, Kelleher NL. Metabolomics and genomics in natural products research: complementary tools for targeting new chemical entities. Nat Prod Rep 2021; 38:2041-2065. [PMID: 34787623 PMCID: PMC8691422 DOI: 10.1039/d1np00036e] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Covering: 2010 to 2021Organisms in nature have evolved into proficient synthetic chemists, utilizing specialized enzymatic machinery to biosynthesize an inspiring diversity of secondary metabolites. Often serving to boost competitive advantage for their producers, these secondary metabolites have widespread human impacts as antibiotics, anti-inflammatories, and antifungal drugs. The natural products discovery field has begun a shift away from traditional activity-guided approaches and is beginning to take advantage of increasingly available metabolomics and genomics datasets to explore undiscovered chemical space. Major strides have been made and now enable -omics-informed prioritization of chemical structures for discovery, including the prospect of confidently linking metabolites to their biosynthetic pathways. Over the last decade, more integrated strategies now provide researchers with pipelines for simultaneous identification of expressed secondary metabolites and their biosynthetic machinery. However, continuous collaboration by the natural products community will be required to optimize strategies for effective evaluation of natural product biosynthetic gene clusters to accelerate discovery efforts. Here, we provide an evaluative guide to scientific literature as it relates to studying natural product biosynthesis using genomics, metabolomics, and their integrated datasets. Particular emphasis is placed on the unique insights that can be gained from large-scale integrated strategies, and we provide source organism-specific considerations to evaluate the gaps in our current knowledge.
Collapse
Affiliation(s)
- Lindsay K Caesar
- Department of Chemistry, Northwestern University, Evanston, IL, USA.
| | - Rana Montaser
- Department of Chemistry, Northwestern University, Evanston, IL, USA.
| | - Nancy P Keller
- Department of Medical Microbiology and Immunology and Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Neil L Kelleher
- Department of Chemistry, Northwestern University, Evanston, IL, USA.
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| |
Collapse
|
17
|
El‐Hawary S, Mohammed R, Bahr H, Attia E, El‐Katatny M, Abelyan N, Al‐Sanea M, Moawad A, Abdelmohsen U. Soybean-associated endophytic fungi as potential source for anti-COVID-19 metabolites supported by docking analysis. J Appl Microbiol 2021; 131:1193-1211. [PMID: 33559270 PMCID: PMC8013715 DOI: 10.1111/jam.15031] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/28/2021] [Accepted: 02/02/2021] [Indexed: 12/29/2022]
Abstract
AIMS To identify the metabolites produced by the endophytic fungus, Aspergillus terreus and to explore the anti-viral activity of the identified metabolites against the pandemic disease COVID-19 in-silico. METHODS AND RESULTS Herein, we reported the isolation of A. terreus, the endophytic fungus associated with soybean roots, which is then subcultured using OSMAC approach in five different culture media. Analytical analysis of media ethylacetate extracts using liquid chromatography coupled with high-resolution mass spectrometry (LC-HRMS) was carried out. Furthermore, the obtained LC-MS data were statistically processed with MetaboAnalyst 4.0. Molecular docking studies were performed for the dereplicated metabolites against COVID-19 main protease (Mpro ). Metabolomic profiling revealed the presence of 18 compounds belonging to different chemical classes. Quinones, polyketides and isocoumarins were the most abundant classes. Multivariate analysis revealed that potato dextrose broth and modified potato dextrose broth are the optimal media for metabolites production. Molecular docking studies declared that the metabolites, Aspergillide B1 and 3a-Hydroxy-3, 5-dihydromonacolin L showed the highest binding energy scores towards COVID-19 main protease (Mpro ) (-9·473) and (-9·386), respectively, and they interact strongly with the catalytic dyad (His41 and Cys145) amino acid residues of Mpro . CONCLUSIONS A combination of metabolomics and in-silico approaches have allowed a shorter route to search for anti-COVID-19 natural products in a shorter time. The dereplicated metabolites, aspergillide B1 and 3α-Hydroxy-3, 5-dihydromonacolin L were found to be potent anti-COVID-19 drug candidates in the molecular docking study. SIGNIFICANCE AND IMPACT OF THE STUDY This study revealed that the endophytic fungus, A. terreus can be considered as a potential source of natural bioactive products. In addition to, the possibility of developing the metabolites, aspergillide B1 and 3α-Hydroxy-3, 5-dihydromonacolin L to be used as phytopharmaceuticals for the management of COVID-19.
Collapse
Affiliation(s)
- S.S. El‐Hawary
- Department of Pharmacognosy Faculty of Pharmacy Cairo University Cairo Egypt
| | - R. Mohammed
- Department of Pharmacognosy Faculty of Pharmacy Beni‐Suef University Beni‐Suef Egypt
| | - H.S. Bahr
- Department of Pharmacognosy Faculty of Pharmacy Nahda University Beni‐Suef Egypt
| | - E.Z. Attia
- Department of Pharmacognosy Faculty of Pharmacy Minia University Minia Egypt
| | - M.H. El‐Katatny
- Department of Botany and Microbiology Faculty of Science Minia University Minia Egypt
| | - N. Abelyan
- Institute of Biomedicine and Pharmacy Russian‐Armenian University Yerevan Armenia
- Foundation for Armenian Science and Technology Yerevan Armenia
| | - M.M. Al‐Sanea
- Department of Pharmaceutical Chemistry College of Pharmacy Jouf University Sakaka Saudi Arabia
| | - A.S. Moawad
- Department of Pharmacognosy Faculty of Pharmacy Beni‐Suef University Beni‐Suef Egypt
| | - U.R. Abdelmohsen
- Department of Pharmacognosy Faculty of Pharmacy Minia University Minia Egypt
- Department of Pharmacognosy Faculty of Pharmacy Deraya University New Minia City Minia Egypt
| |
Collapse
|
18
|
Hu YW, Liu Y, Guo EY, Wang YY, Xu WQ, Gao Y, Jiang XY, Feng F, Xu J, Liu WY. Naphtho-γ-pyrone Dimers from an Endozoic Aspergillus niger and the Effects of Coisolated Monomers in Combination with Cisplatin on a Cisplatin-Resistant A549 Cell Line. JOURNAL OF NATURAL PRODUCTS 2021; 84:1889-1897. [PMID: 34156846 DOI: 10.1021/acs.jnatprod.0c01262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Chemotherapy resistance is one of the main causes of lung cancer treatment failure, and a combination regimen may be an effective way to overcome this. Here we report 5 new (1-3, 7, and 9) and 15 known polyketides, isolated from an endozoic Aspergillus niger. The structures of the new compounds were determined by the interpretation of IR, HRESIMS, NMR, and ECD spectra. The ESI-MS/MS fragmentation of the isolated naphtho-γ-pyrone isomers in positive mode is discussed. The effects of isolated compounds in combination with cisplatin (DDP) on a DDP-resistant A549 cell line (A459/DDP) are investigated. The most active compound, 12, could reduce the ratio of GSH/GSSG, promote the generation of intracellular ROS, and cooperate with DDP to down-regulated levels of Nrf2, Akt, HO-1, and NQO1, suggesting that inhibition of Nrf2 and Akt pathways might be involved in the combined effect of 12 and DDP in A549/DDP cells.
Collapse
Affiliation(s)
- Yun-Wei Hu
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Ying Liu
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Er-Yan Guo
- Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Yu-Ying Wang
- Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Wan-Qi Xu
- Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Yan Gao
- Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Xue-Yang Jiang
- Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Feng Feng
- Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
- Jiangsu Food & Pharmaceutical Science College, Huaian 223003, People's Republic of China
| | - Jian Xu
- Department of Traditional Chinese Medicine, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Wen-Yuan Liu
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| |
Collapse
|
19
|
El-Bondkly EAM, El-Bondkly AAM, El-Bondkly AAM. Marine endophytic fungal metabolites: A whole new world of pharmaceutical therapy exploration. Heliyon 2021; 7:e06362. [PMID: 33869822 PMCID: PMC8035529 DOI: 10.1016/j.heliyon.2021.e06362] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/16/2020] [Accepted: 02/22/2021] [Indexed: 12/19/2022] Open
Abstract
The growing threat arises due to diseases such as cancer and the infections around the world leading to a critical requirement for novel and constructive compounds with unique ways of action capable of combating these deadly diseases. At present, it is evident that endophytic fungi constitute an enormous as well as comparatively untapped source of great biodiversity that can be considered as a wellspring of effective novel natural products for medical, agricultural and industrial use. Marine endophytic fungi have been found in every marine plants (algae, seagrass, driftwood, mangrove plants), marine vertebrates (mainly, fish) or marine invertebrates (mainly, sponge and coral) inter- and intra-cellular without causing any palpable symptoms of illness. Since evolution of microbes and eukaryotes to a higher level, coevolution has resulted in specific interaction mechanisms. Endophytic fungi are known to influence the life cycle and are necessary for the homeostasis of their eukaryotic hosts and the chemical signals of their host have been shown to activate gene expression in endophytes to induce expression of endophytic secondary metabolites. Marine endophytic fungi are receiving increasing attention by chemists because of their varied and structurally unmatched compounds that have strong biological roles in life as lead pharmaceutical compounds, including anticancer, antiviral, insulin mimetic, antineurodegenerative, antimicrobial, antioxidant and immuno-suppressant compounds. Moreover, fungal endophytes proved to have different biological activities for exploitation in the environmental and agricultural sustainability.
Collapse
|
20
|
Metabolic profiling of cytotoxic metabolites from five Tabebuia species supported by molecular correlation analysis. Sci Rep 2021; 11:8405. [PMID: 33863934 PMCID: PMC8052319 DOI: 10.1038/s41598-021-87695-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 03/23/2021] [Indexed: 11/24/2022] Open
Abstract
Tabebuia is the largest genus among the family Bignoniaceae. Tabebuia species are known for their high ornamental and curative value. Here, the cytotoxic potential of extracts from the leaves and stems of five Tabebuia species was analyzed. The highest activity was observed for T. rosea (Bertol.) DC. stem extract against HepG2 cell line (IC50 4.7 µg/mL), T. pallida L. stem extract against MCF-7 cell line (IC50 6.3 µg/mL), and T. pulcherrima stem extract against CACO2 cell line (IC50 2.6 µg/mL). Metabolic profiling of the ten extracts using liquid chromatography–high-resolution mass spectrometry for dereplication purposes led to annotation of forty compounds belonging to different chemical classes. Among the annotated compounds, irridoids represent the major class. Principle component analysis (PCA) was applied to test the similarity and variability among the tested species and the score plot showed similar chemical profiling between the leaves and stems of both T. pulcherrima and T. pallida L. and unique chemical profiling among T. rosea (Bertol.) DC., T. argentea Britton, and T. guayacan (Seem.) Hemsl. leaf extracts and the stem extract of T. rosea (Bertol.) DC. Additionally, a molecular correlation analysis was used to annotate the bioactive cytotoxic metabolites in the extracts and correlate between their chemical and biological profiles.
Collapse
|
21
|
Babaeekhou L, Ghane M. Antimicrobial activity of ginger on cariogenic bacteria: molecular networking and molecular docking analyses. J Biomol Struct Dyn 2021; 39:2164-2175. [PMID: 32189576 DOI: 10.1080/07391102.2020.1745283] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/13/2020] [Accepted: 03/16/2020] [Indexed: 10/24/2022]
Abstract
Streptococcus mutans and Streptococcus sobrinus have been implicated as the primary causative agents of dental caries in humans. This study aimed to screen the antibacterial activity of the n-hexane, ethyl acetate, methanol, and aqueous extracts of Ginger against mentioned bacteria and investigate chemical constituents of the extracts, and their activity against some drug targets in S. mutans. Antimicrobial tests including biofilm inhibition, time-kill kinetics, and adherence inhibition alongside cytotoxicity of extracts, were assessed. A molecular networking technique was used to find chemical constituents of the extracts. Molecular docking analysis on the Schrodinger package was applied to identify the binding interactions of the compounds to targeted enzymes. Methanol and ethyl acetate extracts showed the highest antibacterial activity against S. mutans and S. sobrinus. Different compounds including polyphenols, alkaloids, anthraquinones, flavonoids, terpenoids, glycosides, steroids, and reducing sugars dereplicated from Ginger extracts. The binding affinity of ligands with free hydroxyl groups was better than other ligands against all tested enzymes. This study introduces a wide range of Z. officinal extracts compounds to be used in different drug discovery studies. Some Ginger compounds with high affinity to investigated enzymes can be considered as candidate compounds for anti-caries drug development studies.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Laleh Babaeekhou
- Department of Biology, Islamshahr Branch, Islamic Azad University, Islamshahr, Iran
| | - Maryam Ghane
- Department of Biology, Islamshahr Branch, Islamic Azad University, Islamshahr, Iran
| |
Collapse
|
22
|
Bakr RO, Tawfike A, El-Gizawy HA, Tawfik N, Abdelmohsen UR, Abdelwahab MF, Alshareef WA, Fayez SM, El-Mancy SMS, El-Fishawy AM, Abdelkawy MA, Fayed MAA. The metabolomic analysis of five Mentha species: cytotoxicity, anti- Helicobacter assessment, and the development of polymeric micelles for enhancing the anti- Helicobacter activity. RSC Adv 2021; 11:7318-7330. [PMID: 35423273 PMCID: PMC8694964 DOI: 10.1039/d0ra09334c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/26/2021] [Accepted: 01/13/2021] [Indexed: 12/17/2022] Open
Abstract
Mentha species are medicinally used worldwide and remain attractive for research due to the diversity of their phytoconstituents and large therapeutic indices for various ailments. This study used the metabolomics examination of five Mentha species (M. suaveolens, M. sylvestris, M. piperita, M. longifolia, and M. viridis) to justify their cytotoxicity and their anti-Helicobacter effects. The activities of species were correlated with their phytochemical profiles by orthogonal partial least square discriminant analysis (OPLS-DA). Tentatively characterized phytoconstituents using liquid chromatography high-resolution electrospray ionization mass spectrometry (LC-HR-ESI-MS) included 49 compounds: 14 flavonoids, 10 caffeic acid esters, 7 phenolic acids, and other constituents. M. piperita showed the highest cytotoxicity to HepG2 (human hepatoma), MCF-7 (human breast adenocarcinoma), and CACO2 (human colon adenocarcinoma) cells using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays. OPLS-DA and dereplication studies predicted that the cytotoxic activity was related to benzyl glucopyranoside-sulfate, a lignin glycoside. Furthermore, M. viridis was effective in suppressing the growth of Helicobacter pylori at a concentration of 50 mg mL-1. OPLS-DA predicted that this activity was related to a dihydroxytrimethoxyflavone. M. viridis extract was formulated with Pluronic® F127 to develop polymeric micelles as a nanocarrier that enhanced the anti-Helicobacter activity of the extract and provided minimum inhibitory concentrations and minimum bactericidal concentrations of 6.5 and 50 mg mL-1, respectively. This activity was also correlated to tentatively identified constituents, including rosmarinic acid, catechins, carvone, and piperitone oxide.
Collapse
Affiliation(s)
- Riham O Bakr
- Department of Pharmacognosy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA) Giza Egypt
| | - Ahmed Tawfike
- Molecular Discovery Group, Computational and Analytical Science Department Rothamsted Research AL5 2JQ Harpenden UK
| | - Heba A El-Gizawy
- Department of Pharmacognosy, Faculty of Pharmacy, October 6 University Giza Egypt
| | - Nashwa Tawfik
- Department of Pharmacognosy, Faculty of Pharmacy, Helwan University Cairo 11795 Egypt
| | - Usama Ramadan Abdelmohsen
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University 61111 New Minia Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University 61519 Minia Egypt +2-86-2347759
| | - Miada F Abdelwahab
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University 61519 Minia Egypt +2-86-2347759
| | - Walaa A Alshareef
- Department of Microbiology and Immunology, Faculty of Pharmacy, October 6 University Giza Egypt
| | - Sahar M Fayez
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October 6 University Giza Egypt
| | - Shereen M S El-Mancy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October 6 University Giza Egypt
| | - Ahlam M El-Fishawy
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University 11562 Cairo Egypt
| | - Mostafa A Abdelkawy
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University 11562 Cairo Egypt
| | - Marwa A A Fayed
- Department of Pharmacognosy, Faculty of Pharmacy, University of Sadat City Sadat 32897 Egypt
| |
Collapse
|
23
|
Morales-Sánchez V, Díaz CE, Trujillo E, Olmeda SA, Valcarcel F, Muñoz R, Andrés MF, González-Coloma A. Bioactive Metabolites from the Endophytic Fungus Aspergillus sp. SPH2. J Fungi (Basel) 2021; 7:109. [PMID: 33540793 PMCID: PMC7913058 DOI: 10.3390/jof7020109] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/19/2021] [Accepted: 01/28/2021] [Indexed: 01/29/2023] Open
Abstract
In the current study, an ethyl acetate extract from the endophytic fungus Aspergillus sp. SPH2 isolated from the stem parts of the endemic plant Bethencourtia palmensis was screened for its biocontrol properties against plant pathogens (Fusarium moniliforme, Alternaria alternata, and Botrytis cinerea), insect pests (Spodoptera littoralis, Myzus persicae, Rhopalosiphum padi), plant parasites (Meloidogyne javanica), and ticks (Hyalomma lusitanicum). SPH2 gave extracts with strong fungicidal and ixodicidal effects at different fermentation times. The bioguided isolation of these extracts gave compounds 1-3. Mellein (1) showed strong ixodicidal effects and was also fungicidal. This is the first report on the ixodicidal effects of 1. Neoaspergillic acid (2) showed potent antifungal effects. Compound 2 appeared during the exponential phase of the fungal growth while neohydroxyaspergillic acid (3) appeared during the stationary phase, suggesting that 2 is the biosynthetic precursor of 3. The mycotoxin ochratoxin A was not detected under the fermentation conditions used in this work. Therefore, SPH2 could be a potential biotechnological tool for the production of ixodicidal extracts rich in mellein.
Collapse
Affiliation(s)
- Viridiana Morales-Sánchez
- Instituto de Ciencias Agrarias, CSIC, Serrano, 115, 28006 Madrid, Spain; (V.M.-S.); (R.M.); (M.F.A.)
| | - Carmen E. Díaz
- Instituto de Productos Naturales y Agrobiología, CSIC. Avda. Astrofísico F. Sánchez, 3, 38206 La Laguna, Tenerife, Spain;
| | - Elena Trujillo
- Instituto de Productos Naturales y Agrobiología, CSIC. Avda. Astrofísico F. Sánchez, 3, 38206 La Laguna, Tenerife, Spain;
| | - Sonia A. Olmeda
- Facultad de Veterinaria, UCM, Av. Puerta de Hierro, s/n, 28040 Madrid, Spain;
| | - Felix Valcarcel
- Producción Animal, INIA, Av. Puerta de Hierro, 12, 28040 Madrid, Spain;
| | - Rubén Muñoz
- Instituto de Ciencias Agrarias, CSIC, Serrano, 115, 28006 Madrid, Spain; (V.M.-S.); (R.M.); (M.F.A.)
| | - María Fe Andrés
- Instituto de Ciencias Agrarias, CSIC, Serrano, 115, 28006 Madrid, Spain; (V.M.-S.); (R.M.); (M.F.A.)
| | - Azucena González-Coloma
- Instituto de Ciencias Agrarias, CSIC, Serrano, 115, 28006 Madrid, Spain; (V.M.-S.); (R.M.); (M.F.A.)
| |
Collapse
|
24
|
El-Hawary SS, Mohammed R, Tawfike AF, Lithy NM, AbouZid SF, Amin MN, Abdelmohsen UR, Amin E. Cytotoxic Activity and Metabolic Profiling of Fifteen Euphorbia Species. Metabolites 2020; 11:metabo11010015. [PMID: 33383761 PMCID: PMC7824291 DOI: 10.3390/metabo11010015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/12/2020] [Accepted: 12/23/2020] [Indexed: 12/30/2022] Open
Abstract
Euphorbia is a large genus of flowering plants with a great diversity in metabolic pattern. Testing the cytotoxic potential of fifteen Euphorbia species revealed highest activity of E. officinarum L. against human colon adenocarcinoma (CACO2) cell line (IC50 7.2 µM) and of E. lactea Haw. against human hepatoma (HepG2) and human breast adenocarcinoma (MCF-7) cell lines (IC50 5.2 and 5.1 µM, respectively). Additionally, metabolic profiling of the fifteen tested species, using LC-HRMS, for dereplication purposes, led to the annotation of 44 natural compounds. Among the annotated compounds, diterpenoids represent the major class. Dereplication approach and multivariate data analysis are adopted in order to annotate the compounds responsible for the detected cytotoxic activity. Results of Principle component analysis (PCA) come in a great accordance with results of biological testing, which emphasized the cytotoxic properties of E. lactea Haw. A similarity correlation network showed that the two compounds with the molecular formula C16H18O8 and C20H30O10, are responsible for cytotoxic activity against MCF-7 and HepG2 cell lines. Similarly, the compound with molecular formula C18H35NO correlates with cytotoxic activity against CACO2.
Collapse
Affiliation(s)
- Seham S. El-Hawary
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Giza 12613, Egypt;
| | - Rabab Mohammed
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt; (R.M.); (S.F.A.)
| | - Ahmed F. Tawfike
- Department of Pharmacognosy, Faculty of Pharmacy, Helwan University, Cairo 11795, Egypt;
- Molecular Discovery Group, Department of Computational and Analytical Science, Rothamsted Research, Harpenden AL5 2JQ, UK
| | - Nadia M. Lithy
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University, Beni-Suef 62521, Egypt;
| | - Sameh Fekry AbouZid
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt; (R.M.); (S.F.A.)
- Department of Pharmacognosy, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Mohamed N. Amin
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt;
| | - Usama Ramadan Abdelmohsen
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, Universities Zone, New Minia City 61111, Egypt
- Correspondence: (U.R.A.); (E.A.)
| | - Elham Amin
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt; (R.M.); (S.F.A.)
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraidah 52571, Saudi Arabia
- Correspondence: (U.R.A.); (E.A.)
| |
Collapse
|
25
|
Farooq S, Qayum A, Nalli Y, Lauro G, Chini MG, Bifulco G, Chaubey A, Singh SK, Riyaz-Ul-Hassan S, Ali A. Discovery of a Secalonic Acid Derivative from Aspergillus aculeatus, an Endophyte of Rosa damascena Mill., Triggers Apoptosis in MDA-MB-231 Triple Negative Breast Cancer Cells. ACS OMEGA 2020; 5:24296-24310. [PMID: 33015446 PMCID: PMC7528173 DOI: 10.1021/acsomega.0c02505] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 09/04/2020] [Indexed: 05/04/2023]
Abstract
A new secalonic acid derivative, F-7 (1), was isolated from the endophytic Aspergillus aculeatus MBT 102, associated with Rosa damascena. The planar structure of 1 was established on the basis of 1D and 2D NMR and ESI-TOF-MS spectra. The relative configuration of 1 was determined applying a combined quantum mechanical/NMR approach and, afterward, the comparison of calculated and experimental electronic circular dichroism spectra determined the assignment of its absolute configuration. The compound possesses strong cytotoxic activity against triple negative breast cancer (TNBC) cells. It was found to induce apoptosis, as evidenced by scanning electron microscopy and phase contrast microscopy. Furthermore, flow cytometry analyses demonstrated that 1 induced mitochondrial damage and reactive oxygen species mediated apoptosis, arresting the G1 phase of the cells in a dose-dependent manner. Also, the compound causes significant microtubule disruption in TNBC cells. Subsequently, 1 restricted the cell migration leading to the concomitant increase in expression of cleaved caspase and PARP.
Collapse
Affiliation(s)
- Sadaqat Farooq
- Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar 190 005, India
- Academy of Scientific
and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Arem Qayum
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi 180 001, India
- Academy of Scientific
and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Yedukondalu Nalli
- Natural Product Division, CSIR-Indian Institute
of Integrative Medicine, Canal Road, Jammu Tawi 180 001, India
| | - Gianluigi Lauro
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, Fisciano 84084, Italy
| | - Maria Giovanna Chini
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, Pesche, Isernia I-86090, Italy
| | - Giuseppe Bifulco
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, Fisciano 84084, Italy
| | - Asha Chaubey
- Fermentation Division, CSIR-Indian
Institute of Integrative Medicine, Canal Road, Jammu Tawi 180 001, India
- Academy of Scientific
and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shashank K. Singh
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu Tawi 180 001, India
- Academy of Scientific
and Innovative Research (AcSIR), Ghaziabad 201002, India
- . Phone: +91-11-47011291, +91-11-2569222
| | - Syed Riyaz-Ul-Hassan
- Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar 190 005, India
- Academy of Scientific
and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Asif Ali
- Natural Product Division, CSIR-Indian Institute
of Integrative Medicine, Canal Road, Jammu Tawi 180 001, India
- Academy of Scientific
and Innovative Research (AcSIR), Ghaziabad 201002, India
- ,
| |
Collapse
|
26
|
Nisa S, Khan N, Shah W, Sabir M, Khan W, Bibi Y, Jahangir M, Haq IU, Alam S, Qayyum A. Identification and Bioactivities of Two Endophytic Fungi Fusarium fujikuroi and Aspergillus tubingensis from Foliar Parts of Debregeasia salicifolia. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2020. [DOI: 10.1007/s13369-020-04454-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
27
|
Demarque DP, Dusi RG, de Sousa FDM, Grossi SM, Silvério MRS, Lopes NP, Espindola LS. Mass spectrometry-based metabolomics approach in the isolation of bioactive natural products. Sci Rep 2020; 10:1051. [PMID: 31974423 PMCID: PMC6978511 DOI: 10.1038/s41598-020-58046-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 01/09/2020] [Indexed: 01/02/2023] Open
Abstract
Metabolomics is a powerful tool in the analysis and identification of metabolites responsible for biological properties. Regarding natural product chemistry, it constitutes a potential strategy to streamline the classic and laborious process of isolating natural products, which often involves the re-isolation and identification of known compounds. In this contribution, we establish a mass spectrometry-based metabolomics strategy to discover compounds with larvicidal activity against Aedes aegypti. We analyse the Brazilian plant Annona crassiflora using different platforms to annotate the active compounds in different extracts/fractions of various plant parts. The MetaboAnalyst and GNPS platforms, which consider LC-MS and LC-MS/MS data, respectively, were chosen to identify compounds that differentiate active and inactive samples. Bio-guided isolation was subsequently performed to confirm compound activity. Results proved the capacity of metabolomics to predict metabolite differences between active and inactive samples using LC-MS and LC-MS/MS data. Moreover, we discuss the limitations, possibilities, and strategies to have a broad view of vast data.
Collapse
Affiliation(s)
- Daniel P Demarque
- Laboratório de Farmacognosia, Universidade de Brasília, Brasília, Brazil
| | - Renata G Dusi
- Laboratório de Farmacognosia, Universidade de Brasília, Brasília, Brazil
| | | | - Sophia M Grossi
- Laboratório de Farmacognosia, Universidade de Brasília, Brasília, Brazil
| | - Maira R S Silvério
- Núcleo de Pesquisa em Produtos Naturais e Sintéticos, Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Norberto P Lopes
- Núcleo de Pesquisa em Produtos Naturais e Sintéticos, Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Laila S Espindola
- Laboratório de Farmacognosia, Universidade de Brasília, Brasília, Brazil.
| |
Collapse
|
28
|
Sebak M, Saafan AE, AbdelGhani S, Bakeer W, El-Gendy AO, Espriu LC, Duncan K, Edrada-Ebel R. Bioassay- and metabolomics-guided screening of bioactive soil actinomycetes from the ancient city of Ihnasia, Egypt. PLoS One 2019; 14:e0226959. [PMID: 31887193 PMCID: PMC6936774 DOI: 10.1371/journal.pone.0226959] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 12/10/2019] [Indexed: 11/18/2022] Open
Abstract
Literature surveys, taxonomical differences, and bioassay results have been utilized in the discovery of new natural products to aid in Actinomycetes isolate-selection. However, no or less investigation have been done on establishing the differences in metabolomic profiles of the isolated microorganisms. The study aims to utilise bioassay- and metabolomics-guided tools that included dereplication study and multivariate analysis of the NMR and mass spectral data of microbial extracts to assist the selection of isolates for scaling-up the production of antimicrobial natural products. A total of 58 actinomycetes were isolated from different soil samples collected from Ihnasia City, Egypt and screened for their antimicrobial activities against indicator strains that included Bacillus subtilis, Escherichia coli, methicillin-resistant Staphylococcus aureus and Candida albicans. A number of 25 isolates were found to be active against B. subtilis and/or to at least one of the tested indicator strains. Principal component analyses showed chemical uniqueness for four outlying bioactive actinomycetes extracts. In addition, Orthogonal Projections to Latent Structures Discriminant Analysis (OPLS-DA) and dereplication study led us to further select two outlying anti-MRSA active isolates MS.REE.13 and 22 for scale-up work. MS.REE.13 and 22 exhibited zones of inhibition at 19 and 13 mm against MRSA, respectively. A metabolomics-guided approach provided the steer to target the bioactive metabolites (P<0.01) present in a crude extract or fraction even at nanogram levels but it was a challenge that such low-yielding bioactive natural products would be feasible to isolate. Validated to occur only on the active side of OPLS-DA loadings plot, the isolated compounds exhibited medium to weak antibiotic activity with MIC values between 250 and 800 μM. Two new compounds, P_24306 (C10H13N2) and N_12799 (C18H32O3) with MICs of 795 and 432 μM, were afforded from the scale-up of MS.REE. 13 and 22, respectively.
Collapse
Affiliation(s)
- Mohamed Sebak
- Strathclyde Institute of Pharmacy and Biomedical Sciences, Faculty of Science, University of Strathclyde, Glasgow, Scotland, United Kingdom
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Menoufia University, Shebin Elkom, Menoufia, Egypt
- * E-mail: (MS); (RE)
| | - Amal E. Saafan
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Menoufia University, Shebin Elkom, Menoufia, Egypt
- Microbiology and Immunology Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Sameh AbdelGhani
- Microbiology and Immunology Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Walid Bakeer
- Microbiology and Immunology Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Ahmed O. El-Gendy
- Microbiology and Immunology Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Laia Castaño Espriu
- Strathclyde Institute of Pharmacy and Biomedical Sciences, Faculty of Science, University of Strathclyde, Glasgow, Scotland, United Kingdom
| | - Katherine Duncan
- Strathclyde Institute of Pharmacy and Biomedical Sciences, Faculty of Science, University of Strathclyde, Glasgow, Scotland, United Kingdom
| | - RuAngelie Edrada-Ebel
- Strathclyde Institute of Pharmacy and Biomedical Sciences, Faculty of Science, University of Strathclyde, Glasgow, Scotland, United Kingdom
- * E-mail: (MS); (RE)
| |
Collapse
|
29
|
Endophytic Fungi from Terminalia Species: A Comprehensive Review. J Fungi (Basel) 2019; 5:jof5020043. [PMID: 31137730 PMCID: PMC6616413 DOI: 10.3390/jof5020043] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 05/21/2019] [Accepted: 05/23/2019] [Indexed: 12/21/2022] Open
Abstract
Endophytic fungi have proven their usefulness for drug discovery, as suggested by the structural complexity and chemical diversity of their secondary metabolites. The diversity and biological activities of endophytic fungi from the Terminalia species have been reported. Therefore, we set out to discuss the influence of seasons, locations, and even the plant species on the diversity of endophytic fungi, as well as their biological activities and secondary metabolites isolated from potent strains. Our investigation reveals that among the 200-250 Terminalia species reported, only thirteen species have been studied so far for their endophytic fungi content. Overall, more than 47 fungi genera have been reported from the Terminalia species, and metabolites produced by some of these fungi exhibited diverse biological activities including antimicrobial, antioxidant, antimalarial, anti-inflammatory, anti-hypercholesterolemic, anticancer, and biocontrol varieties. Moreover, more than 40 compounds with eighteen newly described secondary metabolites were reported; among these, metabolites are the well-known anticancer drugs, a group that includes taxol, antioxidant compounds, isopestacin, and pestacin. This summary of data illustrates the considerable diversity and biological potential of fungal endophytes of the Terminalia species and gives insight into important findings while paving the way for future investigations.
Collapse
|
30
|
Raheem DJ, Tawfike AF, Abdelmohsen UR, Edrada-Ebel R, Fitzsimmons-Thoss V. Application of metabolomics and molecular networking in investigating the chemical profile and antitrypanosomal activity of British bluebells (Hyacinthoides non-scripta). Sci Rep 2019; 9:2547. [PMID: 30796274 PMCID: PMC6385288 DOI: 10.1038/s41598-019-38940-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 01/09/2019] [Indexed: 12/30/2022] Open
Abstract
Bulb, leaf, scape and flower samples of British bluebells (Hyacinthoides non-scripta) were collected regularly for one growth period. Methanolic extracts of freeze-dried and ground samples showed antitrypanosomal activity, giving more than 50% inhibition, for 20 out of 41 samples. High-resolution mass spectrometry was used in the dereplication of the methanolic extracts of the different plant parts. The results revealed differences in the chemical profile with bulb samples being distinctly different from all aerial parts. High molecular weight metabolites were more abundant in the flowers, shoots and leaves compared to smaller molecular weight ones in the bulbs. The anti-trypanosomal activity of the extracts was linked to the accumulation of high molecular weight compounds, which were matched with saponin glycosides, while triterpenoids and steroids occurred in the inactive extracts. Dereplication studies were employed to identify the significant metabolites via chemotaxonomic filtration and considering their previously reported bioactivities. Molecular networking was implemented to look for similarities in fragmentation patterns between the isolated saponin glycoside at m/z 1445.64 [M + formic-H]- equivalent to C64H104O33 and the putatively found active metabolite at m/z 1283.58 [M + formic-H]- corresponding to scillanoside L-1. A combination of metabolomics and bioactivity-guided approaches resulted in the isolation of a norlanostane-type saponin glycoside with antitrypanosomal activity of 98.9% inhibition at 20 µM.
Collapse
Affiliation(s)
- Dotsha J Raheem
- School of Chemistry, Bangor University, Bangor, Gwynedd, UK
- Department of Chemistry, College of Science, University of Salahaddin, Erbil, Kurdistan, Iraq
| | - Ahmed F Tawfike
- School of Chemistry, Bangor University, Bangor, Gwynedd, UK
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
- Department of Pharmacognosy, Faculty of Pharmacy, Helwan University, Cairo, 11795, Egypt
- Computational and Analytical Science Department, Rothamsted Research, Harpenden, AL5 2JQ, UK
| | - Usama R Abdelmohsen
- Department of Botany II, Julius-von-Sachs Institute for Biological Sciences, University of Würzburg, Würzburg, Germany
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
| | - RuAngelie Edrada-Ebel
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | | |
Collapse
|
31
|
Tawfike A, Attia EZ, Desoukey SY, Hajjar D, Makki AA, Schupp PJ, Edrada-Ebel R, Abdelmohsen UR. New bioactive metabolites from the elicited marine sponge-derived bacterium Actinokineospora spheciospongiae sp. nov. AMB Express 2019; 9:12. [PMID: 30680548 PMCID: PMC6345950 DOI: 10.1186/s13568-018-0730-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 12/31/2018] [Indexed: 12/15/2022] Open
Abstract
Several approaches have been dedicated to activate the cryptic gene clusters in the genomes of actinomycetes for the targeted discovery of new fascinating biomedical lead structures. In the current study, N-acetylglucosamine was used to maximize the chemical diversity of sponge-derived actinomycete Actinokineospora spheciospongiae sp. nov. HR-ESI-MS was employed for dereplication study and orthogonal partial least square-discriminant analysis was applied to evaluate the HR-ESI-MS data of the different fractions. As a result, two new fridamycins H (1) and I (2), along with three known compounds actinosporin C (3), D (4), and G (5) were isolated from the solid culture of sponge-associated actinomycete Actinokineospora spheciospongiae sp. nov., elicited with N-acetylglucosamine. Characterization of the isolated compounds was pursued using mass spectrometry and NMR spectral data. Fridamycin H (1) exhibited significant growth inhibitory activity towards Trypanosoma brucei strain TC221. These results highlight the potential of elicitation in sponge-associated actinomycetes as an effective strategy for the discovery of new anti-infective natural products.
Collapse
|
32
|
Isolation of anticancer and anti-trypanosome secondary metabolites from the endophytic fungus Aspergillus flocculus via bioactivity guided isolation and MS based metabolomics. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1106-1107:71-83. [PMID: 30658264 DOI: 10.1016/j.jchromb.2018.12.032] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/03/2018] [Accepted: 12/28/2018] [Indexed: 11/21/2022]
Abstract
This study aims to identify bioactive anticancer and anti-trypanosome secondary metabolites from the fermentation culture of Aspergillus flocculus endophyte assisted by modern metabolomics technologies. The endophyte was isolated from the stem of the medicinal plant Markhamia platycalyx and identified using phylogenetics. Principle component analysis was employed to screen for the optimum growth endophyte culturing conditions and revealing that the 30-days rice culture (RC-30d) provided the highest levels of the bioactive agents. To pinpoint for active chemicals in endophyte crude extracts and successive fractions, a new application of molecular interaction network is implemented to correlate the chemical and biological profiles of the anti-trypanosome active fractions to highlight the metabolites mediating for bioactivity prior to purification trials. Multivariate data analysis (MVDA), with the aid of dereplication studies, efficiently annotated the putatively active anticancer molecules. The small-scale RC-30d fungal culture was purified using high-throughput chromatographic techniques to yield compound 1, a novel polyketide molecule though inactive. Whereas, active fractions revealed from the bioactivity guided fractionation of medium scale RC-30d culture were further purified to yield 7 metabolites, 5 of which namely cis-4-hydroxymellein, 5-hydroxymellein, diorcinol, botryoisocoumarin A and mellein, inhibited the growth of chronic myelogenous leukemia cell line K562 at 30 μM. 3-Hydroxymellein and diorcinol exhibited a respective inhibition of 56% and 97% to the sleeping sickness causing parasite Trypanosoma brucei brucei. More interestingly, the anti-trypanosomal activity of A. flocculus extract appeared to be mediated by the synergistic effect of the active steroidal compounds i.e. ergosterol peroxide, ergosterol and campesterol. The isolated structures were elucidated by using 1D, 2D NMR and HR-ESIMS.
Collapse
|
33
|
Ibrahim AH, Attia EZ, Hajjar D, Anany MA, Desoukey SY, Fouad MA, Kamel MS, Wajant H, Gulder TAM, Abdelmohsen UR. New Cytotoxic Cyclic Peptide from the Marine Sponge-Associated Nocardiopsis sp. UR67. Mar Drugs 2018; 16:md16090290. [PMID: 30134565 PMCID: PMC6174345 DOI: 10.3390/md16090290] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 08/16/2018] [Accepted: 08/17/2018] [Indexed: 01/04/2023] Open
Abstract
A new cyclic hexapeptide, nocardiotide A (1), together with three known compounds—tryptophan (2), kynurenic acid (3), and 4-amino-3-methoxy benzoic acid (4)—were isolated and identified from the broth culture of Nocardiopsis sp. UR67 strain associated with the marine sponge Callyspongia sp. from the Red Sea. The structure elucidation of the isolated compounds were determined based on detailed spectroscopic data including 1D and 2D nuclear magnetic resonance (NMR) experimental analyses in combination with high resolution electrospray ionization mass spectrometry (HR-ESI-MS), while the absolute stereochemistry of all amino acids components of nocardiotide A (1) was deduced using Marfey’s method. Additionally, ten known metabolites were dereplicated using HR-ESI-MS analysis. Nocardiotide A (1) displayed significant cytotoxic effects towards the murine CT26 colon carcinoma, human HeLa cervix carcinoma, and human MM.1S multiple myeloma cell lines. The results obtained revealed sponge-associated Nocardiopsis as a substantial source of lead natural products with pronounced pharmacological activities.
Collapse
Affiliation(s)
- Alyaa Hatem Ibrahim
- Department of Pharmacognosy, Faculty of Pharmacy, Sohag University, 82524 Sohag, Egypt.
| | - Eman Zekry Attia
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt.
| | - Dina Hajjar
- Department of Biochemistry, Faculty of Science, Center for Science and Medical Research, University of Jeddah, 80203 Jeddah, Saudi Arabia.
| | - Mohamed A Anany
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Röntenring 11, 97070 Würzburg, Germany.
- Division of Genetic Engineering and Biotechnology, Department of Microbial Biotechnology, National Research Centre, El Buhouth St., Dokki, 12622 Giza, Egypt.
| | - Samar Yehia Desoukey
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt.
| | - Mostafa Ahmed Fouad
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, 61519 Minia, Egypt.
| | - Mohamed Salah Kamel
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, Universities Zone, 61111 New Minia City, Egypt.
| | - Harald Wajant
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Röntenring 11, 97070 Würzburg, Germany.
| | - Tobias A M Gulder
- Biosystems Chemistry, Department of Chemistry and Center for Integrated Protein Science Munich (CIPSM), Technical University of Munich, Lichtenbergstraβe 4, 85748 Garching, Germany.
| | | |
Collapse
|
34
|
Pereira F, Aires-de-Sousa J. Computational Methodologies in the Exploration of Marine Natural Product Leads. Mar Drugs 2018; 16:md16070236. [PMID: 30011882 PMCID: PMC6070892 DOI: 10.3390/md16070236] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 07/02/2018] [Accepted: 07/06/2018] [Indexed: 12/18/2022] Open
Abstract
Computational methodologies are assisting the exploration of marine natural products (MNPs) to make the discovery of new leads more efficient, to repurpose known MNPs, to target new metabolites on the basis of genome analysis, to reveal mechanisms of action, and to optimize leads. In silico efforts in drug discovery of NPs have mainly focused on two tasks: dereplication and prediction of bioactivities. The exploration of new chemical spaces and the application of predicted spectral data must be included in new approaches to select species, extracts, and growth conditions with maximum probabilities of medicinal chemistry novelty. In this review, the most relevant current computational dereplication methodologies are highlighted. Structure-based (SB) and ligand-based (LB) chemoinformatics approaches have become essential tools for the virtual screening of NPs either in small datasets of isolated compounds or in large-scale databases. The most common LB techniques include Quantitative Structure–Activity Relationships (QSAR), estimation of drug likeness, prediction of adsorption, distribution, metabolism, excretion, and toxicity (ADMET) properties, similarity searching, and pharmacophore identification. Analogously, molecular dynamics, docking and binding cavity analysis have been used in SB approaches. Their significance and achievements are the main focus of this review.
Collapse
Affiliation(s)
- Florbela Pereira
- LAQV and REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal.
| | - Joao Aires-de-Sousa
- LAQV and REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal.
| |
Collapse
|