1
|
Cetinkaya A, Yusufbeyoglu S, Kaya SI, Baldemir Kilic A, Atici EB, Ozkan SA. Design of a molecularly imprinted polymer sensor modified with saffron-based copper nanoflowers for highly selective and sensitive determination of bortezomib. Talanta 2025; 282:127005. [PMID: 39406091 DOI: 10.1016/j.talanta.2024.127005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/27/2024] [Accepted: 10/05/2024] [Indexed: 11/20/2024]
Abstract
This work represents the first successful application of a molecularly imprinted polymer (MIP)-based electrochemical sensor for the sensitive and selective determination of the first developed proteasome inhibitor, bortezomib (BOR). BOR is used for the treatment of multiple myeloma, gastrointestinal stromal tumors, and mantle cell lymphoma. It shows its desired effect through the boronate group and can be administered intravenously or subcutaneously. The MIP-based electrochemical sensor design includes the integration of green-synthesized saffron-based copper nanoflowers (CuNFs) from Crocus sativus L. to increase the active surface area and porosity of the glassy carbon electrode (GCE) surface. 2-Acrylamido-2-methyl-1-propanesulfonic acid (AMPS) was selected as the functional monomer along with other MIP components. Detailed characterizations of the developed CuNFs/AMPS/MIP-GCE sensor and CuNFs were performed using scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), energy dispersive X-ray analysis (EDX), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). The indirect measurement approach using 5.0 mM [Fe(CN)6]3-/4- solution was used to determine BOR in the linear range of 2.5 × 10-13 M - 2.5 × 10-12 M (0.25-2.5 pM). The LOD and LOQ values of the sensor obtained at the fM level (29 fM and 96.7 fM), which has a linear response in the commercial human serum sample in the same concentration range, emphasize its sensitivity (1.89 × 1013 and 2.14 × 1013 μA/M for standard solution and serum). The repeatability and reproducibility of the sensor were between 0.87 % and 2.17 %, showing its reliability. The successful performance of the sensor in the presence of metabolites belonging to BOR demonstrates its unique selectivity. The selectivity was demonstrated via relative imprinting factor (IF') values (higher than 3.5) against BOR's metabolites. The stability of the CuNFs/AMPS/MIP-GCE sensor was found to be 5 days.
Collapse
Affiliation(s)
- Ahmet Cetinkaya
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, Ankara, 06560, Turkey
| | - Sadi Yusufbeyoglu
- University of Health Sciences, Gulhane Faculty of Pharmacy, Department of Pharmaceutical Botany, Ankara, Turkey
| | - S Irem Kaya
- University of Health Sciences, Gulhane Faculty of Pharmacy, Department of Analytical Chemistry, Ankara, Turkey
| | - Ayse Baldemir Kilic
- University of Health Sciences, Gulhane Faculty of Pharmacy, Department of Pharmaceutical Botany, Ankara, Turkey
| | - Esen Bellur Atici
- DEVA Holding A.S., Research&Development Center, Tekirdağ, 59510, Turkey
| | - Sibel A Ozkan
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, Ankara, 06560, Turkey.
| |
Collapse
|
2
|
Bertella A, Smadi A, Benhabrou H, Salvador D, Wrona M, Oliveira H, Sidaoui A, Gavril-Luminita G, Pinto DCGA, Olewnik-Kruszkowska E, Nerín C, Silva AMS, Bitam F. Phytochemical Study and In Vitro Antioxidant Activity of Helianthemum cinereum Along with Antitumor Activity of the Isolated trans-Tiliroside and Luteolin 4'- O-β-Xyloside. Molecules 2024; 29:5935. [PMID: 39770024 PMCID: PMC11678426 DOI: 10.3390/molecules29245935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
Twelve compounds (1-12), kaempferol (1), luteolin (2), luteolin 4'-O-β-xyloside (3), luteolin 4'-O-β-glucoside (4), quercetin 4'-O-β-xyloside (5), kaempferol-3-O-[6″-O-(E)-p-coumaroyl]-β-D-glucoside (trans-tiliroside) (6), protocatechuic acid (7), gallic acid (8), methyl gallate (9), ethyl gallate (10), shikimic acid-3-O-gallate (11), and 3,3',4'-tri-O-methyl-ellagic acid 4-sulfate (12), were isolated and identified from the aerial parts of Helianthemum cinereum (Cav.) Pers (synonym: Helianthemum rubellum C. Presl. All compounds were isolated by applying different chromatographic procedures, such as silica gel, RP-18 and Sephadex LH-20 columns. The structures were elucidated by extensive spectroscopic methods, mainly nuclear magnetic resonance NMR 1D and 2D, and mass spectrometry, as well as by comparison with the reported spectroscopic data. The two organic extracts, ethyl acetate (EtOAc) and butanol (BuOH), were evaluated for their potent phenolic and flavonoid contents using the Folin-Ciocalteu and aluminum chloride colorimetric methods. Furthermore, the antioxidant activity of the two extracts was determined using the DPPH, FRAP, and ABTS methods. Pure trans-tiliroside (6), the main isolated compound, and luteolin 4'-O-β-xyloside (3) were evaluated for their antitumor activity against the lung cancer (A549), melanoma (A375) and pancreatic cancer (Mia PaCa-2 and Panc-1) cell lines by MTT assay.
Collapse
Affiliation(s)
- Anis Bertella
- Department of Molecular and Cellular Biology, Faculty of Life and Nature Sciences, Abbes Laghrour University Khenchela, BP 1252 Road of Batna, Khenchela 40004, Algeria
| | - Abla Smadi
- Laboratory of Chemistry and Environmental Chemistry (LCCE), Department of Chemistry, Faculty of Matter Sciences, University of Batna 1, Batna 05000, Algeria; (A.S.); (H.B.)
| | - Hakim Benhabrou
- Laboratory of Chemistry and Environmental Chemistry (LCCE), Department of Chemistry, Faculty of Matter Sciences, University of Batna 1, Batna 05000, Algeria; (A.S.); (H.B.)
| | - Diana Salvador
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal; (D.S.); (H.O.)
| | - Magdalena Wrona
- Institute of Bio- and Geosciences 2, Forschungszentrum Jülich GmbH, 52428 Jülich, Germany;
| | - Helena Oliveira
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal; (D.S.); (H.O.)
| | - Abouamama Sidaoui
- Department of Biology, Faculty of Sciences and Technology, Amine Elokkal El Hadj Moussa Egakhamouk University of Tamanghasset, Tamanghasset 11000, Algeria;
| | - Georgiana Gavril-Luminita
- Department of Bioinformatics, National Institute of Research and Development for Biological Sciences, 296 Splaiul Independentei, Sector 6, 060031 Bucharest, Romania;
| | - Diana C. G. A. Pinto
- LAQV/REQUIMTE, Department of Chemistry, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal; (D.C.G.A.P.); (A.M.S.S.)
| | - Ewa Olewnik-Kruszkowska
- Physical Chemistry and Physicochemistry of Polymers, Faculty of Chemistry, Nicolaus Copernicus University in Torún, Gagarin 7 Street, 87-100 Torún, Poland;
| | - Cristina Nerín
- Departmento de Química Analítica, Instituto de Investigación en Ingeniería de Aragón (I3A), Escuela de Ingeniería y Arquitectura (EINA), Universidad de Zaragoza, María de Luna 3 (Edificio Torres Quevedo), 50018 Zaragoza, Spain;
| | - Artur M. S. Silva
- LAQV/REQUIMTE, Department of Chemistry, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal; (D.C.G.A.P.); (A.M.S.S.)
| | - Fatma Bitam
- Laboratory of Chemistry and Environmental Chemistry (LCCE), Department of Chemistry, Faculty of Matter Sciences, University of Batna 1, Batna 05000, Algeria; (A.S.); (H.B.)
- Department of Pharmacy, Faculty of Medicine, University of Batna 2, Batna 05000, Algeria
| |
Collapse
|
3
|
Chemam Y, Benayache S, Bouzina A, Marchioni E, Sekiou O, Bentoumi H, Zhao M, Bouslama Z, Aouf NE, Benayache F. Phytochemical on-line screening and in silico study of Helianthemum confertum: antioxidant activity, DFT, MD simulation, ADME/T analysis, and xanthine oxidase binding. RSC Adv 2024; 14:22209-22228. [PMID: 39010907 PMCID: PMC11247359 DOI: 10.1039/d4ra02540g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/11/2024] [Indexed: 07/17/2024] Open
Abstract
Seven components from the methanol extract of the aerial part of the endemic species Helianthemum confertum were isolated and identified for the first time. Investigating this species and its separated components chemical make-up and radical scavenging capacity, was the main goal. Using an online HPLC-ABTS˙+ test, ORAC, and TEAC assays, the free radical scavenging capacity of the ethyl acetate extract was assessed. The fractionation of these extracts by CC, TLC, and reverse-phase HPLC was guided by the collected data, which was corroborated by TEAC and ORAC assays. Molecular docking studies, DFT at the B3LYP level, and an examination of the ADME/T predictions of all compounds helped to further clarify the phytochemicals' antioxidant potential. Isolation and identification of all components were confirmed through spectroscopy, which revealed a mixture (50-50%) of para-hydroxybenzoic acid 1 and methyl gallate 2, protocatechuic acid 3, astragalin 4, trans-tiliroside 5, cis-tiliroside 6, contaminated by trans-tiliroside and 3-oxo-α-ionol-β-d-glucopyranoside 7, as well as two new compounds for the genus Helianthemum (2 and 7). With a focus on compounds 1, 2, 3, and 4, the results clearly showed that the extract and the compounds tested from this species had a high antioxidant capacity. Within the xanthine oxidase enzyme's pocket, all of the components tested showed strong and stable binding. In light of these findings, the xanthine oxidase/methyl gallate 2 complex was simulated using the Desmond module of the Schrodinger suite molecular dynamics (MD) for 100 ns. Substantially stable receptor-ligand complexes were observed following 1 ns of MD simulation.
Collapse
Affiliation(s)
- Yasmine Chemam
- Unité de Recherche Valorisation des Ressources Naturelles, Molécules Bioactives et Analyses Physicochimiques et Biologiques, Université Frères Mentouri Constantine 1, Route d'Aïn El Bey 25000 Constantine Algeria
- Chimie Analytique des Molécules Bioactives, Institut Pluridisciplinaire Hubert Curien (UMR 7178 CNRS/UDS) 74 route du Rhin 67400 Illkirch France
- Laboratory of Applied Organic Chemistry, Bioorganic Chemistry Group, Department of Chemistry, Sciences Faculty, Badji Mokhtar Annaba University Box 12 23000 Annaba Algeria
| | - Samir Benayache
- Unité de Recherche Valorisation des Ressources Naturelles, Molécules Bioactives et Analyses Physicochimiques et Biologiques, Université Frères Mentouri Constantine 1, Route d'Aïn El Bey 25000 Constantine Algeria
| | - Abdeslem Bouzina
- Laboratory of Applied Organic Chemistry, Bioorganic Chemistry Group, Department of Chemistry, Sciences Faculty, Badji Mokhtar Annaba University Box 12 23000 Annaba Algeria
| | - Eric Marchioni
- Chimie Analytique des Molécules Bioactives, Institut Pluridisciplinaire Hubert Curien (UMR 7178 CNRS/UDS) 74 route du Rhin 67400 Illkirch France
| | - Omar Sekiou
- Environmental Research Center Alzon Castle, Boughazi Said Street, PB 2024 Annaba 23000 Algeria
| | - Houria Bentoumi
- Laboratory of Applied Organic Chemistry, Bioorganic Chemistry Group, Department of Chemistry, Sciences Faculty, Badji Mokhtar Annaba University Box 12 23000 Annaba Algeria
| | - Minjie Zhao
- Chimie Analytique des Molécules Bioactives, Institut Pluridisciplinaire Hubert Curien (UMR 7178 CNRS/UDS) 74 route du Rhin 67400 Illkirch France
| | - Zihad Bouslama
- Environmental Research Center Alzon Castle, Boughazi Said Street, PB 2024 Annaba 23000 Algeria
| | - Nour-Eddine Aouf
- Laboratory of Applied Organic Chemistry, Bioorganic Chemistry Group, Department of Chemistry, Sciences Faculty, Badji Mokhtar Annaba University Box 12 23000 Annaba Algeria
| | - Fadila Benayache
- Unité de Recherche Valorisation des Ressources Naturelles, Molécules Bioactives et Analyses Physicochimiques et Biologiques, Université Frères Mentouri Constantine 1, Route d'Aïn El Bey 25000 Constantine Algeria
| |
Collapse
|
4
|
Küpeli Akkol E, Kosar M, Baldemir A, Şeker Karatoprak G, Demirpolat E, Betul Yerer Aycan M, Süntar I, Ilgün S. The Wound-Healing Potential of the Endemic Plant Helianthemum canum (L.) Baumg: Preclinical Studies Supported with Phytochemical Profiling. Chem Biodivers 2023; 20:e202301529. [PMID: 37955210 DOI: 10.1002/cbdv.202301529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/08/2023] [Accepted: 11/12/2023] [Indexed: 11/14/2023]
Abstract
The study's objective is to clarify the probable mechanisms underlying the wound-healing properties of Helianthemum canum L. (Cistaceae), a traditional anti-inflammatory and wound-healing medicine. LC/MS-MS was used to perform phytochemical analyses on a 70 % methanol extract of the plant's aerial parts. In vivo, linear incision and circular excision models were used to evaluate the wound healing activity. For anti-inflammatory effect, in vivo acetic acid capillary permeability assay and in vitro Interleukin 1, Interleukin 6, and Interferon ɣ levels in LPS-induced FR skin fibroblast cell line were also evaluated. The extract significantly improved wound healing in experimental models, with tensile strength values of 27.8 % and a contraction value of 35.09 %. Histopathological examinations, hydroxyproline estimation, hyaluronidase, collagenase, and elastase enzyme inhibitory assays confirmed wound healing potential. Inflammatory cytokines were significantly inhibited in the LPS-induced FR cell line, with the highest effect seen on IL-6 (34.5±2.12 pg/mL). This study offered the first concrete proof that H. canum can be used to treat wounds by suggesting that the myricetin and quinic acid content identified by LCMS-MS analysis may be accountable for the effect of H. canum on wound contraction and hydroxyproline production.
Collapse
Affiliation(s)
- Esra Küpeli Akkol
- Gazi University Faculty of Pharmacy Department of Pharmacognosy, 06330, Etiler, Ankara, Turkiye
| | - Muberra Kosar
- Eastern Mediterranean University Faculty of Pharmacy, 99628, Famagusta, TRNC, Mersin-10, Turkiye
| | - Ayşe Baldemir
- Health Sciences University Gülhane Pharmacy Faculty Department of PharmaceuticalBotany, 06018, Ankara, Turkiye
| | - Gökçe Şeker Karatoprak
- Erciyes University Faculty of Pharmacy Department of Pharmacognosy, 38000, Kayseri, Turkiye
| | - Eren Demirpolat
- Erciyes University Faculty of Pharmacy Department of Pharmacology, 38000, Kayseri, Turkiye
| | | | - Ipek Süntar
- Gazi University Faculty of Pharmacy Department of Pharmacognosy, 06330, Etiler, Ankara, Turkiye
| | - Selen Ilgün
- Erciyes University Faculty of Pharmacy Department of Pharmaceutical Botany, 38000, Kayseri, Turkiye
| |
Collapse
|
5
|
Kostić M, Ivanov M, Babić SS, Petrović J, Soković M, Ćirić A. An Up-to-Date Review on Bio-Resource Therapeutics Effective against Bacterial Species Frequently Associated with Chronic Sinusitis and Tonsillitis. Curr Med Chem 2021; 27:6892-6909. [PMID: 32368971 DOI: 10.2174/0929867327666200505093143] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/07/2020] [Accepted: 02/12/2020] [Indexed: 01/26/2023]
Abstract
Upper respiratory tract infections include inflammations of the nose, sinuses (sinusitis), pharynx (tonsillitis, pharyngitis) and larynx (laryngitis) with bacteria or viruses as the main cause of these conditions. Due to their repetitive nature, chronic respiratory infections represent a global problem which is often a result of improper treatment. If not treated adequately, these conditions may have serious consequences. On the other hand, mis - and overuse of antibiotics has reduced their efficiency and accelerated the development of resistant bacterial strains, which further complicates the treatment of infections. This literature review will focus on current knowledge regarding medicinal plants and mushrooms which have been traditionally used in the treatment of infections caused by chronic sinusitis and tonsillitis commonly linked to bacteria - Staphylococcus aureus, Streptococcus pneumoniae, Streptococcus pyogenes, Fusobacterium nucleatum, Haemophilus influenzae and Moraxella catarrhalis. The present literature overview might be considered as a starting point for the development of novel, natural antimicrobial products with potential practical use in the treatment of chronic tonsillitis and sinusitis.
Collapse
Affiliation(s)
- Marina Kostić
- Department of Plant Physiology, Institute for Biological Research "Sinisa Stankovic" - National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia
| | - Marija Ivanov
- Department of Plant Physiology, Institute for Biological Research "Sinisa Stankovic" - National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia
| | | | - Jovana Petrović
- Department of Plant Physiology, Institute for Biological Research "Sinisa Stankovic" - National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia
| | - Marina Soković
- Department of Plant Physiology, Institute for Biological Research "Sinisa Stankovic" - National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia
| | - Ana Ćirić
- Department of Plant Physiology, Institute for Biological Research "Sinisa Stankovic" - National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia
| |
Collapse
|
6
|
Agostini M, Hininger-Favier I, Marcourt L, Boucherle B, Gao B, Hybertson BM, Bose SK, McCord JM, Millery A, Rome M, Ferreira Queiroz E, Wolfender JL, Gallet C, Boumendjel A. Phytochemical and Biological Investigation of Helianthemum nummularium, a High-Altitude Growing Alpine Plant Overrepresented in Ungulates Diets. PLANTA MEDICA 2020; 86:1185-1190. [PMID: 32645735 DOI: 10.1055/a-1197-2898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Helianthemum nummularium is a European shrub growing at high altitude where it copes with a high level of stress. It was found to be overexpressed in ungulates diets compared to more abundant surrounding plants. These elements combined with the fact that H. nummularium from the Alps has never been investigated prompted us to study the phytochemical composition of its aerial parts. The analysis of the polar extract allowed for the isolation of eight compounds: p-hydroxybenzoic acid, tiliroside, kaempferol, astragalin, quercetin, plantainoside B, quercetin-3-O-glucoside, and quercetin-3-O-glucuronide. We investigated the effect of the polar extract and isolated compounds on nuclear factor erythroid 2-related factor 2 transcription factor, which regulates the expression of a wide variety of cytoprotective genes. We found that the ethanolic extract activates the expression of nuclear factor erythroid 2-related factor 2 in a dose-dependent manner, whereas the pure compounds were much less active. The activation of the nuclear factor erythroid 2-related factor 2 pathway by the plant extract could pave the way for studies to promote healthy aging through protection of cells against oxidative stress. Moreover, the isolated compounds could be investigated alone or in combination in the perspective of making the link between the ungulate's preference for this plant and possible use of it for self-medication.
Collapse
Affiliation(s)
| | - Isabelle Hininger-Favier
- Univ. Grenoble Alpes, Inserm, LBFA, Grenoble, France
- University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Laurence Marcourt
- School of Pharmaceutical Sciences, EPGL, University of Geneva, University of Lausanne, CMU, Geneva, Switzerland
| | | | - Bifeng Gao
- University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Pathways Bioscience, Aurora, CO, USA
| | | | | | | | - Annie Millery
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, Grenoble, France
| | - Maxime Rome
- Univ. Grenoble Alpes, CNRS, SAJF, Grenoble, France
| | - Emerson Ferreira Queiroz
- School of Pharmaceutical Sciences, EPGL, University of Geneva, University of Lausanne, CMU, Geneva, Switzerland
| | - Jean-Luc Wolfender
- School of Pharmaceutical Sciences, EPGL, University of Geneva, University of Lausanne, CMU, Geneva, Switzerland
| | - Christiane Gallet
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, Grenoble, France
| | | |
Collapse
|
7
|
Lin B, Liu X, Wu S, Zheng H, Huo K, Qi S, Chen C. Phytochemicals Content, Antioxidant and Antibacterial Activities of
Sophora viciifolia. Chem Biodivers 2019; 16:e1900080. [DOI: 10.1002/cbdv.201900080] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 05/16/2019] [Indexed: 01/16/2023]
Affiliation(s)
- Bei‐Bei Lin
- Chinese-German Joint Laboratory for Natural Product Research, College of Biological Science and EngineeringShaanxi University of Technology Hanzhong 723000, Shaanxi P. R. China
| | - Xiang Liu
- Chinese-German Joint Laboratory for Natural Product Research, College of Biological Science and EngineeringShaanxi University of Technology Hanzhong 723000, Shaanxi P. R. China
| | - San‐Qiao Wu
- Chinese-German Joint Laboratory for Natural Product Research, College of Biological Science and EngineeringShaanxi University of Technology Hanzhong 723000, Shaanxi P. R. China
| | - Hong‐Xing Zheng
- Chinese-German Joint Laboratory for Natural Product Research, College of Biological Science and EngineeringShaanxi University of Technology Hanzhong 723000, Shaanxi P. R. China
| | - Ke‐Ke Huo
- Chinese-German Joint Laboratory for Natural Product Research, College of Biological Science and EngineeringShaanxi University of Technology Hanzhong 723000, Shaanxi P. R. China
| | - Shan‐Shan Qi
- Vitamin D research institute, College of Biological Science and EngineeringShaanxi University of Technology Hanzhong 723000, Shaanxi P. R. China
| | - Chen Chen
- Chinese-German Joint Laboratory for Natural Product Research, College of Biological Science and EngineeringShaanxi University of Technology Hanzhong 723000, Shaanxi P. R. China
| |
Collapse
|