1
|
Halder D, Jeyaprakash RS, Ghosh B. A Structure-Based Design Strategy with Pyrazole-Pyridine Derivatives Targeting TNFα as Anti-Inflammatory Agents: E-Pharmacophore, Dynamic Simulation, Synthesis and In Vitro Evaluation. Chem Biodivers 2024; 21:e202400778. [PMID: 38861376 DOI: 10.1002/cbdv.202400778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/11/2024] [Accepted: 06/19/2024] [Indexed: 06/13/2024]
Abstract
Any pathogenic attack, infection, or disease can initiate inflammation. It results in significant adverse consequences like inflammatory bowel disease, rheumatoid arthritis, etc. TNFα is one of the major pro-inflammatory cytokines for the progression of inflammation-the present study designed a series of hybrid compounds consisting of the pyrazole-pyridine moiety. Virtual screening was performed utilizing the e-pharmacophore hypothesis with the co-ligand of TNFα, screening, docking, and ADMET study. Induced fit docking, DFT analysis, and molecular dynamic simulation showed that the four best molecules - Dh1- Dh4-showed crucial interaction with Tyrosine, higher dock scores, and better stability than Diclofenac. Following the synthesis of hit molecules, an in vitro albumin denaturation IC50 of Dh1 was found to be 118.01 μM. Further in-depth in vitro and in vivo analyses of these pyrazole-pyridine small compounds may serve as potential space for creating new anti-inflammatory leads.
Collapse
Affiliation(s)
- Debojyoti Halder
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Shamirpet, Hyderabad, 500078, India
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - R S Jeyaprakash
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Balaram Ghosh
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Shamirpet, Hyderabad, 500078, India
| |
Collapse
|
2
|
Kim NY, Won KJ, Kim DY, Lee DK, Kim YY, Lee HM. Lespedeza maximowiczii flower absolute promotes skin epithelization, barrier properties, and moisturization-related beneficial responses in human keratinocytes. Heliyon 2024; 10:e24434. [PMID: 38293355 PMCID: PMC10826324 DOI: 10.1016/j.heliyon.2024.e24434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 02/01/2024] Open
Abstract
Lespedeza maximowiczii (LM), a member of the legume family, has tyrosinase inhibitory and estrogenic activities. However, its effects on skin-related biological activities remain unclear. Therefore, the present study aimed to explore the effects of LM flower absolute (LMFAb) on skin-related biological events, especially skin re-epithelization, barrier and moisturizing-related keratinocyte (HaCaT cell) responses. In this study, LMFAb was isolated from LM flowers via solvent extraction and its chemical composition analysis was performed using gas chromatography/mass spectrometry. 5-bromo-2'-deoxyuridine incorporation, Boyden chamber, sprout outgrowth, enzyme-linked immunosorbent, and Western blot assay were used to analyze the biological effects of LMFAb on HaCaT cells (a human epidermal keratinocyte cell line). Twelve components were identified in LMFAb. LMFAb promoted cell proliferation, migration, and sprout outgrowth in HaCaT cells. The absolute enhanced the activations of MAPKs (ERK1/2, JNK, and p38), PI3K and AKT proteins in HaCaT cells and elevated collagen type I and IV levels in HaCaT cell conditioned medium. In addition, LMFAb induced an increase in the expression levels of epidermal barrier proteins (filaggrin and involucrin) in HaCaT cells. Furthermore, LMFAb increased hyaluronan (HA) production and expression of HA synthases (HAS-1, HAS-2, and HAS-3) but decreased HYBID (HA binding protein involved in HA depolymerization) level in HaCaT cells. These findings demonstrate that LMFAb might promote skin re-epithelization, barrier and moisturizing-related beneficial responses in keratinocytes. This study suggests that LMFAb should be considered a potential starting material for the development of cosmetic or pharmaceutical agents that restore the functions of damaged skin.
Collapse
Affiliation(s)
- Nan Young Kim
- Division of Cosmetic and Biotechnology, College of Life and Health Sciences, Hoseo University, Asan, 31499, Republic of Korea
| | - Kyung Jong Won
- Department of Physiology and Medical Science, College of Medicine, Konkuk University, Chungju, 27478, Republic of Korea
| | - Do Yoon Kim
- Division of Cosmetic and Biotechnology, College of Life and Health Sciences, Hoseo University, Asan, 31499, Republic of Korea
- Korea Essential Oil Resource Research Institute, Hoseo University, Asan, 31499, Republic of Korea
| | - Da Kyoung Lee
- Division of Cosmetic and Biotechnology, College of Life and Health Sciences, Hoseo University, Asan, 31499, Republic of Korea
| | - Yoon Yi Kim
- Division of Cosmetic and Biotechnology, College of Life and Health Sciences, Hoseo University, Asan, 31499, Republic of Korea
| | - Hwan Myung Lee
- Division of Cosmetic and Biotechnology, College of Life and Health Sciences, Hoseo University, Asan, 31499, Republic of Korea
- Korea Essential Oil Resource Research Institute, Hoseo University, Asan, 31499, Republic of Korea
| |
Collapse
|
3
|
Kmetič I, Murati T, Kovač V, Jurčević IL, Šimić B, Radošević K, Miletić M. Novel ferrocene-containing triacyl derivative of resveratrol improves viability parameters in ovary cells. J Appl Toxicol 2023. [PMID: 36823762 DOI: 10.1002/jat.4452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/10/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023]
Abstract
Besides the use of resveratrol as a drug candidate, there are obstacles mainly due to its poor pharmacokinetic properties. Numerous studies are being conducted on the synthesis of resveratrol derivatives that exhibit enhanced biological activity. The aim of our research was to investigate activity of the newly synthesized ferrocene-containing triacyl derivative of resveratrol to achieve cell protection from endo/exogenous ROS and reduction in cell death by assessing multiple endpoints. Our research showed that both resveratrol and the resveratrol derivatives (1-100 μM) lower the levels of ROS in CHO-K1 cells. Resveratrol at doses <20 μM had little or no effect on cell proliferation, while at higher doses, a significant inhibitory effect on cell proliferation and viability has been noticed. The activity of the new derivative was significantly altered compared to resveratrol-cellular viability was not suppressed regardless of the concentration applied, and the extent of apoptosis was low. In summary, the new ferrocene-resveratrol derivative has the potential to protect cells from oxidative stress due to its low cytotoxicity and retained antioxidant properties, whereas caution should be exercised with resveratrol at higher doses, as it significantly impairs cell viability and induces cell death. By linking ROS to specific diseases (relevance in neurodegenerative, cardiovascular, and neoplastic diseases), we can assume that the new resveratrol derivative can prevent or alleviate the mentioned disorders. Furthermore, recognition of the resveratrol derivative as an anti-apoptotic chemical could be useful in the cultivation of various cell lines on a large scale in the industrial biotechnology.
Collapse
Affiliation(s)
- Ivana Kmetič
- Laboratory for Toxicology, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierotti St. 6, Zagreb, 10000, Croatia
| | - Teuta Murati
- Laboratory for Toxicology, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierotti St. 6, Zagreb, 10000, Croatia
| | - Veronika Kovač
- Laboratory for Organic Chemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierotti St. 6, Zagreb, 10000, Croatia
| | - Irena Landeka Jurčević
- Laboratory for Food Chemistry and Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierotti St. 6, Zagreb, 10000, Croatia
| | - Branimir Šimić
- Laboratory for Toxicology, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierotti St. 6, Zagreb, 10000, Croatia
| | - Kristina Radošević
- Laboratory for Cell Culture Technology and Biotransformations, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierotti St. 6, Zagreb, 10000, Croatia
| | - Marina Miletić
- Laboratory for Toxicology, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierotti St. 6, Zagreb, 10000, Croatia
| |
Collapse
|
4
|
Schlich M, Lai F, Maria Fadda A, Sinico C, Pini E. Drug-Excipients Compatibility Studies in Proniosomal Formulation: A Case Study with Resveratrol. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY 2021; 21:2917-2921. [PMID: 33653458 DOI: 10.1166/jnn.2021.19056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Proniosomal drug delivery system is one of the advancements in nanotechnology. Similarly to traditional dosage forms, chemical and physical compatibility of proniosomes components with the active ingredient(s) is a key step in the preformulation process of such systems. In this work, the compatibility of resveratrol with selected excipients in the development of proniosomal formulation was investigated by thermal and spectroscopic techniques. To evaluate the drug-excipient compatibility, different techniques such as differential scanning calorimetric study, attenuated total reflectance Fourier transform infrared spectroscopy study and powder X-ray diffraction were adopted. The results showed that the excipients used in the formulation were compatible with resveratrol.
Collapse
Affiliation(s)
- Michele Schlich
- Department of Life and Environmental Sciences, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy
| | - Francesco Lai
- Department of Life and Environmental Sciences, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy
| | - Anna Maria Fadda
- Department of Life and Environmental Sciences, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy
| | - Chiara Sinico
- Department of Life and Environmental Sciences, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy
| | - Elena Pini
- Department of Pharmaceutical Science, University of Milan, Via Venezian 21, 20133, Milan, Italy
| |
Collapse
|
5
|
Li Y, Won KJ, Kim DY, Kim HB, Kang HM, Lee SY, Lee HM. Positive Promoting Effects of Smilax China Flower Absolute on the Wound Healing/Skin Barrier Repair-Related Responses of HaCaT Human Skin Keratinocytes. Chem Biodivers 2021; 18:e2001051. [PMID: 33738961 DOI: 10.1002/cbdv.202001051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/26/2021] [Indexed: 12/11/2022]
Abstract
Smilax china (SC) has pharmacological effects including anti-inflammatory activity, but its effects on skin wound healing and skin barrier function have not been investigated. Here, we investigated the effects of absolute extracted from SC flowers (SCF) on skin wound healing-linked responses and functional skin barrier proteins using human epidermal keratinocytes (HaCaT cells). SCF absolute contained 20 components and was non-toxic to HaCaT cells. The absolute increased the proliferation, migration, and sprout outgrowth of HaCaT cells, and enhanced the activations of serine/threonine-specific protein kinase and extracellular signal-regulated kinase1/2. In addition, it increased the syntheses of type I and IV collagens and the expressions of skin barrier proteins (filaggrin and loricrin). These results indicate SCF absolute may has positive effects on skin wound healing by accelerating keratinocyte migration and proliferation activities and collagen synthesis, and on skin barrier function by upregulating barrier proteins in keratinocytes. We suggest SCF absolute to be considered as a potential means of promoting skin wound and barrier repair.
Collapse
Affiliation(s)
- Yali Li
- Division of Cosmetic and Biotechnology, College of Life and Health Sciences, Hoseo University, Asan, 31499, South Korea
| | - Kyung Jong Won
- Department of Physiology and Medical Science, School of Medicine, Konkuk University, Chungju, 27478, South Korea
| | - Do Yoon Kim
- Division of Cosmetic and Biotechnology, College of Life and Health Sciences, Hoseo University, Asan, 31499, South Korea
| | - Ha Bin Kim
- Division of Cosmetic and Biotechnology, College of Life and Health Sciences, Hoseo University, Asan, 31499, South Korea
| | - Hye Min Kang
- Division of Cosmetic and Biotechnology, College of Life and Health Sciences, Hoseo University, Asan, 31499, South Korea
| | - Su Yeon Lee
- Division of Cosmetic and Biotechnology, College of Life and Health Sciences, Hoseo University, Asan, 31499, South Korea
| | - Hwan Myung Lee
- Division of Cosmetic and Biotechnology, College of Life and Health Sciences, Hoseo University, Asan, 31499, South Korea
| |
Collapse
|
6
|
Schlich M, Lai F, Pireddu R, Pini E, Ailuno G, Fadda AM, Valenti D, Sinico C. Resveratrol proniosomes as a convenient nanoingredient for functional food. Food Chem 2019; 310:125950. [PMID: 31830712 DOI: 10.1016/j.foodchem.2019.125950] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 11/11/2019] [Accepted: 11/23/2019] [Indexed: 12/18/2022]
Abstract
Proniosomes are free-flowing powders composed of water-soluble carriers blended with surfactants, which form niosomes upon hydration. In this work, proniosomal formulations containing the natural antioxidant resveratrol (RSV) were prepared and fully characterized. A pre-formulation study on RSV-loaded niosomes was carried out to determine the most promising ratio between the two surfactants, Tween 20 and Span 60, in terms of entrapment efficiency and antioxidant activity. The optimized formulae were subsequently adapted to be prepared as proniosomes by the slurry method, including lactose or maltodextrin as carriers. The impact of surfactants and carriers properties on size, entrapment efficiency and release kinetics of proniosomes were evaluated. In vitro release of RSV in simulated gastric and intestinal media was determined, as well as the vesicular stability. Moreover, the biocompatibility of the formulations was determined on intestinal cells in vitro. Overall, the developed proniosomes provide promising nanoingredient for functional food, improving resveratrol stability and bioavailability.
Collapse
Affiliation(s)
- M Schlich
- Dipartimento di Scienze della Vita e dell'Ambiente, Sezione di Scienze del Farmaco, University of Cagliari, CNBS, Via Ospedale 72, 09124 Cagliari, Italy
| | - F Lai
- Dipartimento di Scienze della Vita e dell'Ambiente, Sezione di Scienze del Farmaco, University of Cagliari, CNBS, Via Ospedale 72, 09124 Cagliari, Italy.
| | - R Pireddu
- Dipartimento di Scienze della Vita e dell'Ambiente, Sezione di Scienze del Farmaco, University of Cagliari, CNBS, Via Ospedale 72, 09124 Cagliari, Italy
| | - E Pini
- DISMAB-Sezione di Chimica Organica ''A.Marchesini'', Università degli Studi di Milano, Milano, Italy
| | - Giorgia Ailuno
- Dipartimento di Farmacia (DIFAR), University of Genova, Genova 16148, Italy
| | - A M Fadda
- Dipartimento di Scienze della Vita e dell'Ambiente, Sezione di Scienze del Farmaco, University of Cagliari, CNBS, Via Ospedale 72, 09124 Cagliari, Italy
| | - D Valenti
- Dipartimento di Scienze della Vita e dell'Ambiente, Sezione di Scienze del Farmaco, University of Cagliari, CNBS, Via Ospedale 72, 09124 Cagliari, Italy
| | - C Sinico
- Dipartimento di Scienze della Vita e dell'Ambiente, Sezione di Scienze del Farmaco, University of Cagliari, CNBS, Via Ospedale 72, 09124 Cagliari, Italy
| |
Collapse
|
7
|
Caffeates and Caffeamides: Synthetic Methodologies and Their Antioxidant Properties. INTERNATIONAL JOURNAL OF MEDICINAL CHEMISTRY 2019; 2019:2592609. [PMID: 31815016 PMCID: PMC6877993 DOI: 10.1155/2019/2592609] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/25/2019] [Indexed: 02/06/2023]
Abstract
Polyphenols are secondary metabolites of plants and include a variety of chemical structures, from simple molecules such as phenolic acids to condensed tannins and highly polymerized compounds. Caffeic acid (3,4-dihydroxycinnamic acid) is one of the hydroxycinnamate metabolites more widely distributed in plant tissues. It is present in many food sources, including coffee drinks, blueberries, apples, and cider, and also in several medications of popular use, mainly those based on propolis. Its derivatives are also known to possess anti-inflammatory, antioxidant, antitumor, and antibacterial activities, and can contribute to the prevention of atherosclerosis and other cardiovascular diseases. This review is an overview of the available information about the chemical synthesis and antioxidant activity of caffeic acid derivatives. Considering the relevance of these compounds in human health, many of them have been the focus of reviews, taking as a center their obtaining from the plants. There are few revisions that compile the chemical synthesis methods, in this way, we consider that this review does an important contribution.
Collapse
|