1
|
Santa Maria de la Parra L, Balsa LM, León IE. Metallocompounds as anticancer agents against osteosarcoma. Drug Discov Today 2024; 29:104100. [PMID: 39019429 DOI: 10.1016/j.drudis.2024.104100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 06/20/2024] [Accepted: 07/10/2024] [Indexed: 07/19/2024]
Abstract
Metallocompounds are a class of anticancer compounds largely used in the treatment of several types of solid tumors, including bone cancer. Osteosarcoma (OS) is a primary malignant bone tumor that frequently affects children, adolescents and young adults. It is a very invasive type of tumor, so ∼40% of patients develop distant metastases, showing elevated mortality rates. In this review, we present an outline of the chemistry and antitumor properties of metal-based compounds in preclinical (in vitro and in vivo) and clinical OS models, focusing on the relationship between structure-activity, molecular targets and the study of the mechanism of action involved in metallocompound anticancer activity.
Collapse
Affiliation(s)
- Lucía Santa Maria de la Parra
- CEQUINOR (UNLP, CCT-CONICET La Plata, asociado a CIC), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Blvd. 120 N° 1465, La Plata 1900, Argentina
| | - Lucía M Balsa
- CEQUINOR (UNLP, CCT-CONICET La Plata, asociado a CIC), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Blvd. 120 N° 1465, La Plata 1900, Argentina
| | - Ignacio E León
- CEQUINOR (UNLP, CCT-CONICET La Plata, asociado a CIC), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Blvd. 120 N° 1465, La Plata 1900, Argentina; Cátedra de Fisiopatología, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115, La Plata 1900, Argentina.
| |
Collapse
|
2
|
Han W, He W, Song Y, Zhao J, Song Z, Shan Y, Hua W, Sun Y. Multifunctional platinum(IV) complex bearing HDAC inhibitor and biotin moiety exhibits prominent cytotoxicity and tumor-targeting ability. Dalton Trans 2022; 51:7343-7351. [PMID: 35466968 DOI: 10.1039/d2dt00090c] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Despite the wide clinical use of platinum drugs in cancer treatment, their severe side effects and lack of tumor selectivity seriously limit their further clinical application. To address the limitations of the current platinum drugs, herein a multifunctional platinum(IV) compound 1 containing a histone deacetylase (HDAC) inhibitor (4-phenylbutyric acid, 4-PBA) and a tumor-targeting group (biotin) has been designed and prepared. An in vitro cytotoxicity study indicated that compound 1 exhibits comparable or superior cytotoxicity to cisplatin against the tested cancer cell lines, but greatly reduced toxicity in human normal liver LO2 cells, implying the potential tumor-targeting ability of compound 1. Molecular docking results indicate that compound 1 can effectively interact with a biotin-specific receptor (streptavidin) through its biotin moiety, enabling potential tumor-targeting capability. Further studies indicated that compound 1's cytotoxicity stems from inducing DNA damage via the mitochondrial apoptotic pathway and inhibiting HDACs. Consequently, this compound can not only take advantage of the tumor selectively of biotin to improve its tumor-targeting ability but also strengthen its anticancer activity via simultaneously targeting DNA and HDACs.
Collapse
Affiliation(s)
- Weinan Han
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, P.R. China.
| | - Weiyu He
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, P.R. China.
| | - Yutong Song
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, P.R. China.
| | - Jian Zhao
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research and Pharmaceutical Research Center, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P.R. China.,Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huai'an 223003, P.R. China
| | - Zhiheng Song
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, P.R. China.
| | - Yi Shan
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, P.R. China.
| | - Wuyang Hua
- School of Food Engineering, Jilin Agricultural Science and Technology University, Jilin 132000, P.R. China
| | - Yanyan Sun
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, P.R. China.
| |
Collapse
|
3
|
Riedl CA, Rosner A, Harringer S, Salomon P, Hejl M, Jakupec MA, Kandioller W, Keppler BK. Water-soluble trithiolato-bridged dinuclear ruthenium(II) and osmium(II) arene complexes with bisphosphonate functionalized ligands as anticancer organometallics. J Inorg Biochem 2021; 225:111618. [PMID: 34607124 DOI: 10.1016/j.jinorgbio.2021.111618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/10/2021] [Accepted: 09/16/2021] [Indexed: 10/20/2022]
Abstract
Trithiolato-bridged dinuclear ruthenium(II) complexes [Ru2(p-cym)2(SR)3]Cl (p-cym = p-cymene, R = benzyl derivatives) are regarded as the most cytotoxically potent metal(II) arene antineoplastics, but are oftentimes limited by their poor solubility in aqueous media. Thus, we designed bisphosphonate-functionalized ligands for use in a modular two-step complexation process to synthesize six trithiolato-bridged dinuclear ruthenium(II) and osmium(II) arene complexes bearing one to three bisphosphonate-benzylmercaptane derived ligands. In addition to improved aqueous solubility the high affinity of bisphosphonates towards apatite structures found in bone and bone metastases may grant selective targeting properties to functionalized organometallics. The complex stabilities and hydroxyapatite binding behavior were determined by UV/Vis spectroscopy. The bisphosphonate functionalization decreases antiproliferative activity in vitro, which was correlated to lower cellular accumulation, due to the different lipophilic profiles of the drug candidates.
Collapse
Affiliation(s)
- Christoph A Riedl
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Austria; Research Cluster "Translational Cancer Therapy Research", Waehringer Str. 42, 1090 Vienna, Austria.
| | - Alexander Rosner
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Austria
| | - Sophia Harringer
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Austria
| | - Philipp Salomon
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Austria
| | - Michaela Hejl
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Austria
| | - Michael A Jakupec
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Austria; Research Cluster "Translational Cancer Therapy Research", Waehringer Str. 42, 1090 Vienna, Austria
| | - Wolfgang Kandioller
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Austria; Research Cluster "Translational Cancer Therapy Research", Waehringer Str. 42, 1090 Vienna, Austria.
| | - Bernhard K Keppler
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Austria; Research Cluster "Translational Cancer Therapy Research", Waehringer Str. 42, 1090 Vienna, Austria
| |
Collapse
|
4
|
Chen D, Zhang X, Yang J, Liao X, Yang B, Gao C. Codelivery of satraplatin and aminopyrrolic receptor with Pluronic F127-based polyaniline nanoparticles with NIR induced release for combined chemotherapy. NANOTECHNOLOGY 2021; 32:475103. [PMID: 34388738 DOI: 10.1088/1361-6528/ac1d78] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 08/12/2021] [Indexed: 06/13/2023]
Abstract
The acquired drug resistance of the platinum-based drug is a main obstacle in cancer therapy. Herein, an aminopyrrolic receptor 1 was synthesized to sensitize satraplatin for overcoming the drug resistance as well as improving tumor targeted ability. Thus, Pluronic F127-based polyaniline nanoparticles were designed to co-deliver satraplatin and aminopyrrolic receptor 1, which could control the drug release with the Near Infrared laser irradiation (808 nm) due to the polyaniline mediated photothermal conversion. Biological evaluation shows prepared nanoparticles (Pt-ARNPs) exhibited more effective cytotoxicity (IC50 = 2.7μM) against the tested cancer cell lines under laser irradiation, compared with free satraplatin or treatment without Near-infrared radiation. Moreover, Pt-ARNPs showed comparable cytotoxicity against A549 and A549/cis cells, implying that the combination of satraplatin and aminopyrrolic receptor 1 with nano carrier might be a promising strategy to reduce platinum resistance and improve therapeutic effect in cancer therapy.
Collapse
Affiliation(s)
- Dalei Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, People's Republic of China
| | - Xinzhong Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, People's Republic of China
| | - Jing Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, People's Republic of China
| | - Xiali Liao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, People's Republic of China
| | - Bo Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, People's Republic of China
| | - Chuanzhu Gao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, People's Republic of China
| |
Collapse
|
5
|
Zuccolo M, Arrighetti N, Perego P, Colombo D. Recent Progresses in Conjugation with Bioactive Ligands to Improve the Anticancer Activity of Platinum Compounds. Curr Med Chem 2021; 29:2566-2601. [PMID: 34365939 DOI: 10.2174/0929867328666210806110857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/09/2021] [Accepted: 06/15/2021] [Indexed: 11/22/2022]
Abstract
Platinum (Pt) drugs, including cisplatin, are widely used for the treatment of solid tumors. Despite the clinical success, side effects and occurrence of resistance represent major limitations to the use of clinically available Pt drugs. To overcome these problems, a variety of derivatives have been designed and synthetized. Here, we summarize the recent progress in the development of Pt(II) and Pt(IV) complexes with bioactive ligands. The development of Pt(II) and Pt(IV) complexes with targeting molecules, clinically available agents, and other bioactive molecules is an active field of research. Even if none of the reported Pt derivatives has been yet approved for clinical use, many of these compounds exhibit promising anticancer activities with an improved pharmacological profile. Thus, planning hybrid compounds can be considered as a promising approach to improve the available Pt-based anticancer agents and to obtain new molecular tools to deepen the knowledge of cancer progression and drug resistance mechanisms.
Collapse
Affiliation(s)
- Marco Zuccolo
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan. Italy
| | - Noemi Arrighetti
- Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan. Italy
| | - Paola Perego
- Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan. Italy
| | - Diego Colombo
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan. Italy
| |
Collapse
|
6
|
Drug Resistance in Osteosarcoma: Emerging Biomarkers, Therapeutic Targets and Treatment Strategies. Cancers (Basel) 2021; 13:cancers13122878. [PMID: 34207685 PMCID: PMC8228414 DOI: 10.3390/cancers13122878] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 06/05/2021] [Indexed: 01/02/2023] Open
Abstract
Simple Summary Despite the adoption of aggressive, multimodal treatment schedules, the cure rate of high-grade osteosarcoma (HGOS) has not significantly improved in the last 30 years. The most relevant problem preventing improvement in HGOS prognosis is drug resistance. Therefore, validated novel biomarkers that help to identify those patients who could benefit from innovative treatment options and the development of drugs enabling personalized therapeutic protocols are necessary. The aim of this review was to give an overview on the most relevant emerging drug resistance-related biomarkers, therapeutic targets and new agents or novel candidate treatment strategies, which have been highlighted and suggested for HGOS to improve the success rate of clinical trials. Abstract High-grade osteosarcoma (HGOS), the most common primary malignant tumor of bone, is a highly aggressive neoplasm with a cure rate of approximately 40–50% in unselected patient populations. The major clinical problems opposing the cure of HGOS are the presence of inherent or acquired drug resistance and the development of metastasis. Since the drugs used in first-line chemotherapy protocols for HGOS and clinical outcome have not significantly evolved in the past three decades, there is an urgent need for new therapeutic biomarkers and targeted treatment strategies, which may increase the currently available spectrum of cure modalities. Unresponsive or chemoresistant (refractory) HGOS patients usually encounter a dismal prognosis, mostly because therapeutic options and drugs effective for rescue treatments are scarce. Tailored treatments for different subgroups of HGOS patients stratified according to drug resistance-related biomarkers thus appear as an option that may improve this situation. This review explores drug resistance-related biomarkers, therapeutic targets and new candidate treatment strategies, which have emerged in HGOS. In addition to consolidated biomarkers, specific attention has been paid to the role of non-coding RNAs, tumor-derived extracellular vesicles, and cancer stem cells as contributors to drug resistance in HGOS, in order to highlight new candidate markers and therapeutic targets. The possible use of new non-conventional drugs to overcome the main mechanisms of drug resistance in HGOS are finally discussed.
Collapse
|
7
|
Wang Z, Fang L, Zhao J, Gou S. Insight into the antitumor actions of sterically hindered platinum(ii) complexes by a combination of STD NMR and LCMS techniques. Metallomics 2021; 12:427-434. [PMID: 32022072 DOI: 10.1039/c9mt00258h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sterically hindered platinum(ii) complexes have shown great advantages in overcoming platinum drug resistance. In this study, the antitumor actions of sterically hindered platinum(ii) complex 1 (cis-dichloro[(1R,2R)-N1-(2-fluorobenzyl)-1,2-diaminocyclohexane-N,N']platinum(ii), C13H19FPtCl2) were investigated by using saturation transfer difference nuclear magnetic resonance (STD NMR) and liquid chromatography-mass spectrometry (LCMS) techniques. STD NMR was applied to study the HSA (human serum albumin) binding properties, while the interactions between guanosine 5'-monophosphate (5'-GMP) and complex 1 were studied by LCMS. For HSA binding experiments, strong STD signals were observed for protons of sterically hindered parts of carrier ligands, indicating that the sterically hindered moieties of the carrier ligand could be situated inside the binding pocket of HSA. A 19F NMR experiment indicated that complex 1 could interact with HSA. Furthermore, the binding modes of complex 1 with guanosine 5'-monophosphate (5'-GMP) were studied in the absence and presence of glutathione by LCMS. According to the HPLC profiles, a mono-functional binding mode was observed for complex 1 both in the presence and in the absence of glutathione, while a bi-adduct was observed for Pt(DACH)Cl2, which may be one of the reasons for their different biological activities. Hence, this study demonstrated that the NMR method combined with the LCMS technique could provide valuable information to understand the transport and the underlying anticancer mechanisms of the platinum(ii) complex at the molecular level. Moreover, the results reported here can help to reveal the binding mechanisms of the sterically hindered platinum(ii) compounds with biomolecules, which may shed light on the design of novel platinum(ii) anticancer agents with suitable sterically hindered groups.
Collapse
Affiliation(s)
- Zhimei Wang
- Research Center and School of Chemistry and Chemical Engineering, and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China.
| | - Lei Fang
- Research Center and School of Chemistry and Chemical Engineering, and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China.
| | - Jian Zhao
- Research Center and School of Chemistry and Chemical Engineering, and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China.
| | - Shaohua Gou
- Research Center and School of Chemistry and Chemical Engineering, and Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing 211189, China.
| |
Collapse
|
8
|
Jia C, Cong Y, Pu S, Cai L, Zhong Y, Zhang X, Liao X, Li Y, Yang B, Gao C. Synthesis, characterization, and biological activity of new mixed ammine/amine platinum(IV) complexes. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Chunyan Jia
- Faculty of Life Science and Technology Kunming University of Science and Technology Kunming 650500 People's Republic of China
| | - Yanwei Cong
- Kunming GUIYAN Pharmaceutical Co. Ltd. Kunming 650221 People's Republic of China
| | - Shaoping Pu
- Kunming GUIYAN Pharmaceutical Co. Ltd. Kunming 650221 People's Republic of China
| | - Linxiang Cai
- Faculty of Life Science and Technology Kunming University of Science and Technology Kunming 650500 People's Republic of China
| | - Yunshuang Zhong
- Faculty of Life Science and Technology Kunming University of Science and Technology Kunming 650500 People's Republic of China
| | - Xinzhong Zhang
- Faculty of Life Science and Technology Kunming University of Science and Technology Kunming 650500 People's Republic of China
| | - Xiali Liao
- Faculty of Life Science and Technology Kunming University of Science and Technology Kunming 650500 People's Republic of China
| | - Yamin Li
- Faculty of Life Science and Technology Kunming University of Science and Technology Kunming 650500 People's Republic of China
| | - Bo Yang
- Faculty of Life Science and Technology Kunming University of Science and Technology Kunming 650500 People's Republic of China
| | - Chuanzhu Gao
- Faculty of Life Science and Technology Kunming University of Science and Technology Kunming 650500 People's Republic of China
| |
Collapse
|
9
|
Li S, Xu G, Zhu Y, Zhao J, Gou S. Bifunctional ruthenium(ii) polypyridyl complexes of curcumin as potential anticancer agents. Dalton Trans 2020; 49:9454-9463. [PMID: 32598409 DOI: 10.1039/d0dt01040e] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ru(ii)-polypyridyl complexes have been widely studied and well established for their antitumor properties. Modifications of the coordination environment around the Ru atom through a proper choice of the ligand can lead to different modes of action and result in greatly improved anticancer efficacy. Herein, two Ru(ii)-polypyridyl complexes of curcumin were synthesized and characterized as potential anticancer agents. In vitro tests indicated that complexes 1 and 2 displayed excellent antiproliferative activity against the tested cancer cell lines, especially complex 2, which exhibited superior cytotoxicity compared to curcumin and cisplatin. Further biological evaluations demonstrated that complexes 1 and 2 can cause cell apoptosis via DNA interaction and MEK/ERK signaling pathway, which is the first example of a Ru(ii)-polypyridyl complex inhibiting the MEK/ERK signaling pathway and DNA intercalation. Overall, this work suggests that coordination with bioactive agents may endow Ru(ii)-polypyridyl complexes with improved pharmaceutical properties and synergistic effects for cancer therapy.
Collapse
Affiliation(s)
- Shuang Li
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research and Pharmaceutical Research Center, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China.
| | | | | | | | | |
Collapse
|
10
|
Hattinger CM, Patrizio MP, Magagnoli F, Luppi S, Serra M. An update on emerging drugs in osteosarcoma: towards tailored therapies? Expert Opin Emerg Drugs 2019; 24:153-171. [PMID: 31401903 DOI: 10.1080/14728214.2019.1654455] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Introduction: Current treatment of conventional and non-conventional high-grade osteosarcoma (HGOS) is based on the surgical removal of primary tumor and, when possible, of metastases and local reccurrence, together with systemic pre- and post-operative chemotherapy with drugs that have been used since decades. Areas covered: This review is intended to summarize the new agents and therapeutic strategies that are under clinical evaluation in HGOS, with the aim to increase the cure probability of this highly malignant bone tumor, which has not significantly improved during the last 30-40 years. The list of drugs, compounds and treatment modalities presented and discussed here has been generated by considering only those that are included in presently ongoing and recruiting clinical trials, or which have been completed in the last 2 years with reported results, on the basis of the information obtained from different and continuously updated databases. Expert opinion: Despite HGOS is a rare tumor, several clinical trials are presently evaluating different treatment strategies, which may hopefully positively impact on the outcome of patients who experience unfavorable prognosis when treated with conventional therapies.
Collapse
Affiliation(s)
- Claudia Maria Hattinger
- Laboratory of Experimental Oncology, Pharmacogenomics and Pharmacogenetics Research Unit, IRCCS Istituto Ortopedico Rizzoli , Bologna , Italy
| | - Maria Pia Patrizio
- Laboratory of Experimental Oncology, Pharmacogenomics and Pharmacogenetics Research Unit, IRCCS Istituto Ortopedico Rizzoli , Bologna , Italy
| | - Federica Magagnoli
- Laboratory of Experimental Oncology, Pharmacogenomics and Pharmacogenetics Research Unit, IRCCS Istituto Ortopedico Rizzoli , Bologna , Italy
| | - Silvia Luppi
- Laboratory of Experimental Oncology, Pharmacogenomics and Pharmacogenetics Research Unit, IRCCS Istituto Ortopedico Rizzoli , Bologna , Italy
| | - Massimo Serra
- Laboratory of Experimental Oncology, Pharmacogenomics and Pharmacogenetics Research Unit, IRCCS Istituto Ortopedico Rizzoli , Bologna , Italy
| |
Collapse
|
11
|
Hattinger CM, Patrizio MP, Luppi S, Magagnoli F, Picci P, Serra M. Current understanding of pharmacogenetic implications of DNA damaging drugs used in osteosarcoma treatment. Expert Opin Drug Metab Toxicol 2019; 15:299-311. [PMID: 30822170 DOI: 10.1080/17425255.2019.1588885] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION DNA damaging drugs are widely used for the chemotherapeutic treatment of high-grade osteosarcoma (HGOS). In HGOS patients, several germline polymorphisms have been reported to impact on the development of adverse toxic events related to DNA damaging drugs treatment. Some of these polymorphisms, when present in tumor cells, may also influence treatment response and prognosis of HGOS patients. Area covered: In this review, the authors have focused on pharmacogenetic markers (mainly germline polymorphisms) described in patients with HGOS, which have proved or indicated to be related to the susceptibility to adverse toxic reactions and/or to influence response to DNA damaging drugs. The concordant and discordant results reported in different studies have also been discussed. Expert opinion: Response and toxicity predisposition to DNA damaging drugs are influenced by genes encoding proteins involved in their uptake, efflux, activation, inactivation, and in DNA repair, activity of which may vary according to specific gene variations. In HGOS, there is a substantial medical need for biomarkers predictive for individual response and toxicity predisposition to DNA-targeting drugs, which may be used to tailor therapy in order to decrease the occurrence of adverse side effects and increase treatment efficacy and safety.
Collapse
Affiliation(s)
- Claudia Maria Hattinger
- a Pharmacogenomics and Pharmacogenetics Research Unit of the Laboratory of Experimental Oncology , IRCCS Istituto Ortopedico Rizzoli , Bologna , Italy
| | - Maria Pia Patrizio
- a Pharmacogenomics and Pharmacogenetics Research Unit of the Laboratory of Experimental Oncology , IRCCS Istituto Ortopedico Rizzoli , Bologna , Italy
| | - Silvia Luppi
- a Pharmacogenomics and Pharmacogenetics Research Unit of the Laboratory of Experimental Oncology , IRCCS Istituto Ortopedico Rizzoli , Bologna , Italy
| | - Federica Magagnoli
- a Pharmacogenomics and Pharmacogenetics Research Unit of the Laboratory of Experimental Oncology , IRCCS Istituto Ortopedico Rizzoli , Bologna , Italy
| | - Piero Picci
- b Laboratory of Experimental Oncology , IRCCS Istituto Ortopedico Rizzoli , Bologna , Italy
| | - Massimo Serra
- a Pharmacogenomics and Pharmacogenetics Research Unit of the Laboratory of Experimental Oncology , IRCCS Istituto Ortopedico Rizzoli , Bologna , Italy
| |
Collapse
|