1
|
Cao Y, Tan X, Shen J, Liu F, Xu Y, Chen Y, Zhou S, Qiu T, Li D, Zhao Q, Zhao K. Morinda Officinalis-derived extracellular vesicle-like particles: Anti-osteoporosis effect by regulating MAPK signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155628. [PMID: 38663117 DOI: 10.1016/j.phymed.2024.155628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/04/2024] [Accepted: 04/09/2024] [Indexed: 05/30/2024]
Abstract
BACKGROUND Postmenopausal osteoporosis (PMOP) is a systemic bone disease characterized by low bone mass and microstructural damage. Morinda Officinalis (MO) contains various components with anti-PMOP activities. Morinda Officinalis-derived extracellular vesicle-like particles (MOEVLPs) are new active components isolated from MO, and no relevant studies have investigated their anti-osteoporosis effect and mechanism. PURPOSE To investigate the alleviating effect of MOEVLPs on PMOP and the underlying mechanism. METHODS Differential centrifugation and ultracentrifugation were used to isolate MOEVLPs from MO. Transmission electron microscopy (TEM), flow nano analyzer, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), agarose gel electrophoresis, and thin-layer chromatography were employed to characterize MOEVLPs. PMOP mouse models were utilized to examine the anti-PMOP effect of MOEVLPs. H&E and immunohistochemical staining were used for drug safety and osteogenic effect assessment. Mouse embryo osteoblast precursor cells (MC3T3-E1) were used in vitro experiments. CCK-8 kit, alizarin red staining, proteomic, bioinformatic analyses, and western blot were used to explore the mechanism of MOEVLPs. RESULTS In this study, MOEVLPs from MO were successfully isolated and characterized. Animal experiments demonstrated that MOEVLPs exhibited specific femur targeting, were non-toxic to the heart, liver, spleen, lung, kidney, and aorta, and possessed anti-PMOP properties. The ability of MOEVLPs to strengthen bone formation was better than that of alendronate. In vitro experiments, results revealed that MOEVLPs did not significantly enhance osteogenic differentiation in MC3T3-E1 cells. Instead, MOEVLPs promoted the proliferation of MC3T3-E1 cells. Proteomic and bioinformatic analyses suggested that the proliferative effect of MOEVLPs was closely associated with the mitogen-activated protein kinase (MAPK) signaling pathway, particularly the altered expression of cAMP response element-binding protein (CREB) and ribosomal S6 kinase 1 (RSK1). Western blot results further confirmed these findings. CONCLUSION Our studies successfully isolated high-quality MOEVLPs and demonstrated that MOEVLPs can alleviate PMOP by promoting osteoblast proliferation through the MAPK pathway. MOEVLPs have the potential to become a novel and natural anti-PMOP drug.
Collapse
Affiliation(s)
- Yue Cao
- The Third Clinical Medical College, Guangzhou University of Chinese Medicine, NO.261 and 263, Longxi Avenue, Liwan District, Guangzhou, Guangdong, 510375, People's Republic of China; Department of Medical Technology, Medical College of Shaoguan University, NO. 288, University Road, Zhenjiang District, Shaoguan, Guangdong, 512005, People's Republic of China
| | - Xuejun Tan
- The Third Clinical Medical College, Guangzhou University of Chinese Medicine, NO.261 and 263, Longxi Avenue, Liwan District, Guangzhou, Guangdong, 510375, People's Republic of China
| | - Jiawen Shen
- The Third Clinical Medical College, Guangzhou University of Chinese Medicine, NO.261 and 263, Longxi Avenue, Liwan District, Guangzhou, Guangdong, 510375, People's Republic of China
| | - Fubin Liu
- The Third Clinical Medical College, Guangzhou University of Chinese Medicine, NO.261 and 263, Longxi Avenue, Liwan District, Guangzhou, Guangdong, 510375, People's Republic of China
| | - Yukun Xu
- The Third Clinical Medical College, Guangzhou University of Chinese Medicine, NO.261 and 263, Longxi Avenue, Liwan District, Guangzhou, Guangdong, 510375, People's Republic of China
| | - Yuzhen Chen
- The Third Clinical Medical College, Guangzhou University of Chinese Medicine, NO.261 and 263, Longxi Avenue, Liwan District, Guangzhou, Guangdong, 510375, People's Republic of China
| | - Sirui Zhou
- The Third Clinical Medical College, Guangzhou University of Chinese Medicine, NO.261 and 263, Longxi Avenue, Liwan District, Guangzhou, Guangdong, 510375, People's Republic of China
| | - Tianxin Qiu
- The Third Clinical Medical College, Guangzhou University of Chinese Medicine, NO.261 and 263, Longxi Avenue, Liwan District, Guangzhou, Guangdong, 510375, People's Republic of China
| | - Dongxiao Li
- The Third Clinical Medical College, Guangzhou University of Chinese Medicine, NO.261 and 263, Longxi Avenue, Liwan District, Guangzhou, Guangdong, 510375, People's Republic of China
| | - Qing Zhao
- Guangdong Engineering Research Center of Chinese Herbal Vesicles, Guangzhou University of Chinese Medicine, NO.261 and 263, Longxi Avenue, Liwan District, Guangzhou, Guangdong, 510378, People's Republic of China; Guangzhou Key Laboratory of Chinese Medicine Research on Prevention and Treatment of Osteoporosis, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, NO.261 and 263, Longxi Avenue, Liwan District, Guangzhou, Guangdong, 510378, People's Republic of China.
| | - Kewei Zhao
- Guangdong Engineering Research Center of Chinese Herbal Vesicles, Guangzhou University of Chinese Medicine, NO.261 and 263, Longxi Avenue, Liwan District, Guangzhou, Guangdong, 510378, People's Republic of China; Guangzhou Key Laboratory of Chinese Medicine Research on Prevention and Treatment of Osteoporosis, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, NO.261 and 263, Longxi Avenue, Liwan District, Guangzhou, Guangdong, 510378, People's Republic of China.
| |
Collapse
|
2
|
Cai S, Chen Y, Chen J, Wei W, Pan J, Wu H. Rubiadin-1-methyl ether inhibits BECN1 transcription and Beclin1-dependent autophagy during osteoclastogenesis by inhibiting NF-κB p65 activation. Exp Biol Med (Maywood) 2023; 248:1518-1526. [PMID: 37750211 PMCID: PMC10666728 DOI: 10.1177/15353702231198071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/07/2023] [Indexed: 09/27/2023] Open
Abstract
As an active substance isolated from the root of Morinda officinalis How., rubiadin-1-methyl ether (RBM), can improve osteoporosis due to its inhibition on osteoclastogenesis. Autophagy plays a key role in osteoclastogenesis. Our research aims to explore the relationship between RBM, autophagy, and osteoclastogenesis. Our results showed that RBM not only inhibited the differentiation level of osteoclasts and the proliferation ability of osteoclast precursors (OCPs), but also repressed the autophagic activity in OCPs (LC3 transformation and the number of autophagosomes observed by transmission electron microscopy). However, RBM-inhibited osteoclast differentiation and OCP autophagy (LC3 transformation and LC3-puncta formation) could be reversed by the application of TAT-Beclin1. Moreover, RBM administration reduced RANKL-induced p65 phosphorylation and p65 nuclear translocation in OCPs. In addition, the addition of RBM inhibited Beclin1 protein level and BECN1 (the gene form of Beclin1) mRNA level in OCPs increased by RANKL. Importantly, the reduction in the expression of BECN1 and Beclin1, LC3 transformation, and osteoclastic differentiation in OCPs caused by RBM were reversed by p65 overexpression. In conclusion, RBM may reduce the transcription of BECN1 by inhibiting the activation of nuclear factor kappa B (NF-κB) p65, thereby inhibiting Beclin1-dependent autophagy and RANKL-induced osteoclastogenesis.
Collapse
Affiliation(s)
- Suizhen Cai
- Health Examination Center, The Second People’s Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou 350003, China
| | - Yuyu Chen
- Department of Endocrinology, The Second People’s Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou 350003, China
| | - Jiawei Chen
- Health Examination Center, The Second People’s Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou 350003, China
| | - Wen Wei
- Health Examination Center, The Second People’s Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou 350003, China
| | - Jinquan Pan
- Health Examination Center, The Second People’s Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou 350003, China
| | - Haojie Wu
- Department of Endocrinology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen 361004, China
| |
Collapse
|
3
|
Li Q, Tian C, Liu X, Li D, Liu H. Anti-inflammatory and antioxidant traditional Chinese Medicine in treatment and prevention of osteoporosis. Front Pharmacol 2023; 14:1203767. [PMID: 37441527 PMCID: PMC10335577 DOI: 10.3389/fphar.2023.1203767] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023] Open
Abstract
A metabolic bone disorder called osteoporosis is characterized by decreased bone mass and compromised microarchitecture. This condition can deteriorate bones and raise the risk of fractures. The two main causes of osteoporosis are an increase in osteoclast activity or quantity and a decrease in osteoblast viability. Numerous mechanisms, including estrogen shortage, aging, chemical agents, and decreased mechanical loads, have been linked to osteoporosis. Inflammation and oxidative stress have recently been linked to osteoporosis, according to an increasing number of studies. The two primary medications used to treat osteoporosis at the moment are bisphosphonates and selective estrogen receptor modulators (SERMs). These medications work well for osteoporosis brought on by aging and estrogen deprivation, however, they do not target inflammation and oxidative stress-induced osteoporosis. In addition, these drugs have some limitations that are attributed to various side effects that have not been overcome. Traditional Chinese medicine (TCM) has been applied in osteoporosis for many years and has a high safety profile. Therefore, in this review, literature related to botanical drugs that have an effect on inflammation and oxidative stress-induced osteoporosis was searched for. Moreover, the pharmacologically active ingredients of these herbs and the pathways were discussed and may contribute to the discovery of more safe and effective drugs for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Qian Li
- Laboratory of Metabolic Abnormalities and Vascular Aging, Liyuan Hospital Affiliated to Huazhong University of Science and Technology, Department of Integrated Chinese and Western Medicine, City Wuhan, Hubei Province, China
| | - Ciqiu Tian
- Hubei University of Chinese Medicine, City Wuhan, Hubei Province, China
| | - Xiangjie Liu
- Liyuan Hospital Affiliated to Huazhong University of Science and Technology, Geriatric Department, City Wuhan, Hubei Province, China
| | - Dinglin Li
- Laboratory of Metabolic Abnormalities and Vascular Aging, Liyuan Hospital Affiliated to Huazhong University of Science and Technology, Department of Integrated Chinese and Western Medicine, City Wuhan, Hubei Province, China
| | - Hao Liu
- Laboratory of Metabolic Abnormalities and Vascular Aging, Liyuan Hospital Affiliated to Huazhong University of Science and Technology, Department of Integrated Chinese and Western Medicine, City Wuhan, Hubei Province, China
| |
Collapse
|
4
|
Li C, Tian L, Wang Y, Luo H, Zeng J, Su P, Chen S, Liao Z, Guo W, He X, Chen S, Xu C. M13, an anthraquinone compound isolated from Morinda officinalis promotes the osteogenic differentiation of MSCs by targeting Wnt/β-catenin signaling. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 108:154542. [PMID: 36410102 DOI: 10.1016/j.phymed.2022.154542] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/24/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Morinda officinalis (MO) is a herb used in Traditional Chinese Medicine (TCM) for the treatment of osteoporosis. M13, a MO-based anthraquinone compound is known to suppress osteoclast activity. However, whether M13 promotes MSCs osteogenic differentiation and its potential mechanism remains unknown. PURPOSE To examine the influence of M13 on MSCs proliferation and osteogenic differentiation and elucidate the underlying mechanism. METHODS/STUDY DESIGNS The effect of M13 exposure on MSCs proliferation was assessed via CCK8 assay, clone formation assay, immunofluorescence, RT-qPCR, and Western blot. The M13-mediated osteogenesis in vitro and ex vivo were evaluated via ALP and Alizarin red S staining, osteogenesis-associated gene (Runx2, Col1a1 and Opn) expression, and fetal limb explants culture. Molecular docking was employed for target signal pathway screening. The potential signaling mechanisms of M13-promoted MSCs osteogenic differentiation were analyzed by introducing XAV939 (Wnt/β-catenin signaling inhibitor). RESULTS M13 induced certain obvious positive effects on MSCs proliferation and osteogenic differentiation. Treatment with M13 enhanced MSCs viability and clone numbers. Meanwhile, M13 promoted osteogenic gene expression, enhanced ALP intensity and Alizarin red S staining in MSCs. In terms of mechanism, M13 strongly interacted with the docking site of the WNT signaling complex, thereby activating the Wnt/β-catenin pathway. Furthermore, the M13-mediated osteogenic effect was partially inhibited by XAV939 both in vitro and ex vivo, which confirmed that the Wnt/β-catenin axis is a critical regulator of M13-induced osteogenic differentiation of MSCs. CONCLUSION Our study elucidated for the first time that M13 significantly promoted osteogenic differentiation of MSCs via stimulation of the Wnt/β-catenin pathway in vitro and ex vivo.Our findings offered new additional evidence to support the MO or M13-based therapy of osteoporosis.
Collapse
Affiliation(s)
- Chuan Li
- Research Center for Translational Medicine, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510006, China
| | - Liru Tian
- Research Center for Translational Medicine, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510006, China
| | - Yihai Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Engineering Research Center for Lead Compounds & Drug Discovery, Guangzhou 510006, China
| | - Huan Luo
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Engineering Research Center for Lead Compounds & Drug Discovery, Guangzhou 510006, China
| | - Jia Zeng
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Engineering Research Center for Lead Compounds & Drug Discovery, Guangzhou 510006, China
| | - Peiqiang Su
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Department of Spine Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Shulin Chen
- Research Center for Translational Medicine, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhiheng Liao
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Department of Spine Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Weimin Guo
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Department of Spine Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Xiangjiu He
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Engineering Research Center for Lead Compounds & Drug Discovery, Guangzhou 510006, China.
| | - Shuqing Chen
- Department of Traditional Chinese Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510006, China.
| | - Caixia Xu
- Research Center for Translational Medicine, First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
5
|
Kong Y, Ma X, Zhang X, Wu L, Chen D, Su B, Liu D, Wang X. The potential mechanism of Fructus Ligustri Lucidi promoting osteogenetic differentiation of bone marrow mesenchymal stem cells based on network pharmacology, molecular docking and experimental identification. Bioengineered 2022; 13:10640-10653. [PMID: 35473508 PMCID: PMC9208528 DOI: 10.1080/21655979.2022.2065753] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Recent studies have shown that the differentiation of bone marrow mesenchymal stem cells (BMSCs) into osteogenic lineages can promotes bone formation and maintains bone homeostasis, which has become a promising therapeutic strategy for skeletal diseases such as osteoporosis. Fructus Ligustri Lucidi (FLL) has been widely used for the treatment of osteoporosis and other orthopedic diseases for thousands of years. However, whether FLL plays an anti-osteoporosis role in promoting the osteogenic differentiation of BMSCs, as well as its active components, targets, and specific molecular mechanisms, has not been fully elucidated. First, we obtained 13 active ingredients of FLL from the Traditional Chinese Medicine Systems Pharmacology (TCSMP) database, and four active ingredients without any target were excluded. Subsequently, 102 common drug-disease targets were subjected to protein-protein interaction (PPI) analysis, Gene Oncology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. The results of the three analyses were highly consistent, indicating that FLL promoted the osteogenic differentiation of BMSCs by activating the PI3K/AKT signaling pathway. Finally, we validated previous predictions using in vitro experiments, such as alkaline phosphatase (ALP) staining, alizarin red staining (ARS), and western blot analysis of osteogenic-related proteins. The organic combination of network pharmacological predictions with in vitro experimental validation comprehensively confirmed the reliability of FLL in promoting osteogenic differentiation of BMSCs. This study provides a strong theoretical support for the specific molecular mechanism and clinical application of FLL in the treatment of bone formation deficiency.
Collapse
Affiliation(s)
- Yuanhang Kong
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xinnan Ma
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xin Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Leilei Wu
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Dechun Chen
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Bo Su
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Daqian Liu
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xintao Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
6
|
Rosa JT, Laizé V, Gavaia PJ, Cancela ML. Fish Models of Induced Osteoporosis. Front Cell Dev Biol 2021; 9:672424. [PMID: 34179000 PMCID: PMC8222987 DOI: 10.3389/fcell.2021.672424] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/28/2021] [Indexed: 12/13/2022] Open
Abstract
Osteopenia and osteoporosis are bone disorders characterized by reduced bone mineral density (BMD), altered bone microarchitecture and increased bone fragility. Because of global aging, their incidence is rapidly increasing worldwide and novel treatments that would be more efficient at preventing disease progression and at reducing the risk of bone fractures are needed. Preclinical studies are today a major bottleneck to the collection of new data and the discovery of new drugs, since they are commonly based on rodent in vivo systems that are time consuming and expensive, or in vitro systems that do not exactly recapitulate the complexity of low BMD disorders. In this regard, teleost fish, in particular zebrafish and medaka, have recently emerged as suitable alternatives to study bone formation and mineralization and to model human bone disorders. In addition to the many technical advantages that allow faster and larger studies, the availability of several fish models that efficiently mimic human osteopenia and osteoporosis phenotypes has stimulated the interest of the academia and industry toward a better understanding of the mechanisms of pathogenesis but also toward the discovery of new bone anabolic or antiresorptive compounds. This mini review recapitulates the in vivo teleost fish systems available to study low BMD disorders and highlights their applications and the recent advances in the field.
Collapse
Affiliation(s)
- Joana T Rosa
- Centre of Marine Sciences, University of Algarve, Faro, Portugal
| | - Vincent Laizé
- Centre of Marine Sciences, University of Algarve, Faro, Portugal.,S2 AQUA - Sustainable and Smart Aquaculture Collaborative Laboratory, Olhão, Portugal
| | - Paulo J Gavaia
- Centre of Marine Sciences, University of Algarve, Faro, Portugal.,GreenCoLab - Associação Oceano Verde, Faro, Portugal.,Faculty of Medicine and Biomedical Sciences, University of Algarve, Faro, Portugal
| | - M Leonor Cancela
- Centre of Marine Sciences, University of Algarve, Faro, Portugal.,Faculty of Medicine and Biomedical Sciences, University of Algarve, Faro, Portugal.,Algarve Biomedical Center, University of Algarve, Faro, Portugal
| |
Collapse
|
7
|
Gambari L, Grassi F, Roseti L, Grigolo B, Desando G. Learning from Monocyte-Macrophage Fusion and Multinucleation: Potential Therapeutic Targets for Osteoporosis and Rheumatoid Arthritis. Int J Mol Sci 2020; 21:ijms21176001. [PMID: 32825443 PMCID: PMC7504439 DOI: 10.3390/ijms21176001] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 12/13/2022] Open
Abstract
Excessive bone resorption by osteoclasts (OCs) covers an essential role in developing bone diseases, such as osteoporosis (OP) and rheumatoid arthritis (RA). Monocytes or macrophages fusion and multinucleation (M-FM) are key processes for generating multinucleated mature cells with essential roles in bone remodelling. Depending on the phenotypic heterogeneity of monocyte/macrophage precursors and the extracellular milieu, two distinct morphological and functional cell types can arise mature OCs and giant cells (GCs). Despite their biological relevance in several physiological and pathological responses, many gaps exist in our understanding of their formation and role in bone, including the molecular determinants of cell fusion and multinucleation. Here, we outline fusogenic molecules during M-FM involved in OCs and GCs formation in healthy conditions and during OP and RA. Moreover, we discuss the impact of the inflammatory milieu on modulating macrophages phenotype and their differentiation towards mature cells. Methodological approach envisaged searches on Scopus, Web of Science Core Collection, and EMBASE databases to select relevant studies on M-FM, osteoclastogenesis, inflammation, OP, and RA. This review intends to give a state-of-the-art description of mechanisms beyond osteoclastogenesis and M-FM, with a focus on OP and RA, and to highlight potential biological therapeutic targets to prevent extreme bone loss.
Collapse
Affiliation(s)
| | | | - Livia Roseti
- Correspondence: (L.R.); (B.G.); Tel.: +39-051-6366090 (B.G.)
| | | | | |
Collapse
|