1
|
Ahmad T, Kadam P, Bhiyani G, Ali H, Akbar M, Siddique MUM, Shahid M. Artemisia pallens W. Attenuates Inflammation and Oxidative Stress in Freund's Complete Adjuvant-Induced Rheumatoid Arthritis in Wistar Rats. Diseases 2024; 12:230. [PMID: 39452473 PMCID: PMC11508142 DOI: 10.3390/diseases12100230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/10/2024] [Accepted: 09/10/2024] [Indexed: 10/26/2024] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease that causes distinctive inflammatory symptoms and affects over 21 million people worldwide. RA is characterized by severe discomfort, swelling, and degradation of the bone and cartilage, further impairing joint function. The current study investigates the antiarthritic effect of a methanolic extract of Artemisia pallens (methanolic extract of A. pallens, MEAP), an aromatic herb. Artemisinin content (% per dry weight of the plant) was estimated using a UV Vis spectrophotometer. In the present study, animals were divided into six groups (n = 6). The control group (group I) was injected with 0.25% of carboxymethyl cellulose. The arthritic control group (group II) was treated with Freund's complete adjuvant (by injecting 0.1 mL). Prednisolone (10 mg/kg), a lower dose of MEAP (100 mg/kg), a medium dose of MEAP (200 mg/kg), and a higher dose of MEAP (400 mg/kg) were orally delivered to groups III, IV, V, and VI, respectively. Freund's complete adjuvant was administered into the sub-plantar portion of the left-hind paw in all the groups except vehicle control to induce rheumatoid arthritis. Weight variation; joint diameter; paw volume; thermal and mechanical hyperalgesia; hematological, biochemical, and oxidative stress parameters; radiology; and a histopathological assessment of the synovial joint were observed in order to evaluate the antiarthritic effect of the methanolic extract of A. pallens. In this study, the estimated content of artemisinin was found to be 0.28% (per dry weight of the plant), which was in good agreement with the reported value. MEAP (200 and 400 mg/kg) caused a significant reduction in increased paw volume and joint diameter in arthritic rats while significantly increasing body weight and the mechanical threshold of thermal algesia. Moreover, complete blood counts and serum enzyme levels improved significantly. Radiological analysis showed a reduction in soft tissue swelling and small erosions. A histopathological examination of the cells revealed reduced cell infiltration and the erosion of joint cartilage in MEAP-administered arthritic rats. The present research suggests that the antiarthritic activity of the methanolic extract of A. pallens wall is promising, as evidenced by the findings explored in our rat model.
Collapse
Affiliation(s)
- Tasneem Ahmad
- School of Pharmacy, Al-Karim University, Katihar 854106, Bihar, India;
| | - Parag Kadam
- Poona College of Pharmacy, Bharati Vidyapeeth Deemed University, Erandawane, Pune 411038, Maharashtra, India;
| | - Gopal Bhiyani
- Department of Pharmacy, Meerut Institute of Technology, Dr. A. P. J. Abdul Kalam Technical University (AKTU), Meerut 250103, Uttar Pradesh, India; (G.B.); (H.A.)
| | - Hasan Ali
- Department of Pharmacy, Meerut Institute of Technology, Dr. A. P. J. Abdul Kalam Technical University (AKTU), Meerut 250103, Uttar Pradesh, India; (G.B.); (H.A.)
| | - Md. Akbar
- School of Pharmacy, Al-Karim University, Katihar 854106, Bihar, India;
| | - Mohd Usman Mohd Siddique
- Department of Pharmaceutical Chemistry, Shri Vile Parle Kelavani Mandal’s Institute of Pharmacy Dhule (MH), Dhule 424001, Maharashtra, India
| | - Mudassar Shahid
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| |
Collapse
|
2
|
Singh S, Bhatt D, Kumar Singh M, Bisht S, Sundaresan V, Chandra Padalia R, Umrao Bawankule D, Swaroop Verma R. Neuroinflammation and Acetylcholinesterase Inhibitory Potentials of a Spiroketal-Enol Ether Polyyne Isolated from Artemisia pallens Wall. ex DC. Chem Biodivers 2024; 21:e202301762. [PMID: 38263615 DOI: 10.1002/cbdv.202301762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/20/2024] [Accepted: 01/23/2024] [Indexed: 01/25/2024]
Abstract
Artemisia pallens Wall. ex DC (Asteraceae) is cultivated for the production of high-value essential oil from its aerial biomass. In this study, the chemical composition of the root (crop-residue) essential oil was investigated for the first time, using column-chromatography, GC-FID, GC-MS, LC-QTOF, and NMR techniques, which led to the identification of twenty constituents, with isolation of (E)-2-(2',4'-hexadiynylidene)-1,6-dioxaspiro [4.5]dec-3-ene (D6). The D6 was evaluated in vitro for neuroinflammation and acetylcholinesterase inhibitory potential. It showed inhibition of neuroinflammation in a concentration-dependent manner with significant inhibition of pro-inflammatory cytokines (TNF-α and IL-6) in LPS-stimulated BV2 microglial cells. D6 did not have any significant effect on the viability of the cells at the therapeutic concentrations. D6 also has shown acetylcholinesterase inhibitory potential (51.90±1.19 %) at the concentration of log 106 nM. The results showed that D6 has a potential role in the resolution of neuroinflammation, and its acetylcholinesterase inhibitory potential directs further investigation of its role in the management of Alzheimer's disease-related pathogenesis.
Collapse
Affiliation(s)
- Swati Singh
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants (CIMAP), PO CIMAP, Lucknow, 226015, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Divya Bhatt
- Bio-Prospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants (CIMAP), PO CIMAP, Lucknow, 226015, India
| | - Munmun Kumar Singh
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants (CIMAP), PO CIMAP, Lucknow, 226015, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Surbhi Bisht
- Bio-Prospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants (CIMAP), PO CIMAP, Lucknow, 226015, India
| | - Velusamy Sundaresan
- Plant Breeding and Genetic Resources Conservation Division, CSIR-Central Institute of Medicinal and Aromatic Plants (CIMAP), Research Center, Bengaluru, 560065, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Rajendra Chandra Padalia
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Research Centre Pantnagar, Uttarakhand, 263149, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Dnyaneshwar Umrao Bawankule
- Bio-Prospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants (CIMAP), PO CIMAP, Lucknow, 226015, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Ram Swaroop Verma
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants (CIMAP), PO CIMAP, Lucknow, 226015, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| |
Collapse
|
3
|
Kiran NR, Narayanan AK, Mohapatra S, Gupta P, Nagegowda DA. Analysis of root volatiles and functional characterization of a root-specific germacrene A synthase in Artemisia pallens. PLANTA 2024; 259:58. [PMID: 38308700 DOI: 10.1007/s00425-024-04334-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 01/06/2024] [Indexed: 02/05/2024]
Abstract
MAIN CONCLUSION The study demonstrated that Artemisia pallens roots can be a source of terpene-rich essential oil and root-specific ApTPS1 forms germacrene A contributing to major root volatiles. Davana (Artemisia pallens Bess) is a valuable aromatic herb within the Asteraceae family, highly prized for its essential oil (EO) produced in the aerial parts. However, the root volatile composition, and the genes responsible for root volatiles have remained unexplored until now. Here, we show that A. pallens roots possess distinct oil bodies and yields ~ 0.05% of EO, which is primarily composed of sesquiterpenes β-elemene, neryl isovalerate, β-selinene, and α-selinene, and trace amounts of monoterpenes β-myrcene, D-limonene. This shows that, besides aerial parts, roots of davana can also be a source of unique EO. Moreover, we functionally characterized a terpene synthase (ApTPS1) that exhibited high in silico expression in the root transcriptome. The recombinant ApTPS1 showed the formation of β-elemene and germacrene A with E,E-farnesyl diphosphate (FPP) as a substrate. Detailed analysis of assay products revealed that β-elemene was the thermal rearrangement product of germacrene A. The functional expression of ApTPS1 in Saccharomyces cerevisiae confirmed the in vivo germacrene A synthase activity of ApTPS1. At the transcript level, ApTPS1 displayed predominant expression in roots, with significantly lower level of expression in other tissues. This expression pattern of ApTPS1 positively correlated with the tissue-specific accumulation level of germacrene A. Overall, these findings provide fundamental insights into the EO profile of davana roots, and the contribution of ApTPS1 in the formation of a major root volatile.
Collapse
Affiliation(s)
- N R Kiran
- Molecular Plant Biology and Biotechnology Lab, CSIR-CIMAP Research Centre, Bengaluru, 560065, India
| | - Ananth Krishna Narayanan
- Molecular Plant Biology and Biotechnology Lab, CSIR-CIMAP Research Centre, Bengaluru, 560065, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Soumyajit Mohapatra
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, 226015, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Priyanka Gupta
- Molecular Plant Biology and Biotechnology Lab, CSIR-CIMAP Research Centre, Bengaluru, 560065, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Dinesh A Nagegowda
- Molecular Plant Biology and Biotechnology Lab, CSIR-CIMAP Research Centre, Bengaluru, 560065, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
4
|
Bhatt D, Singh S, Singh MK, Maurya AK, Chauhan A, Padalia RC, Verma RS, Bawankule DU. Acyclic monoterpenoid-rich essential oil of Cymbopogon distans mitigates skin inflammation: a chemico-pharmacological study. Inflammopharmacology 2024; 32:509-521. [PMID: 37541972 DOI: 10.1007/s10787-023-01302-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/18/2023] [Indexed: 08/06/2023]
Abstract
The topical application of essential oils is considered an effective treatment for skin diseases. Cymbopogon distans (Nees ex Steud.) Wats (Poaceae) is a promising aromatic grass widespread in the Himalayan temperate zone. Therefore, using in-vitro and in-vivo bioassays, we examined the chemical and pharmacological characteristics of essential oil hydro-distilled from C. distans coded as CDA-01, specifically concerning skin inflammation. Characterization using GC-FID and GC-MS provided a chemical fingerprint for CDA-01, enabling the identification of 54 compounds; amongst them, citral (34.3%), geranyl acetate (21.2%), and geraniol (16.4%) were the most abundant. To examine the anti-inflammatory potential, CDA-01 treatment on LPS-stimulated macrophage cells in addition to 12-O-tetradecanoylphorbol-13-acetate (TPA) generated cutaneous inflammatory reaction in the mouse ear was assessed through quantification of the inflammatory markers. Consequently, CDA-01 demonstrated protection against inflammation caused by LPS by lowering the pro-inflammatory cytokines (IL-6 and TNF-α) level in HaCaT cells with negligible cytotoxicity. Consistent with the in-vitro findings, CDA-01 treatment reduced pro-inflammatory mediators (TNF-, IL-6, and NO) and lipid peroxidation in an in-vivo investigation. Subcutaneous inflammation in TPA-treated mice ears was similarly decreased, as evidenced by the histological and morphological studies. As a result of our findings, it is possible that CDA-01 could be an effective treatment for skin inflammation disorders.
Collapse
Affiliation(s)
- Divya Bhatt
- Bio-Prospection and Product Development, CSIR-Central Institute of Medicinal and Aromatic Plants (CIMAP), PO CIMAP, Lucknow, 226015, India
| | - Swati Singh
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants (CIMAP), PO CIMAP, Lucknow, 226015, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Munmun Kumar Singh
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants (CIMAP), PO CIMAP, Lucknow, 226015, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Anil Kumar Maurya
- Bio-Prospection and Product Development, CSIR-Central Institute of Medicinal and Aromatic Plants (CIMAP), PO CIMAP, Lucknow, 226015, India
| | - Amit Chauhan
- CSIR-Central Institute of Medicinal and Aromatic Plants, Research Centre Pantnagar, Udham Singh Nagar, P.O. Dairy Farm Nagla, Uttarakhand, 263149, India
| | - Rajendra Chandra Padalia
- CSIR-Central Institute of Medicinal and Aromatic Plants, Research Centre Pantnagar, Udham Singh Nagar, P.O. Dairy Farm Nagla, Uttarakhand, 263149, India
| | - Ram Swaroop Verma
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants (CIMAP), PO CIMAP, Lucknow, 226015, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India.
| | - Dnyaneshwar U Bawankule
- Bio-Prospection and Product Development, CSIR-Central Institute of Medicinal and Aromatic Plants (CIMAP), PO CIMAP, Lucknow, 226015, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India.
| |
Collapse
|
5
|
Singh VK, Nallasivam JL, Chakraborty TK. One-Pot Tandem Aldol-Cycloetherification Protocol in the Enantioselective Synthesis of Davanoids. J Org Chem 2023. [PMID: 36811497 DOI: 10.1021/acs.joc.2c02865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Total synthesis of cis and trans diastereomers of prenylated davanoids like davanone, nordavanone, and davana acid ethyl ester was achieved in an enantioselective strategy. Various other davanoids could also be synthesized using standard procedures from the Weinreb amides derived from davana acids. Enantioselectivity in our synthesis was achieved employing a Crimmins' non-Evans syn aldol reaction that fixed the stereochemistry of the C3-hydroxyl group, while the C2-methyl group was epimerized in a late stage of the synthesis. A Lewis acid-mediated cycloetherification reaction was used to establish the tetrahydrofuran core of these molecules. Interestingly, a slight alteration of the Crimmins' non-Evans syn aldol protocol led to the complete conversion of the aldol adduct to the core tetrahydrofuran ring of davanoids, thus essentially dovetailing two important steps in the synthesis. The resulting one-pot tandem aldol-cycloetherification strategy enabled the enantioselective synthesis of trans davana acid ethyl esters and 2-epi-davanone/nordavanone in just three steps in excellent overall yields. The modularity of the approach will enable the synthesis of various other isomers in stereochemically pure forms for further biological profiling of this important class of molecules.
Collapse
Affiliation(s)
- Vipin Kumar Singh
- Department of Organic Chemistry, Indian Institute of Science, Bengaluru 560012, India
| | | | | |
Collapse
|
6
|
Assadpour E, Can Karaça A, Fasamanesh M, Mahdavi SA, Shariat-Alavi M, Feng J, Kharazmi MS, Rehman A, Jafari SM. Application of essential oils as natural biopesticides; recent advances. Crit Rev Food Sci Nutr 2023; 64:6477-6497. [PMID: 36728841 DOI: 10.1080/10408398.2023.2170317] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
There is an urgent need for the development of sustainable and eco-friendly pesticide formulations since common synthetic pesticides result in many adverse effects on human health and the environment. Essential oils (EOs) are a mixture of volatile oils produced as a secondary metabolite in medicinal plants, and show activities against pests, insects, and pathogenic fungi. Their chemical composition is affected by several factors such as plant species or cultivar, geographical origin, environmental conditions, agricultural practices, and extraction method. The growing number of studies related to the herbicidal, insecticidal, acaricidal, nematicidal, and antimicrobial effects of EOs demonstrate their effectiveness and suitability as sustainable and environment-friendly biopesticides. EOs can biodegrade into nontoxic compounds; at the same time, their harmful and detrimental effects on non-target organisms are low. However, few biopesticide formulations based on EOs have been turned into commercial practice upto day. Several challenges including the reduced stability and efficiency of EOs under environmental conditions need to be addressed before EOs are widely applied as commercial biopesticides. This work is an overview of the current research on the application of EOs as biopesticides. Findings of recent studies focusing on the challenges related to the use of EOs as biopesticides are also discussed.
Collapse
Affiliation(s)
- Elham Assadpour
- Food Industry Research Co, Gorgan, Iran
- Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Aslı Can Karaça
- Department Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, Istanbul, Turkey
| | - Mahdis Fasamanesh
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Sahar Akhavan Mahdavi
- Food Industry Research Co, Gorgan, Iran
- Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Mahya Shariat-Alavi
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Jianguo Feng
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | | | - Abdur Rehman
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, Ourense, Spain
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| |
Collapse
|
7
|
Trivedi M, Singh S, Pandey T, Gupta SK, Verma RS, Pandey R. Sesquiterpenoids isolated from davana (Artemisia pallens Wall. ex DC) mitigates parkinsonism in Caenorhabditis elegans disease model. Biochem Biophys Res Commun 2022; 609:15-22. [DOI: 10.1016/j.bbrc.2022.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 11/02/2022]
|
8
|
Mohammed HA. Phytochemical Analysis, Antioxidant Potential, and Cytotoxicity Evaluation of Traditionally Used Artemisia absinthium L. (Wormwood) Growing in the Central Region of Saudi Arabia. PLANTS (BASEL, SWITZERLAND) 2022; 11:1028. [PMID: 35448756 PMCID: PMC9029736 DOI: 10.3390/plants11081028] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 06/14/2023]
Abstract
Artemisia absinthium, a plant distributed worldwide, has been reported for its numerous traditional uses, and its phytoconstituents have been investigated in several previous publications. The current study was designed to investigate the chemistry and quality; i.e., the antioxidant and cytotoxic activities, of A. absinthium volatile oil from plant species growing in the central area of Saudi Arabia compared to reported data for the plant growing in other parts of the world. Gas chromatography-mass spectrometry (GC-MS) and gas chromatography with flame ionization detector (GC-FID) spectroscopic analyses, in addition to in vitro antioxidant and cytotoxic assays, were conducted to fulfill the aims, and integrated the study's conclusion. A total of 34 compounds representing 99.98% of the essential oil of the plant were identified; among them, cis-davanone was found at the highest concentration (52.51%) compared to the other constituents. In addition, α-gurjunene (7.15%), chamazulene (3.38%), camphene (3.27), γ-eudesmol (2.49%), pinocarvone (2.18%), and ocimenone (2.03%) were also identified as major constituents of the plant's essential oil. The total percentage of davanones (53%) was the highest percentage found in the plant species growing elsewhere in the world. The antioxidant assays; i.e., the total antioxidant capacity (TAC), ferric-reducing antioxidant power (FRAP), and 2,2-diphenyl-1-picrylhydrazyl-scavenging activity (DPPH-SA), evidenced the potential in vitro antioxidant activity of the A. absinthium essential oil, with 35.59, 10.54, and 24.00 mg Trolox equivalent per gram of the essential oil. In addition, the metal-cheating activity (MCA) of the essential oil was measured at 29.87 mg ethylenediaminetetraacetic acid (EDTA) equivalent per gram of the essential oil. Moreover, a limited cytotoxic effect of the essential oil against all tested cell lines was observed, which might be considered as an indicator of the safety of A. absinthium as a worldwide edible plant. In conclusion, the study confirmed the variations in the A. absinthium essential oil constituents in response to the environmental conditions. The study also highlighted the potential health benefits of the plant's essential oil as an antioxidant agent.
Collapse
Affiliation(s)
- Hamdoon A. Mohammed
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia; ; Tel.: +966-566-176-074
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Cairo 11371, Egypt
| |
Collapse
|