1
|
Ouayloul L, Agirrezabal-Telleria I, Sebastien P, El Doukkali M. Trend and Progress in Catalysis for Ethylene Production from Bioethanol Using ZSM-5. ACS Catal 2024; 14:17360-17397. [DOI: 10.1021/acscatal.4c04162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Affiliation(s)
- L. Ouayloul
- Department of Chemistry, University of Sultan Moulay Slimane (USMS), 23000, Beni-Mellal, Morocco
- Department of Chemical and Environmental Engineering, University of the Basque Country (UPV/EHU), 45013 Bilbao, Spain
| | - I. Agirrezabal-Telleria
- Department of Chemical and Environmental Engineering, University of the Basque Country (UPV/EHU), 45013 Bilbao, Spain
| | - Paul Sebastien
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000 Lille, France
| | - M. El Doukkali
- Department of Chemistry, University of Sultan Moulay Slimane (USMS), 23000, Beni-Mellal, Morocco
| |
Collapse
|
2
|
Yao X, Li T, Chung SH, Ruiz-Martínez J. Advances in the Catalytic Conversion of Ethanol into Nonoxygenated Added-Value Chemicals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406472. [PMID: 39240056 DOI: 10.1002/adma.202406472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/10/2024] [Indexed: 09/07/2024]
Abstract
Given that ethanol can be obtained from abundant biomass resources (e.g., crops, sugarcane, cellulose, and algae), waste, and CO2, its conversion into value-added chemicals holds promise for the sustainable production of high-demand chemical commodities. Nonoxygenated chemicals, including light olefins, 1,3-butadiene, aromatics, and gasoline, are some of the most important of these commodities, substantially contributing to modern lifestyles. Despite the industrial implementation of some ethanol-to-hydrocarbons processes, several fundamental questions and technological challenges remain unaddressed. In addition, the utilization of ethanol as an intermediate provides new opportunities for the direct valorization of CO and CO2. Herein, the recent advances in the design of ethanol conversion catalysts are summarized, providing mechanistic insights into the corresponding reactions and catalyst deactivation, and discussing the related future research directions, including the exploitation of active site proximity to achieve better synergistic effects for reactions involving ethanol.
Collapse
Affiliation(s)
- Xueli Yao
- King Abdullah University of Science and Technology (KAUST), KAUST Catalysis Center (KCC), Thuwal, 23955, Saudi Arabia
| | - Teng Li
- King Abdullah University of Science and Technology (KAUST), KAUST Catalysis Center (KCC), Thuwal, 23955, Saudi Arabia
| | - Sang-Ho Chung
- King Abdullah University of Science and Technology (KAUST), KAUST Catalysis Center (KCC), Thuwal, 23955, Saudi Arabia
| | - Javier Ruiz-Martínez
- King Abdullah University of Science and Technology (KAUST), KAUST Catalysis Center (KCC), Thuwal, 23955, Saudi Arabia
- Chemical Engineering Program, Physical Science and Engineering (PSE) Division, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| |
Collapse
|
3
|
Cazier EA, Pham TN, Cossus L, Abla M, Ilc T, Lawrence P. Exploring industrial lignocellulosic waste: Sources, types, and potential as high-value molecules. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 188:11-38. [PMID: 39094219 DOI: 10.1016/j.wasman.2024.07.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024]
Abstract
Lignocellulosic biomass has a promising role in a circular bioeconomy and may be used to produce valuable molecules for green chemistry. Lignocellulosic biomass, such as food waste, agricultural waste, wood, paper or cardboard, corresponded to 15.7% of all waste produced in Europe in 2020, and has a high potential as a secondary raw material for industrial processes. This review first presents industrial lignocellulosic waste sources, in terms of their composition, quantities and types of lignocellulosic residues. Secondly, the possible high added-value chemicals obtained from transformation of lignocellulosic waste are detailed, as well as their potential for applications in the food industry, biomedical, energy or chemistry sectors, including as sources of polyphenols, enzymes, bioplastic precursors or biofuels. In a third part, various available transformation treatments, such as physical treatments with ultrasound or heat, chemical treatments with acids or bases, and biological treatments with enzymes or microorganisms, are presented. The last part discusses the perspectives of the use of lignocellulosic waste and the fact that decreasing the cost of transformation is one of the major issues for improving the use of lignocellulosic biomass in a circular economy and green chemistry approach, since it is currently often more expensive than petroleum-based counterparts.
Collapse
Affiliation(s)
- Elisabeth A Cazier
- UCLy (Lyon Catholic University), ESTBB, Lyon, France; UCLy (Lyon Catholic University), UR CONFLUENCE : Sciences et Humanités (EA 1598), Lyon, France; Nantes Université, Oniris, GEPEA, UMR 6144, F-44600 Saint-Nazaire, France(1).
| | - Thanh-Nhat Pham
- UCLy (Lyon Catholic University), ESTBB, Lyon, France; UCLy (Lyon Catholic University), UR CONFLUENCE : Sciences et Humanités (EA 1598), Lyon, France
| | - Louis Cossus
- UCLy (Lyon Catholic University), ESTBB, Lyon, France; UCLy (Lyon Catholic University), UR CONFLUENCE : Sciences et Humanités (EA 1598), Lyon, France
| | - Maher Abla
- UCLy (Lyon Catholic University), ESTBB, Lyon, France; UCLy (Lyon Catholic University), UR CONFLUENCE : Sciences et Humanités (EA 1598), Lyon, France.
| | - Tina Ilc
- UCLy (Lyon Catholic University), ESTBB, Lyon, France; UCLy (Lyon Catholic University), UR CONFLUENCE : Sciences et Humanités (EA 1598), Lyon, France.
| | - Philip Lawrence
- UCLy (Lyon Catholic University), ESTBB, Lyon, France; UCLy (Lyon Catholic University), UR CONFLUENCE : Sciences et Humanités (EA 1598), Lyon, France.
| |
Collapse
|
4
|
Gaitán Chavarría E, Picado Espinoza T, Durán Herrera E, Miranda Morales BC. Eco-Friendly Transformation of Bioethanol into Ethylene over Bimetallic Nickel-Copper Catalysts. Chempluschem 2024; 89:e202400135. [PMID: 38963686 DOI: 10.1002/cplu.202400135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 07/01/2024] [Accepted: 07/04/2024] [Indexed: 07/05/2024]
Abstract
The conversion of bioethanol to ethylene in gas phase and atmospheric pressure was investigated over γ-Al2O3 supported copper and nickel catalysts. These catalysts were prepared by co-precipitation and pre-treated with hydrogen at 450 °C. Six catalysts were studied at 450 °C under a nitrogen atmosphere. It was found that the monometallic Cu/γ-Al2O3 catalyst exhibited the highest ethylene concentration, with a selectivity of around 90 %. The bioethanol conversion obtained was between 57 %-86 %. Another catalyst that exhibited high concentration values was the NiCu1 : 7 bimetallic catalyst. The catalysts were characterised using XRD, SEM, EDS, TEM, TGA, FTIR, Raman, and N2-physisoption techniques. Furthermore, the Cu/γ-Al2O3 catalyst was studied under different reduction temperatures and gas flow conditions. It was found that the catalysts reduced at 350 °C and 35 ml/min N2 flow presented ethylene concentrations between (0.18-0.21) g/L. Moreover, the catalyst deactivation was identified to be first order and the equation of the Cu/γ-Al2O3 catalyst deactivation model was determined. Carbonaceous deposits over the used sample were not detected by Raman and FTIR. It was determined that the Cu/γ-Al2O3 catalyst deactivation could be mainly attributed to the blocking of the catalytic sites by strongly adsorbed compounds and hydroxylation of the catalyst surface.
Collapse
|
5
|
Dutta S. Catalytic Transformation of Biomass into Sustainable Carbocycles: Recent Advances, Prospects, and Challenges. Chempluschem 2024:e202400568. [PMID: 39392582 DOI: 10.1002/cplu.202400568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 10/12/2024]
Abstract
Organic compounds bearing one or more carbocycles in their molecular structure have a discernible presence in all major classes of organic products of industrial significance. However, sourcing carbocyclic compounds from exhaustible, anthropogenic carbon (e. g., petroleum) raises serious concerns about sustainability in the chemical industries. This review discusses recent advances in the renewable synthesis of carbocyclic compounds from biomass components following catalytic pathways. The mechanistic insights, process optimizations, green metrics, and alternative synthetic strategies of carbocyclic compounds have been detailed. Moreover, the renewable syntheses of carbocycles have been assessed against their existing synthetic routes from petroleum for better perspectives on their sustainability and technological preparedness. This work will assist the researchers in acquiring updated information on the sustainable synthesis of carbocyclic compounds from various biomass components, comprehending the research gaps, and developing superior synthetic processes for their commercial production.
Collapse
Affiliation(s)
- Saikat Dutta
- Department of Chemistry, National Institute of Technology Karnataka (NITK) Surathkal, Mangalore-, 575025, Karnataka, India
| |
Collapse
|
6
|
Thangaraj B, Monama W, Mohiuddin E, Millan Mdleleni M. Recent developments in (bio)ethanol conversion to fuels and chemicals over heterogeneous catalysts. BIORESOURCE TECHNOLOGY 2024; 409:131230. [PMID: 39117246 DOI: 10.1016/j.biortech.2024.131230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/24/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Bioethanol is one of the most important bio-resources produced from biomass fermentation and is an environmentally friendly alternative to fossil-based fuels as it is regarded as renewable and clean. Bioethanol and its derivatives are used as feedstocks in petrochemical processes as well as fuel and fuel additives in motor vehicles to compensate for the depletion of fossil fuels. This review chronicles the recent developments in the catalytic conversion of ethanol to diethyl ether, ethylene, propylene, long-chain hydrocarbons, and other important products. Various heterogeneous catalysts, such as zeolites, metal oxides, heteropolyacids, mesoporous materials, and metal-organic frameworks, have been used in the ethanol conversion processes and are discussed extensively. The significance of various reaction parameters such as pressure, temperature, water content in the ethanol feed, and the effect of catalyst modification based on various kinds of literature are critically evaluated. Further, coke formation and coke product analysis using various analytical and spectroscopic techniques during the ethanol conversion are briefly discussed. The review concludes by providing insights into possible research paths pertaining to catalyst design aimed at enhancing the catalytic conversion of (bio)ethanol.
Collapse
Affiliation(s)
- Baskaran Thangaraj
- PetroSA-Synthetic Fuels Innovation Centre, South African Institute for Advanced Materials Chemistry, University of the Western Cape, Bellville 7535, South Africa.
| | - Winnie Monama
- PetroSA-Synthetic Fuels Innovation Centre, South African Institute for Advanced Materials Chemistry, University of the Western Cape, Bellville 7535, South Africa
| | - Ebrahim Mohiuddin
- PetroSA-Synthetic Fuels Innovation Centre, South African Institute for Advanced Materials Chemistry, University of the Western Cape, Bellville 7535, South Africa
| | - Masikana Millan Mdleleni
- PetroSA-Synthetic Fuels Innovation Centre, South African Institute for Advanced Materials Chemistry, University of the Western Cape, Bellville 7535, South Africa.
| |
Collapse
|
7
|
Han X, Zhang N, Li Q, Zhang Y, Das S. The efficient synthesis of three-membered rings via photo- and electrochemical strategies. Chem Sci 2024:d4sc02512a. [PMID: 39156935 PMCID: PMC11325197 DOI: 10.1039/d4sc02512a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/31/2024] [Indexed: 08/20/2024] Open
Abstract
Three-membered rings, such as epoxides, aziridines, oxaziridines, cyclopropenes, vinyloxaziridines, and azirines, are recognized as crucial pharmacophores and building blocks in organic chemistry and drug discovery. Despite the significant advances in the synthesis of these rings through photo/electrochemical methods over the past decade, there has currently been no focused discussion and updated overviews on this topic. Therefore, we presented this review article on the efficient synthesis of three-membered rings using photo- and electrochemical strategies, covering the literature since 2015. In this study, a conceptual overview and detailed discussions were provided to illustrate the advancement of this field. Moreover, a brief discussion outlines the current challenges and opportunities in synthesizing the three-membered rings using these strategies.
Collapse
Affiliation(s)
- Xinyu Han
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine No. 1200, Cailun Road Shanghai 201203 China
| | - Na Zhang
- Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of Medicine Shanghai China
| | - Qiannan Li
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine No. 1200, Cailun Road Shanghai 201203 China
| | - Yu Zhang
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine No. 1200, Cailun Road Shanghai 201203 China
- School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 People's Republic of China
| | - Shoubhik Das
- Department of Chemistry, University of Bayreuth Bayreuth 95447 Germany
| |
Collapse
|
8
|
Nasr M, Abdelkader A, El-Nahas S, Osman AI, Abdelhaleem A, El Nazer HA, Rooney DW, Halawy SA. Utilizing Undissolved Portion (UNP) of Cement Kiln Dust as a Versatile Multicomponent Catalyst for Bioethylene Production from Bioethanol: An Innovative Approach to Address the Energy Crisis. ACS OMEGA 2024; 9:1962-1976. [PMID: 38222655 PMCID: PMC10785308 DOI: 10.1021/acsomega.3c09043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 01/16/2024]
Abstract
This study focuses on upcycling cement kiln dust (CKD) as an industrial waste by utilizing the undissolved portion (UNP) as a multicomponent catalyst for bioethylene production from bioethanol, offering an environmentally sustainable solution. To maximize UNP utilization, CKD was dissolved in nitric acid, followed by calcination at 500 °C for 3 h in an oxygen atmosphere. Various characterization techniques confirmed that UNP comprises five different compounds with nanocrystalline particles exhibiting an average crystal size of 47.53 nm. The UNP catalyst exhibited a promising bioethylene yield (77.1%) and selectivity (92%) at 400 °C, showcasing its effectiveness in converting bioethanol to bioethylene with outstanding properties. This exceptional performance can be attributed to its distinctive structural characteristics, including a high surface area and multiple-strength acidic sites that facilitate the reaction mechanism. Moreover, the UNP catalyst displayed remarkable stability and durability, positioning it as a strong candidate for industrial applications in bioethylene production. This research underscores the importance of waste reduction in the cement industry and offers a sustainable path toward a greener future.
Collapse
Affiliation(s)
- Mahmoud Nasr
- Nanocomposite
Catalysts Laboratory, Chemistry Department, Faculty of Science at
Qena, South Valley University, Qena 83523, Egypt
| | - Adel Abdelkader
- Nanocomposite
Catalysts Laboratory, Chemistry Department, Faculty of Science at
Qena, South Valley University, Qena 83523, Egypt
| | - Safaa El-Nahas
- Nanocomposite
Catalysts Laboratory, Chemistry Department, Faculty of Science at
Qena, South Valley University, Qena 83523, Egypt
| | - Ahmed I. Osman
- Nanocomposite
Catalysts Laboratory, Chemistry Department, Faculty of Science at
Qena, South Valley University, Qena 83523, Egypt
- School
of Chemistry and Chemical Engineering, Queen’s
University Belfast, Belfast BT9 5AG, Northern Ireland, U.K.
| | - Amal Abdelhaleem
- Environmental
Engineering Department, Egypt-Japan University
of Science and Technology (E-JUST), Alexandria 21934, Egypt
| | | | - David W. Rooney
- School
of Chemistry and Chemical Engineering, Queen’s
University Belfast, Belfast BT9 5AG, Northern Ireland, U.K.
| | - Samih A. Halawy
- Nanocomposite
Catalysts Laboratory, Chemistry Department, Faculty of Science at
Qena, South Valley University, Qena 83523, Egypt
| |
Collapse
|
9
|
Farkas V, Nagyházi M, Anastas PT, Klankermayer J, Tuba R. Making Persistent Plastics Degradable. CHEMSUSCHEM 2023; 16:e202300553. [PMID: 37083068 DOI: 10.1002/cssc.202300553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 04/21/2023] [Accepted: 04/21/2023] [Indexed: 05/03/2023]
Abstract
The vastness of the scale of the plastic waste problem will require a variety of strategies and technologies to move toward sustainable and circular materials. One of these strategies to address the challenge of persistent fossil-based plastics is new catalytic processes that are being developed to convert recalcitrant waste such as polyethylene to produce propylene, which can be an important precursor of high-performance polymers that can be designed to biodegrade or to degrade on demand. Remarkably, this process also enables the production of biodegradable polymers using renewable raw materials. In this Perspective, current catalyst systems and strategies that enable the catalytic degradation of polyethylene to propylene are presented. In addition, concepts for using "green" propylene as a raw material to produce compostable polymers is also discussed.
Collapse
Affiliation(s)
- Vajk Farkas
- Yale Center for Green Chemistry and Engineering, Yale University, New Haven, Connecticut, 06511, USA
- Institute of Materials and Environmental Chemistry, Eötvös Loránd Research Network, Research Centre for Natural Sciences, P.O. Box 286., Budapest, Hungary
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Szent Gellért tér 4., 1111, Budapest, Hungary
| | - Márton Nagyházi
- Institute of Materials and Environmental Chemistry, Eötvös Loránd Research Network, Research Centre for Natural Sciences, P.O. Box 286., Budapest, Hungary
| | - Paul T Anastas
- Yale Center for Green Chemistry and Engineering, Yale University, New Haven, Connecticut, 06511, USA
| | - Jürgen Klankermayer
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg, 252074, Aachen, Germany
| | - Róbert Tuba
- Yale Center for Green Chemistry and Engineering, Yale University, New Haven, Connecticut, 06511, USA
- Institute of Materials and Environmental Chemistry, Eötvös Loránd Research Network, Research Centre for Natural Sciences, P.O. Box 286., Budapest, Hungary
- Faculty of Engineering, Research Centre of Biochemical, Environmental and Chemical Engineering, MOL Department of Hydrocarbon & Coal Processing, University of Pannonia, Egyetem u. 10, H-8200, Veszprém, Hungary
| |
Collapse
|
10
|
Heterogenized Molecular Rhodium Phosphine Catalysts within Metal–Organic Frameworks for Alkene Hydroformylation. ACS Catal 2023. [DOI: 10.1021/acscatal.3c00398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
11
|
Effect of C3-Alcohol Impurities on Alumina-Catalyzed Bioethanol Dehydration to Ethylene: Experimental Study and Reactor Modeling. Catalysts 2023. [DOI: 10.3390/catal13030509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
The impact of feedstock impurities on catalytic process is among the crucial issues for processing real raw materials. A real and model 92%-bioethanol contaminated with 0.03–0.3% mol 1-propanol or 2-propanol were used to make ethylene on a proprietary alumina catalyst in isothermal flow reactor. We proposed a formal kinetic model to describe the impure bioethanol conversion to ethylene and byproducts and used it to evaluate the multi-tubular reactor (MTR) for 60 KTPA ethylene production. The simulated data agree well with experimental results. Under reaction-controlled conditions, C3-alcohols strongly suppress the formation of by-products and ethylene-from-ethanol, and slightly inhibit the formation of ethylene-via-ether. It is the suppression of the ethylene-via-ether route that causes a decrease in ethanol conversion. The predominant formation of ethylene-via-ether results in an increased ethylene yield but doubling the catalyst load is required to achieve conversion as for pure feedstock. 2-Propanol has a stronger effect on dehydration than 1-propanol. Diffusion inside the grain’s levels out the effect of C3-alcohols on the process in MTR, giving an ethylene yield as high as ~98% while dehydrating a contaminated 92% ethanol. However, impurities dilute ethanol and generate propylene (which contaminates target product), and these worsen feedstock consumption and ethylene productivity in MTR.
Collapse
|
12
|
Wu Y, Song P, Li N, Jiang Y, Liu Y. Molybdenum tailored Co0/Co2+ active pairs on a perovskite-type oxide for direct ethanol synthesis from syngas. Chin J Chem Eng 2023. [DOI: 10.1016/j.cjche.2023.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
13
|
Eissenberger K, Ballesteros A, De Bisschop R, Bugnicourt E, Cinelli P, Defoin M, Demeyer E, Fürtauer S, Gioia C, Gómez L, Hornberger R, Ißbrücker C, Mennella M, von Pogrell H, Rodriguez-Turienzo L, Romano A, Rosato A, Saile N, Schulz C, Schwede K, Sisti L, Spinelli D, Sturm M, Uyttendaele W, Verstichel S, Schmid M. Approaches in Sustainable, Biobased Multilayer Packaging Solutions. Polymers (Basel) 2023; 15:1184. [PMID: 36904425 PMCID: PMC10007551 DOI: 10.3390/polym15051184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 03/03/2023] Open
Abstract
The depletion of fossil resources and the growing demand for plastic waste reduction has put industries and academic researchers under pressure to develop increasingly sustainable packaging solutions that are both functional and circularly designed. In this review, we provide an overview of the fundamentals and recent advances in biobased packaging materials, including new materials and techniques for their modification as well as their end-of-life scenarios. We also discuss the composition and modification of biobased films and multilayer structures, with particular attention to readily available drop-in solutions, as well as coating techniques. Moreover, we discuss end-of-life factors, including sorting systems, detection methods, composting options, and recycling and upcycling possibilities. Finally, regulatory aspects are pointed out for each application scenario and end-of-life option. Moreover, we discuss the human factor in terms of consumer perception and acceptance of upcycling.
Collapse
Affiliation(s)
- Kristina Eissenberger
- Sustainable Packaging Institute SPI, Faculty of Life Sciences, Albstadt-Sigmaringen University, Anton-Günther-Str. 51, 72488 Sigmaringen, Germany
| | - Arantxa Ballesteros
- Centro Tecnológico ITENE, Parque Tecnológico, Carrer d’Albert Einstein 1, 46980 Paterna, Spain
| | - Robbe De Bisschop
- Centexbel, Textile Competence Centre, Etienne Sabbelaan 49, 8500 Kortrijk, Belgium
| | - Elodie Bugnicourt
- Graphic Packaging International, Fountain Plaza, Belgicastraat 7, 1930 Zaventem, Belgium
| | - Patrizia Cinelli
- Planet Bioplastics S.r.l., Via San Giovanni Bosco 23, 56127 Pisa, Italy
| | - Marc Defoin
- Bostik SA, 420 rue d’Estienne d’Orves, 92700 Colombes, France
| | - Elke Demeyer
- Centexbel, Textile Competence Centre, Etienne Sabbelaan 49, 8500 Kortrijk, Belgium
| | - Siegfried Fürtauer
- Fraunhofer Institute for Process Engineering and Packaging, Materials Development, Giggenhauser Str. 35, 85354 Freising, Germany
| | - Claudio Gioia
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Lola Gómez
- AIMPLAS, Plastics Technology Center, Valencia Parc Tecnologic, Carrer de Gustave Eiffel 4, 46980 Paterna, Spain
| | - Ramona Hornberger
- Fraunhofer Institute for Process Engineering and Packaging, Materials Development, Giggenhauser Str. 35, 85354 Freising, Germany
| | | | - Mara Mennella
- KNEIA S.L., Carrer d’Aribau 168-170, 08036 Barcelona, Spain
| | - Hasso von Pogrell
- AIMPLAS, Plastics Technology Center, Valencia Parc Tecnologic, Carrer de Gustave Eiffel 4, 46980 Paterna, Spain
| | | | - Angela Romano
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Antonella Rosato
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Nadja Saile
- Sustainable Packaging Institute SPI, Faculty of Life Sciences, Albstadt-Sigmaringen University, Anton-Günther-Str. 51, 72488 Sigmaringen, Germany
| | - Christian Schulz
- European Bioplastics e.V. (EUBP), Marienstr. 19/20, 10117 Berlin, Germany
| | - Katrin Schwede
- European Bioplastics e.V. (EUBP), Marienstr. 19/20, 10117 Berlin, Germany
| | - Laura Sisti
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Daniele Spinelli
- Next Technology Tecnotessile, Chemical Division, Via del Gelso 13, 59100 Prato, Italy
| | - Max Sturm
- Sustainable Packaging Institute SPI, Faculty of Life Sciences, Albstadt-Sigmaringen University, Anton-Günther-Str. 51, 72488 Sigmaringen, Germany
| | - Willem Uyttendaele
- Centexbel, Textile Competence Centre, Etienne Sabbelaan 49, 8500 Kortrijk, Belgium
| | | | - Markus Schmid
- Sustainable Packaging Institute SPI, Faculty of Life Sciences, Albstadt-Sigmaringen University, Anton-Günther-Str. 51, 72488 Sigmaringen, Germany
| |
Collapse
|
14
|
van Aalst ACA, Geraats EH, Jansen MLA, Mans R, Pronk JT. Optimizing the balance between heterologous acetate- and CO2-reduction pathways in anaerobic cultures of Saccharomyces cerevisiae strains engineered for low-glycerol production. FEMS Yeast Res 2023; 23:foad048. [PMID: 37942589 PMCID: PMC10647013 DOI: 10.1093/femsyr/foad048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 10/24/2023] [Accepted: 11/03/2023] [Indexed: 11/10/2023] Open
Abstract
In anaerobic Saccharomyces cerevisiae cultures, NADH (reduced form of nicotinamide adenine dinucleotide)-cofactor balancing by glycerol formation constrains ethanol yields. Introduction of an acetate-to-ethanol reduction pathway based on heterologous acetylating acetaldehyde dehydrogenase (A-ALD) can replace glycerol formation as 'redox-sink' and improve ethanol yields in acetate-containing media. Acetate concentrations in feedstock for first-generation bioethanol production are, however, insufficient to completely replace glycerol formation. An alternative glycerol-reduction strategy bypasses the oxidative reaction in glycolysis by introducing phosphoribulokinase (PRK) and ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO). For optimal performance in industrial settings, yeast strains should ideally first fully convert acetate and, subsequently, continue low-glycerol fermentation via the PRK-RuBisCO pathway. However, anaerobic batch cultures of a strain carrying both pathways showed inferior acetate reduction relative to a strain expressing only the A-ALD pathway. Complete A-ALD-mediated acetate reduction by a dual-pathway strain, grown anaerobically on 50 g L-1 glucose and 5 mmol L-1 acetate, was achieved upon reducing PRK abundance by a C-terminal extension of its amino acid sequence. Yields of glycerol and ethanol on glucose were 55% lower and 6% higher, respectively, than those of a nonengineered reference strain. The negative impact of the PRK-RuBisCO pathway on acetate reduction was attributed to sensitivity of the reversible A-ALD reaction to intracellular acetaldehyde concentrations.
Collapse
Affiliation(s)
- Aafke C A van Aalst
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Ellen H Geraats
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Mickel L A Jansen
- DSM Biotechnology Centre, Alexander Fleminglaan 1, 2613 AX Delft, The Netherlands
| | - Robert Mans
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Jack T Pronk
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
15
|
Ward DJ, Saccomando DJ, Walker G, Mansell SM. Sustainable routes to alkenes: applications of homogeneous catalysis to the dehydration of alcohols to alkenes. Catal Sci Technol 2023. [DOI: 10.1039/d2cy01690g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Homogeneous catalysis applied to alcohol dehydration.
Collapse
|
16
|
Karpova TR, Lavrenov AV, Buluchevskii EA, Leontieva NN. Polyfunctional catalysis in conversion of light alkenes. Russ Chem Bull 2023; 72:379-392. [PMID: 37073400 PMCID: PMC10092927 DOI: 10.1007/s11172-023-3806-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 08/18/2022] [Accepted: 09/04/2022] [Indexed: 04/20/2023]
Abstract
Light alkenes are among the main petrochemical intermediate products, the consumption of which is steadily growing. Using ethylene as an example, the possibilities of using polyfunctional heterogeneous catalysts for carrying out practically important reactions of its oligomerization, alkylation, and metathesis were considered. Particular attention was paid to catalysts for the conversion of ethylene to propylene.
Collapse
Affiliation(s)
- T. R. Karpova
- Center of New Chemical Technologies of the Federal Research Center, Boreskov Institute of Catalysis of Siberian Branch of the Russian Academy of Sciences, 54 ul. Neftezavodskaya, 644040 Omsk, Russian Federation
| | - A. V. Lavrenov
- Center of New Chemical Technologies of the Federal Research Center, Boreskov Institute of Catalysis of Siberian Branch of the Russian Academy of Sciences, 54 ul. Neftezavodskaya, 644040 Omsk, Russian Federation
| | - E. A. Buluchevskii
- Center of New Chemical Technologies of the Federal Research Center, Boreskov Institute of Catalysis of Siberian Branch of the Russian Academy of Sciences, 54 ul. Neftezavodskaya, 644040 Omsk, Russian Federation
| | - N. N. Leontieva
- Center of New Chemical Technologies of the Federal Research Center, Boreskov Institute of Catalysis of Siberian Branch of the Russian Academy of Sciences, 54 ul. Neftezavodskaya, 644040 Omsk, Russian Federation
| |
Collapse
|
17
|
Dutta S. Greening the Synthesis of Biorenewable Fuels and Chemicals by Stoichiometric Reagentless Organic Transformations. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Saikat Dutta
- Department of Chemistry, National Institute of Technology Karnataka (NITK), Surathkal, Mangaluru-575025, Karnataka, India
| |
Collapse
|
18
|
Babor M, Tišler Z, Kocík J, Hubáček J, Bačiak M, Herrador JMH. Bioethylene and biopropylene production from waste fat and rapeseed oil via catalytic hydrodeoxygenation and hydrocracking followed by pyrolysis. Chem Eng Technol 2022. [DOI: 10.1002/ceat.202200256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Martin Babor
- ORLEN UniCRE, a.s. Revoluční 1521/84 Ústí nad Labem 400 01 Czech Republic
| | - Zdeněk Tišler
- ORLEN UniCRE, a.s. Revoluční 1521/84 Ústí nad Labem 400 01 Czech Republic
| | - Jaroslav Kocík
- ORLEN UniCRE, a.s. Revoluční 1521/84 Ústí nad Labem 400 01 Czech Republic
| | - Jan Hubáček
- ORLEN UniCRE, a.s. Revoluční 1521/84 Ústí nad Labem 400 01 Czech Republic
| | - Miloslav Bačiak
- ENRESS s.r.o. V zářezu 902/4, Jinonice (Praha 5) Praha 158 00 Czech Republic
| | | |
Collapse
|
19
|
Liu G, Yang G, Peng X, Wu J, Tsubaki N. Recent advances in the routes and catalysts for ethanol synthesis from syngas. Chem Soc Rev 2022; 51:5606-5659. [PMID: 35705080 DOI: 10.1039/d0cs01003k] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ethanol, as one of the important bulk chemicals, is widely used in modern society. It can be produced by fermentation of sugar, petroleum refining, or conversion of syngas (CO/H2). Among these approaches, conversion of syngas to ethanol (STE) is the most environmentally friendly and economical process. Although considerable progress has been made in STE conversion, control of CO activation and C-C growth remains a great challenge. This review highlights recent advances in the routes and catalysts employed in STE technology. The catalyst designs and pathway designs are summarized and analysed for the direct and indirect STE routes, respectively. In the direct STE routes (i.e., one-step synthesis of ethanol from syngas), modified catalysts of methanol synthesis, modified catalysts of Fischer-Tropsch synthesis, Mo-based catalysts, noble metal catalysts and multifunctional catalysts are systematically reviewed based on their catalyst designs. Further, in the indirect STE routes (i.e., multi-step processes for ethanol synthesis from syngas via methanol/dimethyl ether as intermediates), carbonylation of methanol/dimethyl ether followed by hydrogenation, and coupling of methanol with CO to form dimethyl oxalate followed by hydrogenation, are outlined according to their pathway designs. The goal of this review is to provide a comprehensive perspective on STE technology and inspire the invention of new catalysts and pathway designs in the near future.
Collapse
Affiliation(s)
- Guangbo Liu
- Department of Applied Chemistry, School of Engineering, University of Toyama, Gofuku 3190, Toyama, 930-8555, Japan. .,Key laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China.
| | - Guohui Yang
- Department of Applied Chemistry, School of Engineering, University of Toyama, Gofuku 3190, Toyama, 930-8555, Japan.
| | - Xiaobo Peng
- Department of Applied Chemistry, School of Engineering, University of Toyama, Gofuku 3190, Toyama, 930-8555, Japan. .,National Engineering Research Center of Chemical Fertilizer Catalyst, Fuzhou University, Fuzhou 350002, Fujian, China
| | - Jinhu Wu
- Key laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China.
| | - Noritatsu Tsubaki
- Department of Applied Chemistry, School of Engineering, University of Toyama, Gofuku 3190, Toyama, 930-8555, Japan.
| |
Collapse
|
20
|
Cioc RC, Crockatt M, van der Waal JC, Bruijnincx PCA. The Interplay between Kinetics and Thermodynamics in Furan Diels-Alder Chemistry for Sustainable Chemicals Production. Angew Chem Int Ed Engl 2022; 61:e202114720. [PMID: 35014138 PMCID: PMC9304315 DOI: 10.1002/anie.202114720] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Indexed: 01/21/2023]
Abstract
Biomass-derived furanic platform molecules have emerged as promising building blocks for renewable chemicals and functional materials. To this aim, the Diels-Alder (DA) cycloaddition stands out as a versatile strategy to convert these renewable resources in highly atom-efficient ways. Despite nearly a century worth of examples of furan DA chemistry, clear structure-reactivity-stability relationships are still to be established. Detailed understanding of the intricate interplay between kinetics and thermodynamics in these very particular [4+2] cycloadditions is essential to push further development and truly expand the scope beyond the ubiquitous addend combinations of electron-rich furans and electron-deficient olefins. Herein, we provide pertinent examples of DA chemistry, taken from various fields, to highlight trends, establish correlations and answer open questions in the field with the aim to support future efforts in the sustainable chemicals and materials production.
Collapse
Affiliation(s)
- Răzvan C. Cioc
- Organic Chemistry and CatalysisDebye Institute for Nanomaterials ScienceFaculty of ScienceUtrecht UniversityUniversiteitsweg 993584 CGUtrechtThe Netherlands
| | - Marc Crockatt
- Department of Sustainable Process and Energy Systems, TNOLeeghwaterstraat 442628CADelftThe Netherlands
| | - Jan C. van der Waal
- Department of Sustainable Process and Energy Systems, TNOLeeghwaterstraat 442628CADelftThe Netherlands
| | - Pieter C. A. Bruijnincx
- Organic Chemistry and CatalysisDebye Institute for Nanomaterials ScienceFaculty of ScienceUtrecht UniversityUniversiteitsweg 993584 CGUtrechtThe Netherlands
| |
Collapse
|
21
|
Reznichenko A, Harlin A. Next generation of polyolefin plastics: improving sustainability with existing and novel feedstock base. SN APPLIED SCIENCES 2022. [DOI: 10.1007/s42452-022-04991-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Abstract
In this account, we present an overview of existing and emerging olefin production technologies, comparing them from the standpoint of carbon intensity, efficiency, feedstock type and availability. Olefins are indispensable feedstock for manufacture of polyolefin plastics and other base chemicals. Current methods of olefin production are associated with significant CO2 emissions and almost entirely rely of fossil feedstock. In order to assess potential alternatives, technical and economic maturity of six principal olefin production routes are compared in this paper. Coal (brown), oil and gas (grey), biomass (green), recycled plastic (pink) as well as carbon capture and storage (purple) and carbon capture and utilization (blue) technologies are considered. We conclude that broader adoption of biomass based “green” feedstock and introduction of recycled plastic based olefins may lead to reduced carbon footprint, however adoption of best available technologies and introduction of electrocracking to existing fossil-based “grey” olefin manufacture process can be the way to achieve highest impact most rapidly. Adoption of Power-to-X approaches to olefins starting from biogenic or atmospheric CO2 and renewable H2 can lead to ultimately carbon–neutral “blue” olefins in the long term, however substantial development and additional regulatory incentives are necessary to make the solution economically viable.
Article highlights
In this account, we introduce a color coding scheme to differentiate and compare carbon intensity and feedstock types for some of the main commercial and emerging olefin production routes.
Most viable short term improvements in CO2 emissions of olefin production will be achieved by discouraging “brown” coal based production and improving efficiency of “grey” oil and gas based processes.
Gradual incorporation of green and recycled feedstock to existing olefin production assets will allow to achieve substantial improvements in carbon efficiency in longer term.
Collapse
|
22
|
Muzyka C, Monbaliu JCM. Perspectives for the Upgrading of Bio-Based Vicinal Diols within the Developing European Bioeconomy. CHEMSUSCHEM 2022; 15:e202102391. [PMID: 34919322 DOI: 10.1002/cssc.202102391] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/16/2021] [Indexed: 06/14/2023]
Abstract
The previous decade has witnessed a drastic increase of European incentives aimed at pushing forward the transition from an exclusively petro-based economy toward a strong and homogeneous bio-based economy. Since 2012, numerous programs have been developed to stimulate and promote research and innovation relying on sustainable and renewable resources. Terrestrial biomass is a virtually infinite reservoir of biomacromolecules, the biorefining of which provides platform molecules of low complexity yet with tremendous industrial potential. Among such bio-based platform molecules, polyols and, more specifically, molecules featuring vicinal diols have gained tremendous interest and have stimulated an increasing research effort from the chemistry and chemical engineering communities. This Review revolves around the most promising process conditions and technologies reported since 2012 that specifically target bio-based vicinal diols and promote their transformation into value-added molecules of wide industrial interest, such as olefins, epoxides, cyclic carbonates, and ketals.
Collapse
Affiliation(s)
- Claire Muzyka
- Center for Integrated Technology and Organic Synthesis, MolSys Research Unit, University of Liège, Quartier Agora Allée du six Aout, 13, B-4000, Liège (Sart Tilman), Belgium
| | - Jean-Christophe M Monbaliu
- Center for Integrated Technology and Organic Synthesis, MolSys Research Unit, University of Liège, Quartier Agora Allée du six Aout, 13, B-4000, Liège (Sart Tilman), Belgium
| |
Collapse
|
23
|
Igbokwe VC, Ezugworie FN, Onwosi CO, Aliyu GO, Obi CJ. Biochemical biorefinery: A low-cost and non-waste concept for promoting sustainable circular bioeconomy. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 305:114333. [PMID: 34952394 DOI: 10.1016/j.jenvman.2021.114333] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 12/11/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
The transition from a fossil-based linear economy to a circular bioeconomy is no longer an option but rather imperative, given worldwide concerns about the depletion of fossil resources and the demand for innovative products that are ecocompatible. As a critical component of sustainable development, this discourse has attracted wide attention at the regional and international levels. Biorefinery is an indispensable technology to implement the blueprint of the circular bioeconomy. As a low-cost, non-waste innovative concept, the biorefinery concept will spur a myriad of new economic opportunities across a wide range of sectors. Consequently, scaling up biorefinery processes is of the essence. Despite several decades of research and development channeled into upscaling biorefinery processes, the commercialization of biorefinery technology appears unrealizable. In this review, challenges limiting the commercialization of biorefinery technologies are discussed, with a particular focus on biofuels, biochemicals, and biomaterials. To counteract these challenges, various process intensification strategies such as consolidated bioprocessing, integrated biorefinery configurations, the use of highly efficient bioreactors, simultaneous saccharification and fermentation, have been explored. This study also includes an overview of biomass pretreatment-generated inhibitory compounds as platform chemicals to produce other essential biocommodities. There is a detailed examination of the technological, economic, and environmental considerations of a sustainable biorefinery. Finally, the prospects for establishing a viable circular bioeconomy in Nigeria are briefly discussed.
Collapse
Affiliation(s)
- Victor C Igbokwe
- Bioconversion and Renewable Energy Research Unit, University of Nigeria, Nsukka, Enugu State, Nigeria; Department of Materials Science and Engineering, Université de Pau et des Pays de l'Adour, 64012, Pau Cedex, France
| | - Flora N Ezugworie
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria; Bioconversion and Renewable Energy Research Unit, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Chukwudi O Onwosi
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria; Bioconversion and Renewable Energy Research Unit, University of Nigeria, Nsukka, Enugu State, Nigeria.
| | - Godwin O Aliyu
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria; Bioconversion and Renewable Energy Research Unit, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Chinonye J Obi
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria
| |
Collapse
|
24
|
van Aalst AC, de Valk SC, van Gulik WM, Jansen ML, Pronk JT, Mans R. Pathway engineering strategies for improved product yield in yeast-based industrial ethanol production. Synth Syst Biotechnol 2022; 7:554-566. [PMID: 35128088 PMCID: PMC8792080 DOI: 10.1016/j.synbio.2021.12.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 12/16/2022] Open
Abstract
Product yield on carbohydrate feedstocks is a key performance indicator for industrial ethanol production with the yeast Saccharomyces cerevisiae. This paper reviews pathway engineering strategies for improving ethanol yield on glucose and/or sucrose in anaerobic cultures of this yeast by altering the ratio of ethanol production, yeast growth and glycerol formation. Particular attention is paid to strategies aimed at altering energy coupling of alcoholic fermentation and to strategies for altering redox-cofactor coupling in carbon and nitrogen metabolism that aim to reduce or eliminate the role of glycerol formation in anaerobic redox metabolism. In addition to providing an overview of scientific advances we discuss context dependency, theoretical impact and potential for industrial application of different proposed and developed strategies.
Collapse
Affiliation(s)
- Aafke C.A. van Aalst
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629, HZ Delft, the Netherlands
| | - Sophie C. de Valk
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629, HZ Delft, the Netherlands
| | - Walter M. van Gulik
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629, HZ Delft, the Netherlands
| | - Mickel L.A. Jansen
- DSM Biotechnology Centre, Alexander Fleminglaan 1, 2613, AX Delft, the Netherlands
| | - Jack T. Pronk
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629, HZ Delft, the Netherlands
| | - Robert Mans
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629, HZ Delft, the Netherlands
| |
Collapse
|
25
|
R Riscoe A, Oh J, Cargnello M. Sulfur-treated TiO 2 shows improved alcohol dehydration activity and selectivity. NANOSCALE 2022; 14:2848-2858. [PMID: 35137741 DOI: 10.1039/d1nr06029e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The dehydration of alcohols is an important class of reactions for the development of fossil-free fuel and chemical industries. Acid catalysts are well known to enhance the reactivity of alcohols following two main pathways of either dehydration to olefins or dehydrogenation to ketones/aldehydes. TiO2 surfaces have been well documented for primary and secondary alcohol dehydration with selectivity ranging from 1-100% towards dehydration products based on process conditions and catalyst structure. In this work we document the effects of various sulfur treatments of TiO2 surfaces which induce higher activity and, more importantly, higher selectivity for alcohol dehydration than untreated surfaces. The increase in activity and >99% dehydration selectivity is coupled with demonstrated stability for several hours on stream at high conversion. Using temperature programmed reaction studies, XPS and FT-IR spectroscopy, we identify Lewis acidic sites correlated with sulfate species on TiO2 surfaces as active sites for the reaction.
Collapse
Affiliation(s)
- Andrew R Riscoe
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA.
| | - Jinwon Oh
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
| | - Matteo Cargnello
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
26
|
Patti A, Acierno D. Towards the Sustainability of the Plastic Industry through Biopolymers: Properties and Potential Applications to the Textiles World. Polymers (Basel) 2022; 14:692. [PMID: 35215604 PMCID: PMC8878127 DOI: 10.3390/polym14040692] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/05/2022] [Accepted: 02/07/2022] [Indexed: 12/11/2022] Open
Abstract
This study aims to provide an overview of the latest research studies on the use of biopolymers in various textile processes, from spinning processes to dyeing and finishing treatment, proposed as a possible solution to reduce the environmental impact of the textile industry. Recently, awareness of various polluting aspects of textile production, based on petroleum derivatives, has grown significantly. Environmental issues resulting from greenhouse gas emissions, and waste accumulation in nature and landfills, have pushed research activities toward more sustainable, low-impact alternatives. Polymers derived from renewable resources and/or with biodegradable characteristics were investigated as follows: (i) as constituent materials in yarn production, in view of their superior ability to be decomposed compared with common synthetic petroleum-derived plastics, positive antibacterial activities, good breathability, and mechanical properties; (ii) in textile finishing to act as biological catalysts; (iii) to impart specific functional properties to treated textiles; (iv) in 3D printing technologies on fabric surfaces to replace traditionally more pollutive dye-based and inkjet printing; and (v) in the implants for the treatment of dye-contaminated water. Finally, current projects led by well-known companies on the development of new materials for the textile market are presented.
Collapse
Affiliation(s)
- Antonella Patti
- Department of Civil Engineering and Architecture (DICAr), University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Domenico Acierno
- CRdC Nuove Tecnologie per le Attività Produttive Scarl, Via Nuova Agnano 11, 80125 Naples, Italy
| |
Collapse
|
27
|
Himmelmann R, Otterstaetter R, Franke O, Brand S, Wachsen O, Mestl G, Effenberger F, Klemm E. Selective oxidation of ethanol to ethylene oxide with a dual-layer concept. CATAL COMMUN 2022. [DOI: 10.1016/j.catcom.2022.106424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
28
|
Oefner N, Heck F, Dürl M, Schumacher L, Khatoon Siddiqui H, Kramm UI, Hess C, Möller A, Albert B, Etzold BJM. Activity, Selectivity and Initial Degradation of Iron Molybdate in the Oxidative Dehydrogenation of Ethanol. ChemCatChem 2022. [DOI: 10.1002/cctc.202101219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Niklas Oefner
- Ernst-Berl-Institut für Makromolekulare und Technische Chemie Technische Universität Darmstadt Alarich-Weiß-Straße 8 64287 Darmstadt Germany
| | - Franziska Heck
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie Technische Universität Darmstadt Alarich-Weiß-Straße 12 64287 Darmstadt Germany
| | - Marcel Dürl
- Department of Chemistry Johannes Gutenberg-University Mainz Duesbergweg 10–14 55128 Mainz Germany
| | - Leon Schumacher
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie Technische Universität Darmstadt Alarich-Weiß-Straße 12 64287 Darmstadt Germany
| | - Humera Khatoon Siddiqui
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie Technische Universität Darmstadt Alarich-Weiß-Straße 12 64287 Darmstadt Germany
| | - Ulrike I. Kramm
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie Technische Universität Darmstadt Alarich-Weiß-Straße 12 64287 Darmstadt Germany
| | - Christian Hess
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie Technische Universität Darmstadt Alarich-Weiß-Straße 12 64287 Darmstadt Germany
| | - Angela Möller
- Department of Chemistry Johannes Gutenberg-University Mainz Duesbergweg 10–14 55128 Mainz Germany
| | - Barbara Albert
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie Technische Universität Darmstadt Alarich-Weiß-Straße 12 64287 Darmstadt Germany
| | - Bastian J. M. Etzold
- Ernst-Berl-Institut für Makromolekulare und Technische Chemie Technische Universität Darmstadt Alarich-Weiß-Straße 8 64287 Darmstadt Germany
| |
Collapse
|
29
|
Cioc R, Crockatt M, Van der Waal JC, Bruijnincx P. The Interplay between Kinetics and Thermodynamics in Furan Diels‐Alder Chemistry for Sustainable Chemicals Production. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Razvan Cioc
- Utrecht University: Universiteit Utrecht Chemistry NETHERLANDS
| | - Marc Crockatt
- TNO Sustainable Process and Energy Systems NETHERLANDS
| | | | - Pieter Bruijnincx
- Utrecht University Chemistry Universiteitsweg99Netherlands 3584 CG Utrecht NETHERLANDS
| |
Collapse
|
30
|
Frosi M, Tripodi A, Conte F, Ramis G, Mahinpey N, Rossetti I. Ethylene from renewable ethanol: Process optimization and economic feasibility assessment. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.08.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
31
|
Oliveira MM, Proenca AM, Moreira-Silva E, Dos Santos FM, Marconatto L, de Castro AM, Medina-Silva R. Biochemical features and early adhesion of marine Candida parapsilosis strains on high-density polyethylene. J Appl Microbiol 2021; 132:1954-1966. [PMID: 34787949 DOI: 10.1111/jam.15369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 09/29/2021] [Accepted: 10/14/2021] [Indexed: 11/27/2022]
Abstract
AIMS Plastic debris are constantly released into oceans where, due to weathering processes, they suffer fragmentation into micro- and nanoplastics. Diverse microbes often colonize these persisting fragments, contributing to their degradation. However, there are scarce reports regarding the biofilm formation of eukaryotic decomposing microorganisms on plastics. Here, we evaluated five yeast isolates from deep-sea sediment for catabolic properties and early adhesion ability on high-density polyethylene (HDPE). METHODS AND RESULTS We assessed yeast catabolic features and adhesion ability on HDPE fragments subjected to abiotic weathering. Adhered cells were evaluated through Crystal Violet Assay, Scanning Electron Microscopy, Atomic Force Microscopy and Infrared Spectroscopy. Isolates were identified as Candida parapsilosis and exhibited wide catabolic capacity. Two isolates showed high adhesion ability on HDPE, consistently higher than the reference C. parapsilosis strain, despite an increase in fragment roughness due to weathering. Isolate Y5 displayed the most efficient colonization, with production of polysaccharides and lipids after 48 h of incubation. CONCLUSION This work provides insights on catabolic metabolism and initial yeast-HDPE interactions of marine C. parapsilosis strains. SIGNIFICANCE AND IMPACT OF THE STUDY Our findings represent an essential contribution to the characterization of early interactions between deep-sea undescribed yeast strains and plastic pollutants found in oceans.
Collapse
Affiliation(s)
- Maiara Monteiro Oliveira
- Geobiology Laboratory, Institute of Petroleum and Natural Resources, Pontifical Catholic University of Rio Grande do Sul, PUCRS, Porto Alegre, Brazil.,Immunology and Microbiology Laboratory, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, PUCRS, Porto Alegre, Brazil
| | - Audrey Menegaz Proenca
- Geobiology Laboratory, Institute of Petroleum and Natural Resources, Pontifical Catholic University of Rio Grande do Sul, PUCRS, Porto Alegre, Brazil.,Immunology and Microbiology Laboratory, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, PUCRS, Porto Alegre, Brazil
| | - Eduardo Moreira-Silva
- Immunology and Microbiology Laboratory, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, PUCRS, Porto Alegre, Brazil
| | - Francine Melise Dos Santos
- Geobiology Laboratory, Institute of Petroleum and Natural Resources, Pontifical Catholic University of Rio Grande do Sul, PUCRS, Porto Alegre, Brazil
| | - Letícia Marconatto
- Geobiology Laboratory, Institute of Petroleum and Natural Resources, Pontifical Catholic University of Rio Grande do Sul, PUCRS, Porto Alegre, Brazil
| | - Aline Machado de Castro
- Biotechnology Division, Research and Development Center (CENPES), PETROBRAS, Rio de Janeiro, RJ, Brazil
| | - Renata Medina-Silva
- Geobiology Laboratory, Institute of Petroleum and Natural Resources, Pontifical Catholic University of Rio Grande do Sul, PUCRS, Porto Alegre, Brazil.,Immunology and Microbiology Laboratory, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, PUCRS, Porto Alegre, Brazil
| |
Collapse
|
32
|
Singh B, Gawande MB, Kute AD, Varma RS, Fornasiero P, McNeice P, Jagadeesh RV, Beller M, Zbořil R. Single-Atom (Iron-Based) Catalysts: Synthesis and Applications. Chem Rev 2021; 121:13620-13697. [PMID: 34644065 DOI: 10.1021/acs.chemrev.1c00158] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Supported single-metal atom catalysts (SACs) are constituted of isolated active metal centers, which are heterogenized on inert supports such as graphene, porous carbon, and metal oxides. Their thermal stability, electronic properties, and catalytic activities can be controlled via interactions between the single-metal atom center and neighboring heteroatoms such as nitrogen, oxygen, and sulfur. Due to the atomic dispersion of the active catalytic centers, the amount of metal required for catalysis can be decreased, thus offering new possibilities to control the selectivity of a given transformation as well as to improve catalyst turnover frequencies and turnover numbers. This review aims to comprehensively summarize the synthesis of Fe-SACs with a focus on anchoring single atoms (SA) on carbon/graphene supports. The characterization of these advanced materials using various spectroscopic techniques and their applications in diverse research areas are described. When applicable, mechanistic investigations conducted to understand the specific behavior of Fe-SACs-based catalysts are highlighted, including the use of theoretical models.
Collapse
Affiliation(s)
- Baljeet Singh
- CICECO-Aveiro Institute of Materials, University of Aveiro, Aveiro, 3810-193 Portugal
| | - Manoj B Gawande
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology Mumbai-Marathwada Campus, Jalna 431213, Maharashtra, India
| | - Arun D Kute
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology Mumbai-Marathwada Campus, Jalna 431213, Maharashtra, India
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, 779 00 Olomouc, Czech Republic
| | - Paolo Fornasiero
- Department of Chemical and Pharmaceutical Sciences, Center for Energy, Environment and Transport Giacomo Ciamiciam, INSTM Trieste Research Unit and ICCOM-CNR Trieste Research Unit, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
| | - Peter McNeice
- Leibniz-Institut für Katalyse e. V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| | - Rajenahally V Jagadeesh
- Leibniz-Institut für Katalyse e. V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany.,Department of Chemistry, REVA University, Bangalore 560064, India
| | - Matthias Beller
- Leibniz-Institut für Katalyse e. V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| | - Radek Zbořil
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, 779 00 Olomouc, Czech Republic.,CEET Nanotechnology Centre, VŠB-Technical University of Ostrava, 17. Listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| |
Collapse
|
33
|
Groß J, Grundke C, Rocker J, Arduengo AJ, Opatz T. Xylochemicals and where to find them. Chem Commun (Camb) 2021; 57:9979-9994. [PMID: 34522925 DOI: 10.1039/d1cc03512f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This article surveys a range of important platform and high value chemicals that may be considered primary and secondary 'xylochemicals'. A summary of identified xylochemical substances and their natural sources is provided in tabular form. In detail, this review is meant to provide useful assistance for the consideration of potential synthetic strategies using xylochemicals, new methodologies and the development of potentially sustainable, xylochemistry-based processes. It should support the transition from petroleum-based approaches and help to move towards more sustainability within the synthetic community. This feasible paradigm shift is demonstrated with the total synthesis of natural products and active pharmaceutical ingredients as well as the preparation of organic molecules suitable for potential industrial applications.
Collapse
Affiliation(s)
- Jonathan Groß
- Department of Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55128, Mainz, Germany.
| | - Caroline Grundke
- Department of Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55128, Mainz, Germany.
| | - Johannes Rocker
- Department of Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55128, Mainz, Germany.
| | - Anthony J Arduengo
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, 30332-0400, USA.
| | - Till Opatz
- Department of Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55128, Mainz, Germany.
| |
Collapse
|
34
|
Tabassum N, Ali SS. A Review on Synthesis and Transformation of Ethanol into Olefins Using Various Catalysts. CATALYSIS SURVEYS FROM ASIA 2021. [DOI: 10.1007/s10563-021-09348-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
35
|
Damayanti D, Supriyadi D, Amelia D, Saputri DR, Devi YLL, Auriyani WA, Wu HS. Conversion of Lignocellulose for Bioethanol Production, Applied in Bio-Polyethylene Terephthalate. Polymers (Basel) 2021; 13:2886. [PMID: 34502925 PMCID: PMC8433819 DOI: 10.3390/polym13172886] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/16/2021] [Accepted: 08/25/2021] [Indexed: 12/05/2022] Open
Abstract
The increasing demand for petroleum-based polyethylene terephthalate (PET) grows population impacts daily. A greener and more sustainable raw material, lignocellulose, is a promising replacement of petroleum-based raw materials to convert into bio-PET. This paper reviews the recent development of lignocellulose conversion into bio-PET through bioethanol reaction pathways. This review addresses lignocellulose properties, bioethanol production processes, separation processes of bioethanol, and the production of bio-terephthalic acid and bio-polyethylene terephthalate. The article also discusses the current industries that manufacture alcohol-based raw materials for bio-PET or bio-PET products. In the future, the production of bio-PET from biomass will increase due to the scarcity of petroleum-based raw materials.
Collapse
Affiliation(s)
- Damayanti Damayanti
- Department of Chemical Engineering and Materials Science, Yuan Ze University, 135 Yuan-Tung Road, Chung-Li, Taoyuan 32003, Taiwan;
- Department of Chemical Engineering, Institut Teknologi Sumatera, Jl. Terusan Ryacudu, Way Huwi, Kec. Jati Agung, Lampung Selatan, Lampung 35365, Indonesia; (D.S.); (D.A.); (D.R.S.); (Y.L.L.D.); (W.A.A.)
| | - Didik Supriyadi
- Department of Chemical Engineering, Institut Teknologi Sumatera, Jl. Terusan Ryacudu, Way Huwi, Kec. Jati Agung, Lampung Selatan, Lampung 35365, Indonesia; (D.S.); (D.A.); (D.R.S.); (Y.L.L.D.); (W.A.A.)
| | - Devita Amelia
- Department of Chemical Engineering, Institut Teknologi Sumatera, Jl. Terusan Ryacudu, Way Huwi, Kec. Jati Agung, Lampung Selatan, Lampung 35365, Indonesia; (D.S.); (D.A.); (D.R.S.); (Y.L.L.D.); (W.A.A.)
| | - Desi Riana Saputri
- Department of Chemical Engineering, Institut Teknologi Sumatera, Jl. Terusan Ryacudu, Way Huwi, Kec. Jati Agung, Lampung Selatan, Lampung 35365, Indonesia; (D.S.); (D.A.); (D.R.S.); (Y.L.L.D.); (W.A.A.)
| | - Yuniar Luthfia Listya Devi
- Department of Chemical Engineering, Institut Teknologi Sumatera, Jl. Terusan Ryacudu, Way Huwi, Kec. Jati Agung, Lampung Selatan, Lampung 35365, Indonesia; (D.S.); (D.A.); (D.R.S.); (Y.L.L.D.); (W.A.A.)
| | - Wika Atro Auriyani
- Department of Chemical Engineering, Institut Teknologi Sumatera, Jl. Terusan Ryacudu, Way Huwi, Kec. Jati Agung, Lampung Selatan, Lampung 35365, Indonesia; (D.S.); (D.A.); (D.R.S.); (Y.L.L.D.); (W.A.A.)
| | - Ho Shing Wu
- Department of Chemical Engineering and Materials Science, Yuan Ze University, 135 Yuan-Tung Road, Chung-Li, Taoyuan 32003, Taiwan;
| |
Collapse
|
36
|
Production of Gasolines and Monocyclic Aromatic Hydrocarbons: From Fossil Raw Materials to Green Processes. ENERGIES 2021. [DOI: 10.3390/en14134061] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The properties and the applications of the main monocyclic aromatic hydrocarbons (benzene, toluene, ethylbenzene, styrene, and the three xylene isomers) and the industrial processes for their manufacture from fossil raw materials are summarized. Potential ways for their production from renewable sources with thermo-catalytic processes are described and discussed in detail. The perspectives of the future industrial organic chemistry in relation to the production of high-octane bio-gasolines and monocyclic aromatic hydrocarbons as renewable chemical intermediates are discussed.
Collapse
|
37
|
Ioannou I, D'Angelo SC, Galán-Martín Á, Pozo C, Pérez-Ramírez J, Guillén-Gosálbez G. Process modelling and life cycle assessment coupled with experimental work to shape the future sustainable production of chemicals and fuels. REACT CHEM ENG 2021; 6:1179-1194. [PMID: 34262788 PMCID: PMC8240698 DOI: 10.1039/d0re00451k] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/03/2021] [Indexed: 12/17/2022]
Abstract
Meeting the sustainable development goals and carbon neutrality targets requires transitioning to cleaner products, which poses significant challenges to the future chemical industry. Identifying alternative pathways to cover the growing demand for chemicals and fuels in a more sustainable manner calls for close collaborative programs between experimental and computational groups as well as new tools to support these joint endeavours. In this broad context, we here review the role of process systems engineering tools in assessing and optimising alternative chemical production patterns based on renewable resources, including renewable carbon and energy. The focus is on the use of process modelling and optimisation combined with life cycle assessment methodologies and network analysis to underpin experiments and generate insight into how the chemical industry could optimally deliver chemicals and fuels with a lower environmental footprint. We identify the main gaps in the literature and provide directions for future work, highlighting the role of PSE concepts and tools in guiding the future transition and complementing experimental studies more effectively.
Collapse
Affiliation(s)
- Iasonas Ioannou
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich Vladimir-Prelog-Weg 1 8093 Zürich Switzerland
| | - Sebastiano Carlo D'Angelo
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich Vladimir-Prelog-Weg 1 8093 Zürich Switzerland
| | - Ángel Galán-Martín
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich Vladimir-Prelog-Weg 1 8093 Zürich Switzerland
| | - Carlos Pozo
- LEPAMAP Research Group, University of Girona C/Maria Aurèlia Capmany 61 17003 Girona Spain
| | - Javier Pérez-Ramírez
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich Vladimir-Prelog-Weg 1 8093 Zürich Switzerland
| | - Gonzalo Guillén-Gosálbez
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich Vladimir-Prelog-Weg 1 8093 Zürich Switzerland
| |
Collapse
|
38
|
Goryachev A, Pustovarenko A, Shterk G, Alhajri NS, Jamal A, Albuali M, Koppen L, Khan IS, Russkikh A, Ramirez A, Shoinkhorova T, Hensen EJM, Gascon J. A Multi‐Parametric Catalyst Screening for CO
2
Hydrogenation to Ethanol. ChemCatChem 2021. [DOI: 10.1002/cctc.202100302] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Andrey Goryachev
- Advanced Catalytic Materials - KAUST Catalysis Center King Abdullah University of Science and Technology Thuwal 23955-6900 Saudi Arabia
| | - Alexey Pustovarenko
- Advanced Catalytic Materials - KAUST Catalysis Center King Abdullah University of Science and Technology Thuwal 23955-6900 Saudi Arabia
| | - Genrikh Shterk
- Advanced Catalytic Materials - KAUST Catalysis Center King Abdullah University of Science and Technology Thuwal 23955-6900 Saudi Arabia
| | - Nawal S. Alhajri
- Research and Development Center Saudi Aramco Dhahran 31311 Saudi Arabia
| | - Aqil Jamal
- Research and Development Center Saudi Aramco Dhahran 31311 Saudi Arabia
| | - Mohammed Albuali
- Research and Development Center Saudi Aramco Dhahran 31311 Saudi Arabia
| | - Luke Koppen
- Inorganic Materials and Catalysis - Chemical Engineering and Chemistry Eindhoven University of Technology 5600 MB Eindhoven The Netherlands
| | - Il Son Khan
- Advanced Catalytic Materials - KAUST Catalysis Center King Abdullah University of Science and Technology Thuwal 23955-6900 Saudi Arabia
| | - Artem Russkikh
- Advanced Catalytic Materials - KAUST Catalysis Center King Abdullah University of Science and Technology Thuwal 23955-6900 Saudi Arabia
| | - Adrian Ramirez
- Advanced Catalytic Materials - KAUST Catalysis Center King Abdullah University of Science and Technology Thuwal 23955-6900 Saudi Arabia
| | - Tuiana Shoinkhorova
- Advanced Catalytic Materials - KAUST Catalysis Center King Abdullah University of Science and Technology Thuwal 23955-6900 Saudi Arabia
| | - Emiel J. M. Hensen
- Inorganic Materials and Catalysis - Chemical Engineering and Chemistry Eindhoven University of Technology 5600 MB Eindhoven The Netherlands
| | - Jorge Gascon
- Advanced Catalytic Materials - KAUST Catalysis Center King Abdullah University of Science and Technology Thuwal 23955-6900 Saudi Arabia
| |
Collapse
|
39
|
Faveere WH, Van Praet S, Vermeeren B, Dumoleijn KNR, Moonen K, Taarning E, Sels BF. Toward Replacing Ethylene Oxide in a Sustainable World: Glycolaldehyde as a Bio‐Based C
2
Platform Molecule. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202009811] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- William H. Faveere
- Centre for Sustainable Catalysis and Engineering KU Leuven Celestijnenlaan 200F 3001 Heverlee Belgium
| | - Sofie Van Praet
- Centre for Sustainable Catalysis and Engineering KU Leuven Celestijnenlaan 200F 3001 Heverlee Belgium
| | - Benjamin Vermeeren
- Centre for Sustainable Catalysis and Engineering KU Leuven Celestijnenlaan 200F 3001 Heverlee Belgium
| | | | - Kristof Moonen
- Eastman Chemical Company Pantserschipstraat 207 9000 Ghent Belgium
| | | | - Bert F. Sels
- Centre for Sustainable Catalysis and Engineering KU Leuven Celestijnenlaan 200F 3001 Heverlee Belgium
| |
Collapse
|
40
|
García-Depraect O, Bordel S, Lebrero R, Santos-Beneit F, Börner RA, Börner T, Muñoz R. Inspired by nature: Microbial production, degradation and valorization of biodegradable bioplastics for life-cycle-engineered products. Biotechnol Adv 2021; 53:107772. [PMID: 34015389 DOI: 10.1016/j.biotechadv.2021.107772] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/01/2021] [Accepted: 05/13/2021] [Indexed: 10/21/2022]
Abstract
The global environmental pollution by micro- and macro-plastics reveals the consequences of an extensive use of recalcitrant plastic products together with inappropriate waste management practices that fail to sufficiently recycle the broad types of conventional plastic waste. Biobased and biodegradable plastics are experiencing an uprising as their properties offer alternative waste management solutions for a more circular material economy. However, although the production of such bioplastics has advanced on scale, the end-of-life (EOL) (bio)technologies to promote circularity are lacking behind. While composting and biogas plants are the only managed EOL options today, advanced biotechnological recycling technologies for biodegradable bioplastics are still in an embryonic stage. Thus, developing efficient biotechnologies capable of transforming bioplastic waste into high-value chemical building blocks or into the constituents of the original polymer offers promising routes towards life-cycle-engineered products. This review aims at providing a comprehensive state-of-the-art overview of microbial-based processes involved in the complete lifecycle of bioplastics. The current trends in the bioplastic market, the beginning and EOL scenarios of bioplastics, and a critical discussion on the key factors and mechanisms governing microbial degradation are systematically presented. Also, a critical evaluation of terminology and international standards to quantify polymer biodegradability is provided together with the latest biotechnological recycling strategies, including the use of different pre-treatments for (bio)plastic waste. Finally, the challenges and future perspectives for the development of life-cycle-engineered biobased and biodegradable plastic products are discussed.
Collapse
Affiliation(s)
- Octavio García-Depraect
- Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain
| | - Sergio Bordel
- Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain
| | - Raquel Lebrero
- Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain
| | - Fernando Santos-Beneit
- Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain
| | - Rosa Aragão Börner
- Nestlé Research, Société des Produits Nestlé S.A, Route du Jorat 57, 1000 Lausanne, Switzerland
| | - Tim Börner
- Nestlé Research, Société des Produits Nestlé S.A, Route du Jorat 57, 1000 Lausanne, Switzerland.
| | - Raúl Muñoz
- Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain.
| |
Collapse
|
41
|
Oliveira MM, Proenca AM, Moreira-Silva E, de Castro AM, Dos Santos FM, Marconatto L, Medina-Silva R. Biofilms of Pseudomonas and Lysinibacillus Marine Strains on High-Density Polyethylene. MICROBIAL ECOLOGY 2021; 81:833-846. [PMID: 33392630 DOI: 10.1007/s00248-020-01666-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 12/15/2020] [Indexed: 06/12/2023]
Abstract
Environmental pollution by plastic debris is estimated on a scale of 100 million metric tons, a portion of which is fragmented into micro- and nanoplastics. These fragments are often colonized by bacterial species in marine environments, possibly contributing to the biodegradation of such materials. However, further investigations are necessary to determine the impact of abiotic polymer weathering on biofilm adhesion, as well as the specific biofilm formation strategies employed by marine isolates. Here, we evaluate deep-sea sediment bacterial isolates for biofilm adhesion, extracellular matrix production, and polymer degradation ability. Our study focuses on high-density polyethylene (HDPE) fragments for their high durability and environmental persistence, subjecting fragments to abiotic weathering prior to bacterial colonization. Marine isolates identified as Pseudomonas sp. and Lysinibacillus sp. exhibited decreasing biofilm formation on weathered HDPE, especially over the first 24 h of incubation. This effect was countered by increased extracellular matrix production, likely improving cell adhesion to surfaces roughened by abiotic degradation. These adhesion strategies were contrasted with a reference Pseudomonas aeruginosa strain, which displayed high levels of biofilm formation on non-weathered HDPE and lower extracellular matrix production over the first 24 h of incubation. Furthermore, our results suggest that an increase in biofilm biomass correlated with changes to HDPE structure, indicating that these strains have a potential for biodegradation of plastic fragments. Therefore, this work provides a detailed account of biofilm formation strategies and bacteria-plastic interactions that represent crucial steps in the biodegradation of plastic fragments in marine environments.
Collapse
Affiliation(s)
- Maiara Monteiro Oliveira
- Geobiology Laboratory, Institute of Petroleum and Natural Resources, Pontifical Catholic University of Rio Grande do Sul, PUCRS, Av. Ipiranga 6681, Building 96J, Porto Alegre, RS, 90619-900, Brazil
- Immunology and Microbiology Laboratory, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, PUCRS, Av. Ipiranga 6681, Building 11, Porto Alegre, RS, 90619-900, Brazil
| | - Audrey Menegaz Proenca
- Geobiology Laboratory, Institute of Petroleum and Natural Resources, Pontifical Catholic University of Rio Grande do Sul, PUCRS, Av. Ipiranga 6681, Building 96J, Porto Alegre, RS, 90619-900, Brazil
- Immunology and Microbiology Laboratory, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, PUCRS, Av. Ipiranga 6681, Building 11, Porto Alegre, RS, 90619-900, Brazil
| | - Eduardo Moreira-Silva
- Immunology and Microbiology Laboratory, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, PUCRS, Av. Ipiranga 6681, Building 11, Porto Alegre, RS, 90619-900, Brazil
| | - Aline Machado de Castro
- Biotechnology Division, Research and Development Center (CENPES), PETROBRAS, Av. Horácio Macedo 950, Rio de Janeiro, RJ, 21941-915, Brazil
| | - Francine Melise Dos Santos
- Geobiology Laboratory, Institute of Petroleum and Natural Resources, Pontifical Catholic University of Rio Grande do Sul, PUCRS, Av. Ipiranga 6681, Building 96J, Porto Alegre, RS, 90619-900, Brazil
| | - Letícia Marconatto
- Geobiology Laboratory, Institute of Petroleum and Natural Resources, Pontifical Catholic University of Rio Grande do Sul, PUCRS, Av. Ipiranga 6681, Building 96J, Porto Alegre, RS, 90619-900, Brazil
| | - Renata Medina-Silva
- Geobiology Laboratory, Institute of Petroleum and Natural Resources, Pontifical Catholic University of Rio Grande do Sul, PUCRS, Av. Ipiranga 6681, Building 96J, Porto Alegre, RS, 90619-900, Brazil.
- Immunology and Microbiology Laboratory, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, PUCRS, Av. Ipiranga 6681, Building 11, Porto Alegre, RS, 90619-900, Brazil.
| |
Collapse
|
42
|
Capture and Reuse of Carbon Dioxide (CO2) for a Plastics Circular Economy: A Review. Processes (Basel) 2021. [DOI: 10.3390/pr9050759] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Plastic production has been increasing at enormous rates. Particularly, the socioenvironmental problems resulting from the linear economy model have been widely discussed, especially regarding plastic pieces intended for single use and disposed improperly in the environment. Nonetheless, greenhouse gas emissions caused by inappropriate disposal or recycling and by the many production stages have not been discussed thoroughly. Regarding the manufacturing processes, carbon dioxide is produced mainly through heating of process streams and intrinsic chemical transformations, explaining why first-generation petrochemical industries are among the top five most greenhouse gas (GHG)-polluting businesses. Consequently, the plastics market must pursue full integration with the circular economy approach, promoting the simultaneous recycling of plastic wastes and sequestration and reuse of CO2 through carbon capture and utilization (CCU) strategies, which can be employed for the manufacture of olefins (among other process streams) and reduction of fossil-fuel demands and environmental impacts. Considering the previous remarks, the present manuscript’s purpose is to provide a review regarding CO2 emissions, capture, and utilization in the plastics industry. A detailed bibliometric review of both the scientific and the patent literature available is presented, including the description of key players and critical discussions and suggestions about the main technologies. As shown throughout the text, the number of documents has grown steadily, illustrating the increasing importance of CCU strategies in the field of plastics manufacture.
Collapse
|
43
|
Vondrová P, Tišler Z, Kocík J, de Paz Carmona H, Murat M. Comparison of doped ZSM-5 and ferrierite catalysts in the dehydration of bioethanol to ethylene in a flow reactor. REACTION KINETICS MECHANISMS AND CATALYSIS 2021. [DOI: 10.1007/s11144-021-01925-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
44
|
Abstract
Sustainable development is the common goal of the current concepts of bioeconomy and circular economy. In this sense, the biorefineries platforms are a strategic factor to increase the bioeconomy in the economic balance. The incorporation of renewable sources to produce fuels, chemicals, and energy, includes sustainability, reduction of greenhouse gases (GHG), and creating more manufacturing jobs fostering the advancement of regional and social systems by implementing the comprehensive use of available biomass, due to its low costs and high availability. This paper describes the emerging biorefinery strategies to produce fuels (bio-ethanol and γ-valerolactone) and energy (pellets and steam), compared with the currently established biorefineries designed for fuels, pellets, and steam. The focus is on the state of the art of biofuels and energy production and environmental factors, as well as a discussion about the main conversion technologies, production strategies, and barriers. Through the implementation of biorefineries platforms and the evaluation of low environmental impact technologies and processes, new sustainable production strategies for biofuels and energy can be established, making these biobased industries into more competitive alternatives, and improving the economy of the current value chains.
Collapse
|
45
|
Fouilloux H, Thomas CM. Production and Polymerization of Biobased Acrylates and Analogs. Macromol Rapid Commun 2021; 42:e2000530. [DOI: 10.1002/marc.202000530] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/23/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Hugo Fouilloux
- PSL University Chimie ParisTech CNRS Institut de Recherche de Chimie Paris Paris 75005 France
| | - Christophe M. Thomas
- PSL University Chimie ParisTech CNRS Institut de Recherche de Chimie Paris Paris 75005 France
| |
Collapse
|
46
|
Himmelmann R, Klemm E, Dyballa M. Improved ethanol dehydration catalysis by the superior acid properties of Cs-impregnated silicotungstic acid supported on silica. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00143d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
TOS until deactivation and selectivity in ethanol dehydration can be improved by CsOH impregnation and adjusting surface acid sites of supported silicotungstic acid.
Collapse
Affiliation(s)
- Robin Himmelmann
- Institute for Technical Chemistry
- University of Stuttgart
- 70569 Stuttgart
- Germany
| | - Elias Klemm
- Institute for Technical Chemistry
- University of Stuttgart
- 70569 Stuttgart
- Germany
| | - Michael Dyballa
- Institute for Technical Chemistry
- University of Stuttgart
- 70569 Stuttgart
- Germany
| |
Collapse
|
47
|
Faveere WH, Van Praet S, Vermeeren B, Dumoleijn KNR, Moonen K, Taarning E, Sels BF. Toward Replacing Ethylene Oxide in a Sustainable World: Glycolaldehyde as a Bio-Based C 2 Platform Molecule. Angew Chem Int Ed Engl 2020; 60:12204-12223. [PMID: 32833281 DOI: 10.1002/anie.202009811] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Indexed: 11/11/2022]
Abstract
Fossil-based platform molecules such as ethylene and ethylene oxide currently serve as the primary feedstock for the C2 -based chemical industry. However, in the search for a more sustainable chemical industry, fossil-based resources may preferentially be replaced by renewable alternatives, provided there is realistic economic feasibility. This Review compares and critically discusses several production routes toward bio-based structural analogues of ethylene oxide and the required adaptations for their implementation in state-of-the-art C2 -based chemical processes. For example, glycolaldehyde, a structural analogue obtainable from carbohydrates by atom-economic retro-aldol reactions, may replace ethylene oxide's leading role. This alternative chemical route may not only allow the carbon footprint of conventional chemicals production to be lowered, but the introduction of a bio-based pathway may also contribute to safer production processes. Where possible, challenges, drawbacks, and prospects are highlighted.
Collapse
Affiliation(s)
- William H Faveere
- Centre for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, 3001, Heverlee, Belgium
| | - Sofie Van Praet
- Centre for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, 3001, Heverlee, Belgium
| | - Benjamin Vermeeren
- Centre for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, 3001, Heverlee, Belgium
| | - Kim N R Dumoleijn
- Eastman Chemical Company, Pantserschipstraat 207, 9000, Ghent, Belgium
| | - Kristof Moonen
- Eastman Chemical Company, Pantserschipstraat 207, 9000, Ghent, Belgium
| | - Esben Taarning
- Haldor Topsøe A/S, Nymøllevej 55, 2800 Kgs, Lyngby, Denmark
| | - Bert F Sels
- Centre for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, 3001, Heverlee, Belgium
| |
Collapse
|
48
|
Abstract
The self-condensation and cross-condensation reactions of ethanol and isoamyl alcohol are examined to better understand the potential routes to value-added byproducts from fuel ethanol production. Reactions have been carried out in both batch autoclave and continuous condensed-phase reactors using a lanthanum-promoted, alumina-supported nickel catalyst at near-critical condensed phase conditions. Analysis of multiple candidate kinetic models led to a Langmuir–Hinshelwood rate expression that is first-order in alcohol with water as the strongly adsorbed species. This model provides the best fit of data from both batch and continuous reactor experiments. Activation energies for primary condensation reactions increase as carbon chain lengths increase. Selectivities to higher alcohols of 94% and 87% for ethanol and isoamyl alcohol, respectively, were observed at different operating conditions.
Collapse
|
49
|
Dubé MA, Gabriel VA, Pakdel AS, Zhang Y. Sustainable polymer reaction engineering: Are we there yet? CAN J CHEM ENG 2020. [DOI: 10.1002/cjce.23865] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Marc A. Dubé
- Department of Chemical and Biological Engineering University of Ottawa Ottawa Ontario Canada
| | - Vida A. Gabriel
- Department of Chemical and Biological Engineering University of Ottawa Ottawa Ontario Canada
| | - Amir S. Pakdel
- Department of Chemical and Biological Engineering University of Ottawa Ottawa Ontario Canada
| | - Yujie Zhang
- Department of Chemical and Biological Engineering University of Ottawa Ottawa Ontario Canada
| |
Collapse
|
50
|
Integrated and Consolidated Review of Plastic Waste Management and Bio-Based Biodegradable Plastics: Challenges and Opportunities. SUSTAINABILITY 2020. [DOI: 10.3390/su12208360] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cumulative plastic production worldwide skyrocketed from about 2 million tonnes in 1950 to 8.3 billion tonnes in 2015, with 6.3 billion tonnes (76%) ending up as waste. Of that waste, 79% is either in landfills or the environment. The purpose of the review is to establish the current global status quo in the plastics industry and assess the sustainability of some bio-based biodegradable plastics. This integrative and consolidated review thus builds on previous studies that have focused either on one or a few of the aspects considered in this paper. Three broad items to strongly consider are: Biodegradable plastics and other alternatives are not always environmentally superior to fossil-based plastics; less investment has been made in plastic waste management than in plastics production; and there is no single solution to plastic waste management. Some strategies to push for include: increasing recycling rates, reclaiming plastic waste from the environment, and bans or using alternatives, which can lessen the negative impacts of fossil-based plastics. However, each one has its own challenges, and country-specific scientific evidence is necessary to justify any suggested solutions. In conclusion, governments from all countries and stakeholders should work to strengthen waste management infrastructure in low- and middle-income countries while extended producer responsibility (EPR) and deposit refund schemes (DPRs) are important add-ons to consider in plastic waste management, as they have been found to be effective in Australia, France, Germany, and Ecuador.
Collapse
|