1
|
Tabish TA, Crabtree MJ, Townley HE, Winyard PG, Lygate CA. Nitric Oxide Releasing Nanomaterials for Cardiovascular Applications. JACC Basic Transl Sci 2024; 9:691-709. [PMID: 38984042 PMCID: PMC11228123 DOI: 10.1016/j.jacbts.2023.07.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/27/2023] [Accepted: 07/27/2023] [Indexed: 07/11/2024]
Abstract
A central paradigm of cardiovascular homeostasis is that impaired nitric oxide (NO) bioavailability results in a wide array of cardiovascular dysfunction including incompetent endothelium-dependent vasodilatation, thrombosis, vascular inflammation, and proliferation of the intima. Over the course of more than a century, NO donating formulations such as organic nitrates and nitrites have remained a cornerstone of treatment for patients with cardiovascular diseases. These donors primarily produce NO in the circulation and are not targeted to specific (sub)cellular sites of action. However, safe, and therapeutic levels of NO require delivery of the right amount to a precise location at the right time. To achieve these aims, several recent strategies aimed at therapeutically generating or releasing NO in living systems have shown that polymeric and inorganic (silica, gold) nanoparticles and nanoscale metal-organic frameworks could either generate NO endogenously by the catalytic decomposition of endogenous NO substrates or can store and release therapeutically relevant amounts of NO gas. NO-releasing nanomaterials have been developed for vascular implants (such as stents and grafts) to target atherosclerosis, hypertension, myocardial ischemia-reperfusion injury, and cardiac tissue engineering. In this review, we discuss the advances in design and development of novel NO-releasing nanomaterials for cardiovascular therapeutics and critically examine the therapeutic potential of these nanoplatforms to modulate cellular metabolism, to regulate vascular tone, inhibit platelet aggregation, and limit proliferation of vascular smooth muscle with minimal toxic effects.
Collapse
Affiliation(s)
- Tanveer A Tabish
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, British Heart Foundation (BHF) Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Mark J Crabtree
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, British Heart Foundation (BHF) Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
- Department of Biochemical Sciences, School of Biosciences & Medicine, University of Surrey, Guildford, United Kingdom
| | - Helen E Townley
- Nuffield Department of Women's and Reproductive Health, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
- Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Paul G Winyard
- University of Exeter Medical School, College of Medicine and Health, St. Luke's Campus, University of Exeter, Exeter, United Kingdom
| | - Craig A Lygate
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, British Heart Foundation (BHF) Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
2
|
Abstract
Pathogenic oral biofilms are universal, chronic, and costly. Despite advances in understanding the mechanisms of biofilm formation and persistence, novel and effective treatment options remain scarce. Nanoparticle-mediated eradication of the biofilm matrix and resident bacteria holds great potential. In particular, nanoparticles that target specific microbial and biofilm features utilizing nontoxic materials are well-suited for clinical translation. However, much work remains to characterize the local and systemic effects of therapeutic agents that are topically applied to chronic biofilms, such as those that cause dental caries. In this Perspective, we summarize the pathogenesis of oral biofilms, describe current and future nanoparticle-mediated treatment approaches, and highlight outstanding questions that are paramount to answer for effectively targeting and treating oral biofilms.
Collapse
|
3
|
Wu W, Perrin-Sarrado C, Ming H, Lartaud I, Maincent P, Hu XM, Sapin-Minet A, Gaucher C. Polymer nanocomposites enhance S-nitrosoglutathione intestinal absorption and promote the formation of releasable nitric oxide stores in rat aorta. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 12:1795-1803. [DOI: 10.1016/j.nano.2016.05.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 04/08/2016] [Accepted: 05/05/2016] [Indexed: 02/02/2023]
|
4
|
Abstract
Harnessing the impressive therapeutic potential of nitric oxide (NO) remains an ongoing challenge. This paper describes several of the current strategies both with respect to the underlying chemistry and physics and to the applications where they have shown promise. Included in this overview are molecular systems such as NONOates that release NO through chemical reactions and delivery vehicles such as nanoparticles that can generate, store, transport and deliver NO and related bioactive forms of NO such as nitrosothiols. Although there has been much positive movement, it is clear that we are only at the early stages of knowing how to precisely produce, transport and deliver to targeted sites therapeutic levels of NO and related molecules.
Collapse
Affiliation(s)
- Hongying Liang
- Department of Physiology & Biophysics, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA
| | - Parimala Nacharaju
- Department of Physiology & Biophysics, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA
| | - Adam Friedman
- Department of Dermatology, George Washington School of Medicine & Health Sciences, NW, Washington, DC 20037, USA
| | - Joel M Friedman
- Department of Physiology & Biophysics, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA
| |
Collapse
|
5
|
Wu W, Gaucher C, Fries I, Hu XM, Maincent P, Sapin-Minet A. Polymer nanocomposite particles of S -nitrosoglutathione: A suitable formulation for protection and sustained oral delivery. Int J Pharm 2015; 495:354-361. [DOI: 10.1016/j.ijpharm.2015.08.074] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 08/21/2015] [Accepted: 08/22/2015] [Indexed: 12/20/2022]
|
6
|
Time lasting S-nitrosoglutathione polymeric nanoparticles delay cellular protein S-nitrosation. Eur J Pharm Biopharm 2014; 89:1-8. [PMID: 25448077 DOI: 10.1016/j.ejpb.2014.11.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 11/07/2014] [Accepted: 11/09/2014] [Indexed: 11/22/2022]
Abstract
Physiological S-nitrosothiols (RSNO), such as S-nitrosoglutathione (GSNO), can be used as nitric oxide (NO) donor for the treatment of vascular diseases. However, despite a half-life measured in hours, the stability of RSNO, limited by enzymatic and non-enzymatic degradations, is too low for clinical application. So, to provide a long-lasting effect and to deliver appropriate NO concentrations to target tissues, RSNO have to be protected. RSNO encapsulation is an interesting response to overcome degradation and provide protection. However, RSNO such as GSNO raise difficulties for encapsulation due to its hydrophilic nature and the instability of the S-NO bound during the formulation process. To our knowledge, the present study is the first description of the direct encapsulation of GSNO within polymeric nanoparticles (NP). The GSNO-loaded NP (GSNO-NP) formulated by a double emulsion process, presented a mean diameter of 289 ± 7 nm. They were positively charged (+40 mV) due to the methacrylic acid and ethylacrylate polymer (Eudragit® RL) used and encapsulated GSNO with a satisfactory efficiency (i.e. 54% or 40 mM GSNO loaded in the NP). In phosphate buffer (37 °C; pH 7.4), GSNO-NP released 100% of encapsulated GSNO within 3h and remained stable still 6h. However, in contact with smooth muscle cells, maximum protein nitrosation (a marker of NO bioavailability) was delayed from 1h for free GSNO to 18h for GSNO-NP. Therefore, protection and sustained release of NO were achieved by the association of a NO donor with a drug delivery system (such as polymeric NP), providing opportunities for vascular diseases treatment.
Collapse
|
7
|
Parent M, Dupuis F, Maincent P, Vigneron C, Leroy P, Boudier A. [Which future in cardiovascular therapy for nitric oxide and its derivatives?]. ANNALES PHARMACEUTIQUES FRANÇAISES 2013; 71:84-94. [PMID: 23537409 DOI: 10.1016/j.pharma.2012.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 12/20/2012] [Accepted: 12/28/2012] [Indexed: 10/27/2022]
Abstract
Nitric oxide (NO) is involved in the regulation of several physiological processes such as vascular homeostasis. Exogenous NO supply offers major therapeutic interest, especially in the treatment of coronary artery disease, ischemic syndromes and other cardiovascular pathologies. Nevertheless, the administration of NO itself is limited by its short half-life. NO prodrugs have been marketed for decades, e.g. organic nitrates for angina pectoris. These prodrugs display undeniable advantages such as angina crisis relief and preconditioning effect. Nevertheless, they suffer from several drawbacks: toxicity, tolerance, endothelial dysfunction exacerbation. These negative effects are related to massive production of reactive species derived from oxygen or nitrogen, which trigger oxidative and nitrosative stress. New NO donors are under development to overcome those disadvantages, among which the S-nitrosothiols family seems especially promising.
Collapse
Affiliation(s)
- M Parent
- Cithéfor, EA 3452, faculté de pharmacie, université de Lorraine, BP 80403, 54001 Nancy cedex, France
| | | | | | | | | | | |
Collapse
|
8
|
Tan A, Farhatnia Y, de Mel A, Rajadas J, Alavijeh MS, Seifalian AM. Inception to actualization: Next generation coronary stent coatings incorporating nanotechnology. J Biotechnol 2013; 164:151-70. [DOI: 10.1016/j.jbiotec.2013.01.020] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2012] [Revised: 01/09/2013] [Accepted: 01/11/2013] [Indexed: 02/07/2023]
|
9
|
Naghavi N, de Mel A, Alavijeh OS, Cousins BG, Seifalian AM. Nitric oxide donors for cardiovascular implant applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2013; 9:22-35. [PMID: 23136136 DOI: 10.1002/smll.201200458] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 06/13/2012] [Indexed: 06/01/2023]
Abstract
In an era of increased cardiovascular disease burden in the ageing population, there is great demand for devices that come in to contact with the blood such as heart valves, stents, and bypass grafts that offer life saving treatments. Nitric oxide (NO) elution from healthy endothelial tissue that lines the vessels maintains haemostasis throughout the vasculature. Surgical devices that release NO are desirable treatment options and N-diazeniumdiolates and S-nitrosothiols are recognized as preferred donor molecules. There is a keen interest to investigate newer methods by which NO donors can be retained within biomaterials so that their release and kinetic profiles can be optimized. A range of polymeric scaffolds incorporating microparticles and nanomaterials are presenting solutions to current challenges, and have been investigated in a range of clinical applications. This review outlines the application of NO donors for cardiovascular therapy using biomaterials that release NO locally to prevent thrombosis and intimal hyperplasia (IH) and enhance endothelialization in the fabrication of next generation cardiovascular device technology.
Collapse
Affiliation(s)
- Noora Naghavi
- UCL Centre for Nanotechnology & Regenerative Medicine, University College London, UK
| | | | | | | | | |
Collapse
|
10
|
Acharya G, Lee CH, Lee Y. Optimization of cardiovascular stent against restenosis: factorial design-based statistical analysis of polymer coating conditions. PLoS One 2012; 7:e43100. [PMID: 22937015 PMCID: PMC3425588 DOI: 10.1371/journal.pone.0043100] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 07/17/2012] [Indexed: 11/18/2022] Open
Abstract
The objective of this study was to optimize the physicodynamic conditions of polymeric system as a coating substrate for drug eluting stents against restenosis. As Nitric Oxide (NO) has multifunctional activities, such as regulating blood flow and pressure, and influencing thrombus formation, a continuous and spatiotemporal delivery of NO loaded in the polymer based nanoparticles could be a viable option to reduce and prevent restenosis. To identify the most suitable carrier for S-Nitrosoglutathione (GSNO), a NO prodrug, stents were coated with various polymers, such as poly (lactic-co-glycolic acid) (PLGA), polyethylene glycol (PEG) and polycaprolactone (PCL), using solvent evaporation technique. Full factorial design was used to evaluate the effects of the formulation variables in polymer-based stent coatings on the GSNO release rate and weight loss rate. The least square regression model was used for data analysis in the optimization process. The polymer-coated stents were further assessed with Differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy analysis (FTIR), Scanning electron microscopy (SEM) images and platelet adhesion studies. Stents coated with PCL matrix displayed more sustained and controlled drug release profiles than those coated with PLGA and PEG. Stents coated with PCL matrix showed the least platelet adhesion rate. Subsequently, stents coated with PCL matrix were subjected to the further optimization processes for improvement of surface morphology and enhancement of the drug release duration. The results of this study demonstrated that PCL matrix containing GSNO is a promising system for stent surface coating against restenosis.
Collapse
Affiliation(s)
- Gayathri Acharya
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri, United States of America
| | - Chi H. Lee
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri, United States of America
- * E-mail: (CL); (YL)
| | - Yugyung Lee
- Department of Computer Science and Electrical Engineering, School of Computing and Engineering, University of Missouri-Kansas City, Kansas City, Missouri, United States of America
- * E-mail: (CL); (YL)
| |
Collapse
|
11
|
S-nitrosoglutathione acts as a small molecule modulator of human fibrin clot architecture. PLoS One 2012; 7:e43660. [PMID: 22916291 PMCID: PMC3423378 DOI: 10.1371/journal.pone.0043660] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 07/23/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Altered fibrin clot architecture is increasingly associated with cardiovascular diseases; yet, little is known about how fibrin networks are affected by small molecules that alter fibrinogen structure. Based on previous evidence that S-nitrosoglutathione (GSNO) alters fibrinogen secondary structure and fibrin polymerization kinetics, we hypothesized that GSNO would alter fibrin microstructure. METHODOLOGY/PRINCIPAL FINDINGS Accordingly, we treated human platelet-poor plasma with GSNO (0.01-3.75 mM) and imaged thrombin induced fibrin networks using multiphoton microscopy. Using custom designed computer software, we analyzed fibrin microstructure for changes in structural features including fiber density, diameter, branch point density, crossing fibers and void area. We report for the first time that GSNO dose-dependently decreased fibrin density until complete network inhibition was achieved. At low dose GSNO, fiber diameter increased 25%, maintaining clot void volume at approximately 70%. However, at high dose GSNO, abnormal irregularly shaped fibrin clusters with high fluorescence intensity cores were detected and clot void volume increased dramatically. Notwithstanding fibrin clusters, the clot remained stable, as fiber branching was insensitive to GSNO and there was no evidence of fiber motion within the network. Moreover, at the highest GSNO dose tested, we observed for the first time, that GSNO induced formation of fibrin agglomerates. CONCLUSIONS/SIGNIFICANCE Taken together, low dose GSNO modulated fibrin microstructure generating coarse fibrin networks with thicker fibers; however, higher doses of GSNO induced abnormal fibrin structures and fibrin agglomerates. Since GSNO maintained clot void volume, while altering fiber diameter it suggests that GSNO may modulate the remodeling or inhibition of fibrin networks over an optimal concentration range.
Collapse
|
12
|
Jen MC, Serrano MC, van Lith R, Ameer GA. Polymer-Based Nitric Oxide Therapies: Recent Insights for Biomedical Applications. ADVANCED FUNCTIONAL MATERIALS 2012; 22:239-260. [PMID: 25067935 PMCID: PMC4111277 DOI: 10.1002/adfm.201101707] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Since the discovery of nitric oxide (NO) in the 1980s, this cellular messenger has been shown to participate in diverse biological processes such as cardiovascular homeostasis, immune response, wound healing, bone metabolism, and neurotransmission. Its beneficial effects have prompted increased research in the past two decades, with a focus on the development of materials that can locally release NO. However, significant limitations arise when applying these materials to biomedical applications. This Feature Article focuses on the development of NO-releasing and NO-generating polymeric materials (2006-2011) with emphasis on recent in vivo applications. Results are compared and discussed in terms of NO dose, release kinetics, and biological effects, in order to provide a foundation to design and evaluate new NO therapies.
Collapse
Affiliation(s)
- Michele C Jen
- Biomedical Engineering Department, Northwestern University, Evanston IL, 60208, USA
| | - María C Serrano
- Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas Cantoblanco, Madrid 28049, Spain
| | - Robert van Lith
- Biomedical Engineering Department, Northwestern University, Evanston IL, 60208, USA
| | - Guillermo A Ameer
- Biomedical Engineering Department, Northwestern University, Evanston IL, 60208, USA
| |
Collapse
|