1
|
Miyajima M. Amino acids: key sources for immunometabolites and immunotransmitters. Int Immunol 2020; 32:435-446. [PMID: 32383454 DOI: 10.1093/intimm/dxaa019] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 05/07/2020] [Indexed: 12/20/2022] Open
Abstract
Immune-cell activation and functional plasticity are closely linked to metabolic reprogramming that is required to supply the energy and substrates for such dynamic transformations. During such processes, immune cells metabolize many kinds of molecules including nucleic acids, sugars and lipids, which is called immunometabolism. This review will mainly focus on amino acids and their derivatives among such metabolites and describe the functions of these molecules in the immune system. Although amino acids are essential for, and well known as, substrates for protein synthesis, they are also metabolized as energy sources and as substrates for functional catabolites. For example, glutamine is metabolized to produce energy through glutaminolysis and tryptophan is consumed to supply nicotinamide adenine dinucleotide, whereas arginine is metabolized to produce nitric acid and polyamine by nitric oxide synthase and arginase, respectively. In addition, serine is catabolized to produce nucleotides and to induce methylation reactions. Furthermore, in addition to their intracellular functions, amino acids and their derivatives are secreted and have extracellular functions as immunotransmitters. Many amino acids and their derivatives have been classified as neurotransmitters and their functions are clear as transmitters between nerve cells, or between nerve cells and immune cells, functioning as immunotransmitters. Thus, this review will describe the intracellular and external functions of amino acid from the perspective of immunometabolism and immunotransmission.
Collapse
Affiliation(s)
- Michio Miyajima
- Laboratory for Mucosal Immunity, Center for Integrative Medical Sciences, RIKEN Yokohama Institute, Tsurumi-ku, Yokohama, Kanagawa, Japan
| |
Collapse
|
2
|
Kerage D, Sloan EK, Mattarollo SR, McCombe PA. Interaction of neurotransmitters and neurochemicals with lymphocytes. J Neuroimmunol 2019; 332:99-111. [PMID: 30999218 DOI: 10.1016/j.jneuroim.2019.04.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/09/2019] [Accepted: 04/10/2019] [Indexed: 12/14/2022]
Abstract
Neurotransmitters and neurochemicals can act on lymphocytes by binding to receptors expressed by lymphocytes. This review describes lymphocyte expression of receptors for a selection of neurotransmitters and neurochemicals, the anatomical locations where lymphocytes can interact with neurotransmitters, and the effects of the neurotransmitters on lymphocyte function. Implications for health and disease are also discussed.
Collapse
Affiliation(s)
- Daniel Kerage
- The University of Queensland Diamantina Institute, Brisbane, Australia; Transplant Research Program, Boston Children's Hospital, Boston, MA, United States of America
| | - Erica K Sloan
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; Division of Surgery, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; Cousins Center for Neuroimmunology, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, USA
| | | | - Pamela A McCombe
- The University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, Brisbane, Australia; Royal Brisbane and Women's Hospital, Herston, Brisbane, Australia.
| |
Collapse
|
3
|
T-lymphocytes response persists following Plasmodium berghei strain Anka infection resolution and may contribute to later experimental cerebral malaria outcomes. J Neuroimmunol 2019; 330:5-11. [PMID: 30763800 DOI: 10.1016/j.jneuroim.2019.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/04/2019] [Accepted: 02/07/2019] [Indexed: 01/20/2023]
Abstract
Several studies have proposed cerebral malaria (CM) as a CD4+ and CD8+ T lymphocyte-mediated disease. However, there are no data regarding the recruitment and/or persistence of these cells in the CNS following the phase of infection resolution. Glutamate-mediate excitotoxicity has also been implicated in CM. Blockade of glutamate NMDA receptors by its noncompetitive antagonist MK801 modulates cytokine and neurotrophic factors expression preventing cognitive and depressive-like behavior in experimental CM. Herein, we aim to investigate the role of T lymphocytes in later outcomes in CM, and whether the protective role of MK801 is associated with T lymphocytes response.
Collapse
|
4
|
Fu Y, Wang X, Kong W. Hyperhomocysteinaemia and vascular injury: advances in mechanisms and drug targets. Br J Pharmacol 2017; 175:1173-1189. [PMID: 28836260 DOI: 10.1111/bph.13988] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 07/27/2017] [Accepted: 08/12/2017] [Indexed: 12/14/2022] Open
Abstract
Homocysteine is a sulphur-containing non-proteinogenic amino acid. Hyperhomocysteinaemia (HHcy), the pathogenic elevation of plasma homocysteine as a result of an imbalance of its metabolism, is an independent risk factor for various vascular diseases, such as atherosclerosis, hypertension, vascular calcification and aneurysm. Treatments aimed at lowering plasma homocysteine via dietary supplementation with folic acids and vitamin B are more effective in preventing vascular disease where the population has a normally low folate consumption than in areas with higher dietary folate. To date, the mechanisms of HHcy-induced vascular injury are not fully understood. HHcy increases oxidative stress and its downstream signalling pathways, resulting in vascular inflammation. HHcy also causes vascular injury via endoplasmic reticulum stress. Moreover, HHcy up-regulates pathogenic genes and down-regulates protective genes via DNA demethylation and methylation respectively. Homocysteinylation of proteins induced by homocysteine also contributes to vascular injury by modulating intracellular redox state and altering protein function. Furthermore, HHcy-induced vascular injury leads to neuronal damage and disease. Also, an HHcy-activated sympathetic system and HHcy-injured adipose tissue also cause vascular injury, thus demonstrating the interactions between the organs injured by HHcy. Here, we have summarized the recent developments in the mechanisms of HHcy-induced vascular injury, which are further considered as potential therapeutic targets in this condition. LINKED ARTICLES This article is part of a themed section on Spotlight on Small Molecules in Cardiovascular Diseases. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.8/issuetoc.
Collapse
Affiliation(s)
- Yi Fu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Health Science Center, Beijing, China.,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Xian Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Health Science Center, Beijing, China.,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Wei Kong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Health Science Center, Beijing, China.,Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| |
Collapse
|
5
|
Deak T, Kudinova A, Lovelock DF, Gibb BE, Hennessy MB. A multispecies approach for understanding neuroimmune mechanisms of stress. DIALOGUES IN CLINICAL NEUROSCIENCE 2017. [PMID: 28566946 PMCID: PMC5442363 DOI: 10.31887/dcns.2017.19.1/tdeak] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The relationship between stress challenges and adverse health outcomes, particularly for the development of affective disorders, is now well established. The highly conserved neuroimmune mechanisms through which responses to stressors are transcribed into effects on males and females have recently garnered much attention from researchers and clinicians alike. The use of animal models, from mice to guinea pigs to primates, has greatly increased our understanding of these mechanisms on the molecular, cellular, and behavioral levels, and research in humans has identified particular brain regions and connections of interest, as well as associations between stress-induced inflammation and psychiatric disorders. This review brings together findings from multiple species in order to better understand how the mechanisms of the neuroimmune response to stress contribute to stress-related psychopathologies, such as major depressive disorder, schizophrenia, and bipolar disorder.
Collapse
Affiliation(s)
- Terrence Deak
- Center for Affective Science and Department of Psychology, Binghamton University-State University of New York (SUNY), Binghamton, New York, USA
| | - Anastacia Kudinova
- Center for Affective Science and Department of Psychology, Binghamton University-State University of New York (SUNY), Binghamton, New York, USA
| | - Dennis F Lovelock
- Center for Affective Science and Department of Psychology, Binghamton University-State University of New York (SUNY), Binghamton, New York, USA
| | - Brandon E Gibb
- Center for Affective Science and Department of Psychology, Binghamton University-State University of New York (SUNY), Binghamton, New York, USA
| | | |
Collapse
|
6
|
The effect of memantine on trinitrobenzene sulfonic acid-induced ulcerative colitis in mice. Eur J Pharmacol 2016; 793:28-34. [DOI: 10.1016/j.ejphar.2016.10.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 10/24/2016] [Accepted: 10/24/2016] [Indexed: 12/17/2022]
|
7
|
Medial Septal NMDA Glutamate Receptors are Involved in Modulation of Blood Natural Killer Cell Activity in Rats. J Neuroimmune Pharmacol 2015; 11:121-32. [PMID: 26454750 DOI: 10.1007/s11481-015-9632-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 09/15/2015] [Indexed: 02/08/2023]
Abstract
The purpose of the present study was to determine the specific role of the medial septal (MS) NMDA glutamate receptors on peripheral blood natural killer cell cytotoxicity (NKCC) and their (large granular lymphocyte, LGL) number, as well as the plasma concentration of tumor necrosis factor α (TNF-α) and corticosterone in male Wistar rats exposed to elevated plus maze (EPM) stress or non-stress conditions. The NMDA groups were injected with NMDA glutamate receptor agonist (N-methyl-D-aspartate; 0.25 μg/rat), the D-AP7 group was injected with DL-2-amino-7-phosphoheptanoate (0.1 μg/rat), an antagonist of NMDA glutamate receptors, and the control Sal group with saline (0.5 μl/rat) via previously implanted cannulae into the MS. There was an increase in the NKCC, NK/LGL number and plasma TNF-α concentration after the NMDA injections, being much stronger within the rats under non-stress conditions rather than the rats exposed to EPM stress. These parameters were decreased in the D-AP7 rats, suggesting receptor/ion channel specificity. Moreover, a lower plasma corticosterone concentration within the NMDA rather than the Sal and D-AP7 groups was found. The obtained results suggest that activation of the NMDA glutamate receptors in the MS, accompanied by changes in the corticosterone and cytokine responses, may be involved in modulation of the blood natural anti-tumor response, under EPM stress and non-stress conditions.
Collapse
|
8
|
Rachalski A, Freyburger M, Mongrain V. Contribution of transcriptional and translational mechanisms to the recovery aspect of sleep regulation. Ann Med 2014; 46:62-72. [PMID: 24428734 DOI: 10.3109/07853890.2013.866439] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Sleep parallels brain functioning and mental health. Neuronal activity during wakefulness leads to a subsequent increase in sleep intensity as measured using electroencephalographic slow-wave activity (SWA; index of neuronal synchrony in the low-frequency range). Wakefulness, and particularly prolonged wakefulness, also drives important changes in brain gene expression and changes in protein regulation. The role of these two cellular mechanisms in sleep-wake regulation has typically been studied independently, and their exact contribution to SWA remains poorly defined. In this review, we highlight that many transcriptional pathways driven by sleep deprivation are associated to protein regulation. We first describe the relationship between cytokines, clock genes, and markers of sleep need with an emphasis on transcriptional processes. Observations regarding the role of protein metabolism in sleep-wake regulation are then depicted while presenting interconnections between transcriptional and translational responses driven by sleep loss. Lastly, a manner by which this integrated response can feed back on neuronal network activity to determine sleep intensity is proposed. Overall, the literature supports that a complex cross-talk between transcriptional and translational regulation during prolonged wakefulness drives the changes in sleep intensity as a function of the sleep/wake history.
Collapse
Affiliation(s)
- Adeline Rachalski
- Center for Advanced Research in Sleep Medicine and Research Center, Hôpital du Sacré-Coeur de Montréal , Montréal, QC , Canada
| | | | | |
Collapse
|
9
|
Smolyaninova LV, Dergalev AA, Kulebyakin KY, Carpenter DO, Boldyrev AA. Carnosine prevents necrotic and apoptotic death of rat thymocytes via ouabain-sensitive Na/K-ATPase. Cell Biochem Funct 2013; 31:30-5. [PMID: 22763713 PMCID: PMC3481008 DOI: 10.1002/cbf.2856] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 06/08/2012] [Indexed: 11/11/2022]
Abstract
It is known that ouabain, a selective inhibitor of Na/K-ATPase, not only can cause the activation of signal cascades, which regulate the cell viability, but also can cause the accumulation of free radicals, which can evoke the oxidative stress. We have shown that the nanomolar concentrations of ouabain result in the temporary increase in the level of intracellular free radicals, but the millimolar concentration of ouabain induces a stable intracellular accumulation of free radicals in rat thymocytes. The increasing level of free radicals resulting from both low and high concentrations of ouabain can be attenuated by the antioxidant, carnosine. Moreover, the long-term incubation with ouabain leads to the cell death by necrosis and apoptosis. Ouabain-mediated apoptosis and necrosis were also abolished by carnosine.
Collapse
|
10
|
Boldyrev AA. Carnosine: New concept for the function of an old molecule. BIOCHEMISTRY (MOSCOW) 2012; 77:313-26. [DOI: 10.1134/s0006297912040013] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Boldyrev AA, Bryushkova EA, Vladychenskaya EA. NMDA receptors in immune competent cells. BIOCHEMISTRY (MOSCOW) 2012; 77:128-34. [DOI: 10.1134/s0006297912020022] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|