1
|
Scalon MC, Martins CS, Ferreira GG, Schlemmer F, Titze de Almeida R, Paludo GR. miR-20a is upregulated in serum from domestic feline with PKD1 mutation. PLoS One 2022; 17:e0279337. [PMID: 36538546 PMCID: PMC9767353 DOI: 10.1371/journal.pone.0279337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Polycystic kidney disease (PKD), also known as autosomal dominant polycystic kidney disease (ADPKD) is a genetically heterogeneous condition characterized by cysts in renal parenchyma. It is the most prevalent inherited disease of domestic cats. MicroRNAs (miRNAs or ncRNA) are short, noncoding, single-stranded RNAs that may induce PKD cytogenesis by affecting numerous targets genes as well as by directly regulating PKD gene expression. We compared the relative expression profile of miR-20a, -192, -365, -15b-5p, and -16-5p from plasma and serum samples of nine domestic cats with PKD1 mutation, detected by polymerase chain reaction (PCR), and a control group (n = 10). Blood samples from cats with PKD1 mutation provide similar concentrations of microRNAs either from plasma or serum. Serum miR-20a is upregulated in PKD group with p < 0.005; Roc curve analysis showed an AUC of 90,1% with a cut-off value sensitivity of 77.8% and specificity of 100%. This data provides important information regarding renal miRNA expression in peripheral blood sampling.
Collapse
Affiliation(s)
- Marcela Correa Scalon
- Veterinary Clinical Pathology Laboratory, College of Agronomy and Veterinary Medicine, University of Brasília, Brasília, Brazil
| | - Christine Souza Martins
- Veterinary Clinical Pathology Laboratory, College of Agronomy and Veterinary Medicine, University of Brasília, Brasília, Brazil
| | - Gabriel Ginani Ferreira
- Technology for Gene Therapy Laboratory, College of Agronomy and Veterinary Medicine, University of Brasília, Brasília, Brazil
| | - Franciele Schlemmer
- Technology for Gene Therapy Laboratory, College of Agronomy and Veterinary Medicine, University of Brasília, Brasília, Brazil
| | - Ricardo Titze de Almeida
- Technology for Gene Therapy Laboratory, College of Agronomy and Veterinary Medicine, University of Brasília, Brasília, Brazil
| | - Giane Regina Paludo
- Veterinary Clinical Pathology Laboratory, College of Agronomy and Veterinary Medicine, University of Brasília, Brasília, Brazil
- * E-mail:
| |
Collapse
|
2
|
Asadi M, Amoli M, Ansari Y, Far I, Pashaie N, Noroozi N. Association study of Melanocortin-4 Receptor (rs17782313) and PKHD1 (rs2784243) variations and early incidence of obesity at the age of maturity. ADVANCES IN HUMAN BIOLOGY 2022. [DOI: 10.4103/aihb.aihb_160_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
3
|
Scalon MC, Martins CS, Ferreira GG, Schlemmer F, Titze-de-Almeida R, Paludo GR. RT-rtPCR quantification of circulating microRNAs in plasma and serum samples from healthy domestic cats. J Vet Diagn Invest 2021; 33:1151-1155. [PMID: 34301168 DOI: 10.1177/10406387211034843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression at a post-transcriptional level by silencing targeted messenger RNA (mRNA). Most studies concerning miRNA expression use solid tissue samples. However, circulating miRNAs from different body fluids have recently emerged as diagnostic and prognostic molecules, given that they hold informative value and have increased stability in cell-free form. Blood sampling of cats can be challenging given their small body size and because they often experience distress when handled. We quantified miR-20a, -192, -365, -15b-5p, and -16-5p from plasma and serum samples of 10 healthy domestic cats. Our RT-rtPCR procedure used 100 µL of either plasma or serum samples as sources of biomarker molecules. However, serum provided higher amounts of miRNA than plasma samples, with a p < 0.0001 for miR-20a and p < 0.0002 for miR-16-5p.
Collapse
Affiliation(s)
- Marcela C Scalon
- Veterinary Clinical Pathology Laboratory, College of Agronomy and Veterinary Medicine, University of Brasilia, Brasilia, Brazil
| | - Christine S Martins
- Veterinary Clinical Pathology Laboratory, College of Agronomy and Veterinary Medicine, University of Brasilia, Brasilia, Brazil
| | - Gabriel G Ferreira
- Technology for Gene Therapy Laboratory, College of Agronomy and Veterinary Medicine, University of Brasilia, Brasilia, Brazil
| | - Franciele Schlemmer
- Technology for Gene Therapy Laboratory, College of Agronomy and Veterinary Medicine, University of Brasilia, Brasilia, Brazil
| | - Ricardo Titze-de-Almeida
- Technology for Gene Therapy Laboratory, College of Agronomy and Veterinary Medicine, University of Brasilia, Brasilia, Brazil
| | - Giane R Paludo
- Veterinary Clinical Pathology Laboratory, College of Agronomy and Veterinary Medicine, University of Brasilia, Brasilia, Brazil
| |
Collapse
|
4
|
Non-Coding RNAs in Hereditary Kidney Disorders. Int J Mol Sci 2021; 22:ijms22063014. [PMID: 33809516 PMCID: PMC7998154 DOI: 10.3390/ijms22063014] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/10/2021] [Accepted: 03/12/2021] [Indexed: 12/17/2022] Open
Abstract
Single-gene defects have been revealed to be the etiologies of many kidney diseases with the recent advances in molecular genetics. Autosomal dominant polycystic kidney disease (ADPKD), as one of the most common inherited kidney diseases, is caused by mutations of PKD1 or PKD2 gene. Due to the complexity of pathophysiology of cyst formation and progression, limited therapeutic options are available. The roles of noncoding RNAs in development and disease have gained widespread attention in recent years. In particular, microRNAs in promoting PKD progression have been highlighted. The dysregulated microRNAs modulate cyst growth through suppressing the expression of PKD genes and regulating cystic renal epithelial cell proliferation, mitochondrial metabolism, apoptosis and autophagy. The antagonists of microRNAs have emerged as potential therapeutic drugs for the treatment of ADPKD. In addition, studies have also focused on microRNAs as potential biomarkers for ADPKD and other common hereditary kidney diseases, including HNF1β-associated kidney disease, Alport syndrome, congenital abnormalities of the kidney and urinary tract (CAKUT), von Hippel-Lindau (VHL) disease, and Fabry disease. This review assembles the current understanding of the non-coding RNAs, including microRNAs and long noncoding RNAs, in polycystic kidney disease and these common monogenic kidney diseases.
Collapse
|
5
|
Abstract
Important advances have been made regarding the diagnosis and management of polycystic kidney diseases. Care of patients with polycystic kidney diseases has moved beyond supportive care for complications and chronic kidney disease to new potentially disease-modifying therapies. Recently, the role of noncoding RNAs, in particular microRNAs, has been described in polycystic kidney diseases. microRNAs are involved in the regulation of gene expression, in which PKD1, PKD2, and other genes that contribute to the pathogenesis of polycystic kidney diseases are considerable participants. Seminal studies have highlighted the potential importance of microRNAs as new therapeutic targets and innovative diagnostic and/or prognostic biomarkers. Furthermore, an anti-miR-17 drug has advanced through preclinical autosomal dominant polycystic disease studies, and an anti-miR-21 drug has already cleared a phase 1 clinical trial. Most probably, new drugs in the microRNA research field will be yielded as a result of ongoing and planned therapeutic trials. To provide a foundation for understanding microRNA functions as a disease-modifying therapeutic drug in novel targeted therapies, in this narrative review we present an overview of the current knowledge of microRNAs in the pathogenesis of polycystic kidney diseases.
Collapse
Affiliation(s)
| | - Liangzhong Sun
- Address for Correspondence: Liangzhong Sun, PhD, Department of Pediatrics, Nanfang Hospital, Southern Medical University, No. 1838, North Road, Guangzhou Avenue, Baiyun District, Guangzhou 510515, Guangdong Province, China.
| |
Collapse
|
6
|
Han Q, Cheng P, Yang H, Liang H, Lin F. Altered expression of microRNA-365 is related to the occurrence and development of non-small-cell lung cancer by inhibiting TRIM25 expression. J Cell Physiol 2019; 234:22321-22330. [PMID: 31099423 DOI: 10.1002/jcp.28798] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 03/01/2019] [Accepted: 03/06/2019] [Indexed: 12/11/2022]
Abstract
The purpose of this current study is to elucidate whether altered microRNA-365 (miR-365) has an association with the initiation and development of non-small-cell lung cancer (NSCLC) by targeting TRIM25 expression. The expression of miR-365 and TRIM25 in NSCLC tissues, adjacent normal tissues, and NSCLC cell lines were detected. The relationship between miR-365 expression and TRIM25 with the clinicopathological characteristics of NSCLC was analyzed. The putative binding site between miR-365 and TRIM25 was determined by luciferase activity assay. miR-365 inhibitors and miR-365 mimics were transfected to human NSCLC A549 cells, and the cell viability was detected by cell counting kit-8 assay; flow cytometry was carried out to determine cell cycle and apoptosis rate. Poorly expressed miR-365 and overexpressed TRIM25 was found in NSCLC tissues. TRIM25 was determined as a target gene of miR-365. The miR-365 and TRIM25 expression were related to the clinicopathological features of NSCLC, such as pathological classification, differentiation degree, TNM stage as well as lymph node metastasis. miR-365 suppressed the expression of TRIM25 and elevated the expression of the proapoptotic protein in NSCLC cells. Our study demonstrates that altered expression of miR-365 has a close association with the occurrence and development of NSCLC by inhibiting TRIM25 expression.
Collapse
Affiliation(s)
- Qian Han
- Department of Radiotherapy, Henan Provincial People's Hospital, Zhengzhou, Henan, People's Republic of China
| | - Peng Cheng
- Department of Radiotherapy, Henan Provincial People's Hospital, Zhengzhou, Henan, People's Republic of China
| | - Hongjie Yang
- Department of Radiotherapy, Henan Provincial People's Hospital, Zhengzhou, Henan, People's Republic of China
| | - Hengpo Liang
- Department of Radiotherapy, Henan Provincial People's Hospital, Zhengzhou, Henan, People's Republic of China
| | - Fengchun Lin
- Department of Radiotherapy, Henan Provincial People's Hospital, Zhengzhou, Henan, People's Republic of China
| |
Collapse
|
7
|
Leal-Gutiérrez JD, Elzo MA, Johnson DD, Hamblen H, Mateescu RG. Genome wide association and gene enrichment analysis reveal membrane anchoring and structural proteins associated with meat quality in beef. BMC Genomics 2019; 20:151. [PMID: 30791866 PMCID: PMC6385435 DOI: 10.1186/s12864-019-5518-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 02/07/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Meat quality related phenotypes are difficult and expensive to measure and predict but are ideal candidates for genomic selection if genetic markers that account for a worthwhile proportion of the phenotypic variation can be identified. The objectives of this study were: 1) to perform genome wide association analyses for Warner-Bratzler Shear Force (WBSF), marbling, cooking loss, tenderness, juiciness, connective tissue and flavor; 2) to determine enriched pathways present in each genome wide association analysis; and 3) to identify potential candidate genes with multiple quantitative trait loci (QTL) associated with meat quality. RESULTS The WBSF, marbling and cooking loss traits were measured in longissimus dorsi muscle from 672 steers. Out of these, 495 animals were used to measure tenderness, juiciness, connective tissue and flavor by a sensory panel. All animals were genotyped for 221,077 markers and included in a genome wide association analysis. A total number of 68 genomic regions covering 52 genes were identified using the whole genome association approach; 48% of these genes encode transmembrane proteins or membrane associated molecules. Two enrichment analysis were performed: a tissue restricted gene enrichment applying a correlation analysis between raw associated single nucleotide polymorphisms (SNPs) by trait, and a functional classification analysis performed using the DAVID Bioinformatic Resources 6.8 server. The tissue restricted gene enrichment approach identified eleven pathways including "Endoplasmic reticulum membrane" that influenced multiple traits simultaneously. The DAVID functional classification analysis uncovered eleven clusters related to transmembrane or structural proteins. A gene network was constructed where the number of raw associated uncorrelated SNPs for each gene across all traits was used as a weight. A multiple SNP association analysis was performed for the top five most connected genes in the gene-trait network. The gene network identified the EVC2, ANXA10 and PKHD1 genes as potentially harboring multiple QTLs. Polymorphisms identified in structural proteins can modulate two different processes with direct effect on meat quality: in vivo myocyte cytoskeletal organization and postmortem proteolysis. CONCLUSION The main result from the present analysis is the uncovering of several candidate genes associated with meat quality that have structural function in the skeletal muscle.
Collapse
Affiliation(s)
| | - Mauricio A. Elzo
- Department of Animal Sciences, University of Florida, Gainesville, FL USA
| | - D. Dwain Johnson
- Department of Animal Sciences, University of Florida, Gainesville, FL USA
| | - Heather Hamblen
- Department of Animal Sciences, University of Florida, Gainesville, FL USA
| | - Raluca G. Mateescu
- Department of Animal Sciences, University of Florida, Gainesville, FL USA
| |
Collapse
|
8
|
Mukhadi S, Hull R, Mbita Z, Dlamini Z. The Role of MicroRNAs in Kidney Disease. Noncoding RNA 2015; 1:192-221. [PMID: 29861424 PMCID: PMC5932548 DOI: 10.3390/ncrna1030192] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 09/28/2015] [Accepted: 11/08/2015] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) are short noncoding RNAs that regulate pathophysiological processes that suppress gene expression by binding to messenger RNAs. These biomolecules can be used to study gene regulation and protein expression, which will allow better understanding of many biological processes such as cell cycle progression and apoptosis that control the fate of cells. Several pathways have also been implicated to be involved in kidney diseases such as Transforming Growth Factor-β, Mitogen-Activated Protein Kinase signaling, and Wnt signaling pathways. The discovery of miRNAs has provided new insights into kidney pathologies and may provide new innovative and effective therapeutic strategies. Research has demonstrated the role of miRNAs in a variety of kidney diseases including renal cell carcinoma, diabetic nephropathy, nephritic syndrome, renal fibrosis, lupus nephritis and acute pyelonephritis. MiRNAs are implicated as playing a role in these diseases due to their role in apoptosis, cell proliferation, differentiation and development. As miRNAs have been detected in a stable condition in different biological fluids, they have the potential to be tools to study the pathogenesis of human diseases with a great potential to be used in disease prognosis and diagnosis. The purpose of this review is to examine the role of miRNA in kidney disease.
Collapse
Affiliation(s)
- Sydwell Mukhadi
- Forensic Science Laboratory, 730 Pretorius street, Arcadia 0083, South Africa.
| | - Rodney Hull
- College of Agriculture and Environmental Sciences, University of South Africa, Private Bag X6, Florida 1709, Johannesburg 1709, South Africa.
| | - Zukile Mbita
- Department of Biochemistry, Microbiology and Biotechnology, University of Limpopo, Private Bag x1106, Sovenga 0727, South Africa.
| | - Zodwa Dlamini
- Research, Innovation & Engagements Portfolio, Mangosuthu University of Technology, Durban 4031, South Africa.
| |
Collapse
|
9
|
Bhatt K, Kato M, Natarajan R. Mini-review: emerging roles of microRNAs in the pathophysiology of renal diseases. Am J Physiol Renal Physiol 2015; 310:F109-18. [PMID: 26538441 DOI: 10.1152/ajprenal.00387.2015] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 10/30/2015] [Indexed: 02/08/2023] Open
Abstract
MicroRNAs (miRNA) are endogenously produced short noncoding regulatory RNAs that can repress gene expression by posttranscriptional mechanisms. They can therefore influence both normal and pathological conditions in diverse biological systems. Several miRNAs have been detected in kidneys, where they have been found to be crucial for renal development and normal physiological functions as well as significant contributors to the pathogenesis of renal disorders such as diabetic nephropathy, acute kidney injury, lupus nephritis, polycystic kidney disease, and others, due to their effects on key genes involved in these disease processes. miRNAs have also emerged as novel biomarkers in these renal disorders. Due to increasing evidence of their actions in various kidney segments, in this mini-review we discuss the functional significance of altered miRNA expression during the development of renal pathologies and highlight emerging miRNA-based therapeutics and diagnostic strategies for early detection and treatment of kidney diseases.
Collapse
Affiliation(s)
- Kirti Bhatt
- Department of Diabetes Complications and Metabolism, Diabetes and Metabolic Research Institute, Beckman Research Institute of the City of Hope, Duarte, California
| | - Mitsuo Kato
- Department of Diabetes Complications and Metabolism, Diabetes and Metabolic Research Institute, Beckman Research Institute of the City of Hope, Duarte, California
| | - Rama Natarajan
- Department of Diabetes Complications and Metabolism, Diabetes and Metabolic Research Institute, Beckman Research Institute of the City of Hope, Duarte, California
| |
Collapse
|
10
|
Serum microRNA-365 in combination with its target gene TTF-1 as a non-invasive prognostic marker for non-small cell lung cancer. Biomed Pharmacother 2015; 75:185-90. [DOI: 10.1016/j.biopha.2015.07.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 07/26/2015] [Indexed: 01/03/2023] Open
|
11
|
Kim MH, Ham O, Lee SY, Choi E, Lee CY, Park JH, Lee J, Seo HH, Seung M, Choi E, Min PK, Hwang KC. MicroRNA-365 inhibits the proliferation of vascular smooth muscle cells by targeting cyclin D1. J Cell Biochem 2015; 115:1752-61. [PMID: 24819721 DOI: 10.1002/jcb.24841] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 05/08/2014] [Indexed: 02/02/2023]
Abstract
Abnormal proliferation of vascular smooth muscle cells (VSMCs) is a common feature of disease progression in atherosclerosis. Cell proliferation is regulated by cell cycle regulatory proteins. MicroRNAs (miR) have been reported to act as important gene regulators and play essential roles in the proliferation and migration of VSMCs in a cardiovascular disease. However, the roles and mechanisms of miRs in VSMCs and neointimal formation are far from being fully understood. In this study, cell cycle-specific cyclin D1 was found to be a potential target of miR-365 by direct binding. Through an in vitro experiment, we showed that exogenous miR-365 overexpression reduced VSMC proliferation and proliferating cell nuclear antigen (PCNA) expression, while miR-365 was observed to block G1/S transition in platelet-derived growth factor-bb (PDGF-bb)-induced VSMCs. In addition, the proliferation of VSMCs by various stimuli, including PDGF-bb, angiotensin II (Ang II), and serum, led to the downregulation of miR-365 expression levels. The expression of miR-365 was confirmed in balloon-injured carotid arteries. Taken together, our results suggest an anti-proliferative role for miR-365 in VSMC proliferation, at least partly via modulating the expression of cyclin D1. Therefore, miR-365 may influence neointimal formation in atherosclerosis patients.
Collapse
Affiliation(s)
- Myung-Hyun Kim
- Cardiology Division, Heart Center, Gangnam Severance Hospital, Yonsei University College of Medicine, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
MicroRNAs and their applications in kidney diseases. Pediatr Nephrol 2015; 30:727-40. [PMID: 24928414 PMCID: PMC4265577 DOI: 10.1007/s00467-014-2867-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 05/12/2014] [Accepted: 05/21/2014] [Indexed: 12/21/2022]
Abstract
MicroRNAs (miRNAs) are short, non-coding RNAs that employ classic Watson-Crick base-pairing to identify their target genes, ultimately resulting in destabilization of their target mRNAs and/or inhibition of their translation. The role of miRNAs in a wide range of human diseases, including those afflicting the kidney, has been intensely investigated. However, there is still a vast dearth of knowledge regarding their specific mode of action and therapeutic effects in various kidney diseases. This review discusses the latest efforts to further our understanding of the basic biology of miRNAs, their impact on various kidney diseases and their potential as novel biomarkers and therapeutic agents. We initially provide an overview of miRNA biology and the canonical pathway implicated in their biogenesis. We then discuss commonly employed experimental strategies for miRNA research and highlight some of the newly described state-of-the-art technologies to identify miRNAs and their target genes. Finally, we carefully examine the emerging role of miRNAs in the pathogenesis of various kidney diseases.
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW Cystic kidney diseases are common renal disorders characterized by the formation of fluid-filled epithelial cysts in the kidneys. The progressive growth and expansion of the renal cysts replace existing renal tissue within the renal parenchyma, leading to reduced renal function. While several genes have been identified in association with inherited causes of cystic kidney disease, the molecular mechanisms that regulate these genes in the context of post-transcriptional regulation are still poorly understood. There is increasing evidence that microRNA (miRNA) dysregulation is associated with the pathogenesis of cystic kidney disease. RECENT FINDINGS In this review, recent studies that implicate dysregulation of miRNA expression in cystogenesis will be discussed. The relationship of specific miRNAs, such as the miR-17∼92 cluster and cystic kidney disease, miR-92a and von Hippel-Lindau syndrome, and alterations in LIN28-LET7 expression in Wilms tumor will be explored. SUMMARY At present, there are no specific treatments available for patients with cystic kidney disease. Understanding and identifying specific miRNAs involved in the pathogenesis of these disorders may have the potential to lead to the development of novel therapies and biomarkers.
Collapse
|
14
|
Gray C, Li M, Patel R, Reynolds CM, Vickers MH. Let-7 miRNA profiles are associated with the reversal of left ventricular hypertrophy and hypertension in adult male offspring from mothers undernourished during pregnancy after preweaning growth hormone treatment. Endocrinology 2014; 155:4808-17. [PMID: 25264936 DOI: 10.1210/en.2014-1567] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Maternal undernutrition (UN) is known to cause cardiac hypertrophy, elevated blood pressure, and endothelial dysfunction in adult offspring. Maternal UN may also lead to disturbances in GH regulation in offspring. Because GH plays a key role in cardiac development, we used a model of maternal UN to examine the effects of neonatal GH treatment on cardiac hypertrophy, cardiac micro RNA (miRNA) profiles, and associated gene regulation in adult offspring. Female Sprague-Dawley rats were fed either a standard control diet (CON) or 50% of CON intake throughout pregnancy (UN). From neonatal day 3 until weaning (d 21), CON and UN pups received either saline (S) (CON-S, UN-S) or GH (2.5 μg/g·d) (CON-GH, UN-GH). Heart structure was determined by hematoxylin and eosin staining, and miRNA was isolated from cardiac tissue and miRNA expression analyzed using Cardiovascular miRNA gene Arrays (SABiosciences Ltd). Maternal UN caused marked increases in cardiac hypertrophy and left ventricular cardiomyocyte area, which were reversed by preweaning GH treatment. Systolic blood pressure was increased in UN-S groups and normalized in UN-GH groups (CON-S 121 ± 2 mmHg, CON-GH 115 ± 3 mm Hg, UN-S 146 ± 3 mmHg, and UN-GH 127 ± 2 mmHg). GH treatment during early development facilitated a reversal of pathological changes in offspring hearts caused by UN during pregnancy. Specific cardiac miRNA profiles were exhibited in response to maternal UN, accompanied by up-regulation of the lethal-7 (LET-7) miRNA family in GH-treated offspring. miRNA target analysis revealed a number of genes associated with inflammation and cardiovascular development, which may be involved in the altered cardiac function of these offspring. Up-regulation of the LET-7 family of miRNAs observed in GH groups may mediate the reversal of cardiac hypertrophy observed in adult offspring males of UN mothers.
Collapse
Affiliation(s)
- Clint Gray
- Liggins Institute and Gravida, National Centre for Growth and Development, University of Auckland, Auckland, 1023, New Zealand
| | | | | | | | | |
Collapse
|
15
|
Wei Q, Mi QS, Dong Z. The regulation and function of microRNAs in kidney diseases. IUBMB Life 2014; 65:602-14. [PMID: 23794512 DOI: 10.1002/iub.1174] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 03/26/2013] [Accepted: 03/26/2013] [Indexed: 12/18/2022]
Abstract
MicroRNAs (miRNA) are endogenous short noncoding RNAs, which regulate virtually all major cellular processes by inhibiting target gene expression. In kidneys, miRNAs have been implicated in renal development, homeostasis, and physiological functions. In addition, miRNAs play important roles in the pathogenesis of various renal diseases, including renal carcinoma, diabetic nephropathy, acute kidney injury, hypertensive nephropathy, polycystic kidney disease, and others. Furthermore, miRNAs may have great values as biomarkers in different kidney diseases.
Collapse
Affiliation(s)
- Qingqing Wei
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Georgia Regents University and Charlie Norwood Veterans Affairs Medical Center, Augusta, GA 30912, USA
| | | | | |
Collapse
|
16
|
Ichii O, Otsuka S, Ohta H, Yabuki A, Horino T, Kon Y. MicroRNA expression profiling of cat and dog kidneys. Res Vet Sci 2014; 96:299-303. [PMID: 24530019 DOI: 10.1016/j.rvsc.2014.01.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 01/23/2014] [Indexed: 12/23/2022]
Abstract
MicroRNAs (miRNAs) play a role in the pathogenesis of certain diseases and may serve as biomarkers. Here, we present the first analysis of miRNA expression in the kidneys of healthy cats and dogs. Kidneys were divided into renal cortex (CO) and medulla (MD), and RNA sequence analysis was performed using the mouse genome as a reference. A total of 277, 276, 295, and 297 miRNAs were detected in cat CO, cat MD, dog CO, and dog MD, respectively. By comparing the expression ratio of CO to MD, we identified highly expressed miRNAs in each tissue as follows: 41 miRNAs including miR-192-5p in cat CO; 45 miRNAs including miR-323-3p in dog CO; 78 miRNAs including miR-20a-5p in cat MD; and 11 miRNAs including miR-132-5p in dog MD. Further, the target mRNAs of these miRNAs were identified. These data provide veterinary medicine critical information regarding renal miRNA expression.
Collapse
Affiliation(s)
- Osamu Ichii
- Laboratory of Anatomy, Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Hokkaido, Japan.
| | - Saori Otsuka
- Laboratory of Anatomy, Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
| | - Hiroshi Ohta
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
| | - Akira Yabuki
- Laboratory of Veterinary Clinical Pathology, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Taro Horino
- Department of Endocrinology, Metabolism and Nephrology, Kochi University School of Medicine, Kochi, Japan
| | - Yasuhiro Kon
- Laboratory of Anatomy, Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Hokkaido, Japan
| |
Collapse
|
17
|
Ma L, Qu L. The Function of MicroRNAs in Renal Development and Pathophysiology. J Genet Genomics 2013; 40:143-52. [DOI: 10.1016/j.jgg.2013.03.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Revised: 02/28/2013] [Accepted: 03/01/2013] [Indexed: 01/01/2023]
|