1
|
A plant DNA virus replicates in the salivary glands of its insect vector via recruitment of host DNA synthesis machinery. Proc Natl Acad Sci U S A 2020; 117:16928-16937. [PMID: 32636269 PMCID: PMC7382290 DOI: 10.1073/pnas.1820132117] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Viruses pose a great threat to animal and plant health worldwide. Whereas most plant viruses only replicate in plant hosts, some also replicate in their animal (insect) vector. A detailed knowledge of host expansion will give a better understanding of virus evolution, and identification of virus and host components involved in this process can lead to new strategies to combat virus spread. Here, we reveal that a plant DNA virus has evolved to induce and recruit insect DNA synthesis machinery to support its replication in vector salivary glands. Our study sheds light on the understanding of TYLCV–whitefly interactions and provides insights into how a plant virus may evolve to infect and replicate in an insect vector. Whereas most of the arthropod-borne animal viruses replicate in their vectors, this is less common for plant viruses. So far, only some plant RNA viruses have been demonstrated to replicate in insect vectors and plant hosts. How plant viruses evolved to replicate in the animal kingdom remains largely unknown. Geminiviruses comprise a large family of plant-infecting, single-stranded DNA viruses that cause serious crop losses worldwide. Here, we report evidence and insight into the replication of the geminivirus tomato yellow leaf curl virus (TYLCV) in the whitefly (Bemisia tabaci) vector and that replication is mainly in the salivary glands. We found that TYLCV induces DNA synthesis machinery, proliferating cell nuclear antigen (PCNA) and DNA polymerase δ (Polδ), to establish a replication-competent environment in whiteflies. TYLCV replication-associated protein (Rep) interacts with whitefly PCNA, which recruits DNA Polδ for virus replication. In contrast, another geminivirus, papaya leaf curl China virus (PaLCuCNV), does not replicate in the whitefly vector. PaLCuCNV does not induce DNA-synthesis machinery, and the Rep does not interact with whitefly PCNA. Our findings reveal important mechanisms by which a plant DNA virus replicates across the kingdom barrier in an insect and may help to explain the global spread of this devastating pathogen.
Collapse
|
2
|
Duan Y, Li J, Jing X, Ding X, Yu Y, Zhao Q. Fucoidan Induces Apoptosis and Inhibits Proliferation of Hepatocellular Carcinoma via the p38 MAPK/ERK and PI3K/Akt Signal Pathways. Cancer Manag Res 2020; 12:1713-1723. [PMID: 32210612 PMCID: PMC7069570 DOI: 10.2147/cmar.s243495] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 02/20/2020] [Indexed: 12/24/2022] Open
Abstract
Purpose Fucoidan is a natural bioactive product with broad therapeutic applications. Hepatocellular carcinoma (HCC) is a common malignancy of the liver associated with a relatively high mortality rate; thus, effective treatments are urgently needed. Here, the effects of fucoidan on HCC and the underlying mechanism were explored. Methods The proliferation and apoptosis of two HCC cell lines (BEL-7402 and LM3) treated with different concentrations of fucoidan or saline were assessed. The levels of proliferating cell nuclear antigen (PCNA) and CCK8 assay were used to determine proliferative capabilities of BEL-7402 and LM3 cells. Apoptosis of LM3 cells was assessed by Hoechst 33342 staining, Western blotting and flow cytometry. The capability of fucoidan to inhibit the growth of LM3 cells was investigated by monitoring of the p38 MAPK/ERK pathways and the upstream kinases, PI3K/Akt. LM3 xenograft tumors were used for in vivo verification. Results Cell proliferation and apoptosis assays consistently showed that fucoidan has an inhibitory effect on cell growth. Fucoidan significantly promoted apoptosis of LM3 cells through a mechanism involving activation of caspases 8, 9, and 3 accompanied by changes in B-cell lymphoma-2 (Bcl-2) and Bcl-2-associated X protein (Bax), as well as changes in the phosphorylation of p38 MAPK and ERK. Fucoidan also altered the phosphorylation of its upstream kinase, Akt. Fucoidan treatment markedly reduced the growth of LM3 xenograft tumors, consistent with the in vitro results. Conclusion Fucoidan conveys antitumor effects and, thus, should be further explored as a potential treatment option for HCC.
Collapse
Affiliation(s)
- Yifei Duan
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao 266003, People's Republic of China
| | - Jingjing Li
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao 266003, People's Republic of China
| | - Xue Jing
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao 266003, People's Republic of China
| | - Xueli Ding
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao 266003, People's Republic of China
| | - Yanan Yu
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao 266003, People's Republic of China
| | - Qingxi Zhao
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao 266003, People's Republic of China
| |
Collapse
|
3
|
Jeyabharathy C, Shakila H, Usha R. Development of a VIGS vector based on the β-satellite DNA associated with bhendi yellow vein mosaic virus. Virus Res 2015; 195:73-8. [PMID: 25169741 DOI: 10.1016/j.virusres.2014.08.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 08/17/2014] [Accepted: 08/18/2014] [Indexed: 10/24/2022]
Abstract
Bhendi yellow vein mosaic virus (BYMV) is a monopartite begomovirus with an associated β-satellite. βC1 ORF encoded by the β-satellite is the symptom determinant and a strong suppressor of post transcriptional gene silencing. To create a virus induced gene silencing vector based upon the β-satellite associated with BYVMV the βC1 ORF was replaced with multiple cloning sites. GFP transgene and plant endogenous genes Su, PDS, PCNA and AGO1 were cloned into β-satellite based VIGS vector. GFP expression was silenced in the GFP expressing transgenic 16c Nicotiana benthamiana plants infiltrated with VIGS vector carrying GFP gene inside. N. benthamiana plants infiltrated with the VIGS vector harboring the endogenous genes Su, PDS, PCNA and AGO1 produced the phenotypic symptoms yellowing of the veins, photobleaching of the veins, stunting of the plant and upward leaf curling, respectively. Real time PCR analyses revealed a reduction in the levels of the corresponding transgene or endogenous target mRNA. The β-satellite based VIGS vector was able to silence the target genes effectively. Hence, BYVMV β-satellite based VIGS vector can be used in functional genomics studies.
Collapse
Affiliation(s)
- C Jeyabharathy
- School of Biotechnology, Madurai Kamaraj University, Department of Plant Biotechnology, Madurai 625021, Tamil Nadu, India
| | - H Shakila
- School of Biotechnology, Madurai Kamaraj University, Department of Plant Biotechnology, Madurai 625021, Tamil Nadu, India
| | - R Usha
- School of Biotechnology, Madurai Kamaraj University, Department of Plant Biotechnology, Madurai 625021, Tamil Nadu, India.
| |
Collapse
|
4
|
Strzalka W, Ziemienowicz A. Proliferating cell nuclear antigen (PCNA): a key factor in DNA replication and cell cycle regulation. ANNALS OF BOTANY 2011; 107:1127-40. [PMID: 21169293 PMCID: PMC3091797 DOI: 10.1093/aob/mcq243] [Citation(s) in RCA: 474] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
BACKGROUND PCNA (proliferating cell nuclear antigen) has been found in the nuclei of yeast, plant and animal cells that undergo cell division, suggesting a function in cell cycle regulation and/or DNA replication. It subsequently became clear that PCNA also played a role in other processes involving the cell genome. SCOPE This review discusses eukaryotic PCNA, with an emphasis on plant PCNA, in terms of the protein structure and its biochemical properties as well as gene structure, organization, expression and function. PCNA exerts a tripartite function by operating as (1) a sliding clamp during DNA synthesis, (2) a polymerase switch factor and (3) a recruitment factor. Most of its functions are mediated by its interactions with various proteins involved in DNA synthesis, repair and recombination as well as in regulation of the cell cycle and chromatid cohesion. Moreover, post-translational modifications of PCNA play a key role in regulation of its functions. Finally, a phylogenetic comparison of PCNA genes suggests that the multi-functionality observed in most species is a product of evolution. CONCLUSIONS Most plant PCNAs exhibit features similar to those found for PCNAs of other eukaryotes. Similarities include: (1) a trimeric ring structure of the PCNA sliding clamp, (2) the involvement of PCNA in DNA replication and repair, (3) the ability to stimulate the activity of DNA polymerase δ and (4) the ability to interact with p21, a regulator of the cell cycle. However, many plant genomes seem to contain the second, probably functional, copy of the PCNA gene, in contrast to PCNA pseudogenes that are found in mammalian genomes.
Collapse
Affiliation(s)
- Wojciech Strzalka
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Alicja Ziemienowicz
- Department of Biological Sciences, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada
- For correspondence. E-mail
| |
Collapse
|
5
|
Sun L, Song Y, Qu Y, Yu X, Zhang W. Purification and in vitro cultivation of archaeocytes (stem cells) of the marine sponge Hymeniacidon perleve (Demospongiae). Cell Tissue Res 2006; 328:223-37. [PMID: 17149593 DOI: 10.1007/s00441-006-0342-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2006] [Accepted: 09/01/2006] [Indexed: 11/26/2022]
Abstract
Marine sponges (Porifera) are the best source of marine bioactive metabolites for drug discovery and development, although the sustainable production of most sponge-derived metabolites remains a difficult task. In vitro cultivation of sponge cells in bioreactors has been proposed as a promising technology. However, no continuous cell line has as yet been developed. Archaeocytes are considered to be toti/multipotent stem cells in sponges and, when purified, may allow the development of continuous sponge cell lines. As a prerequisite, we have developed a novel four-step protocol for the purification of archaeocytes from a marine sponge, Hymeniacidon perleve: (1) differential centrifugation to separate large sponge cells including archaeocytes; (2) selective agglomeration in low-Ca(2+)/Mg(2+) artificial seawater in which living archaeocytes form small loose aggregates with some pinacocytes and collencytes; (3) differential adherence to remove anchorage-dependent pinacocytes, collencytes and other mesohyl cells; (4) Ficoll-Vrografin density gradient centrifugation to purify archaeocytes. The final purity of archaeocytes is greater than 80%. The proliferation potential of the archaeocytes has been demonstrated by high levels of BrdU incorporation, PCNA expression and telomerase activity. In 4-day primary cultures, the purified archaeocytes show a 2.5-fold increase in total cell number. This study opens an important avenue towards developing sponge cell cultures for the commercial exploitation of sponge-derived drugs.
Collapse
Affiliation(s)
- Liming Sun
- Marine Bioproducts Engineering Group, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | | | | | | | | |
Collapse
|
6
|
Zudaire E, Simpson SJ, Illa I, Montuenga LM. Dietary influences over proliferating cell nuclear antigen expression in the locust midgut. J Exp Biol 2004; 207:2255-65. [PMID: 15159430 DOI: 10.1242/jeb.01004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYWe have studied the influence of variations in dietary protein (P) and digestible carbohydrate (C), the quantity of food eaten, and insect age during the fifth instar on the expression of the proliferating cell nuclear antigen(PCNA) in the epithelial cells of the midgut (with special reference to the midgut caeca) in the African migratory locust, Locusta migratoria. Densitometric analysis of PCNA-immunostained cells was used as an indirect measure of the levels of expression of PCNA, and a PCNA cellular index(PCNA-I) was obtained. Measurements of the DNA content of the cells have also been carried out by means of microdensitometry of Feulgen-stained, thick sections of midgut. A comparison between the PCNA nuclear level and the DNA content was performed. The PCNA levels were significantly different among the cells of the five regions studied: caeca, anterior ventricle, medial ventricle, posterior ventricle and ampullae of the Malpighian tubules. We have studied in more detail the region with highest PCNA-I, i.e. the caeca. The quality and the quantity of food eaten under ad libitum conditions were highly correlated with both the PCNA and DNA levels in the caeca cells. Locusts fed a diet with a close to optimal P:C content (P 21%, C 21%) showed the highest PCNA and DNA content. In locusts fed a food that also contained a 1:1 ratio of P to C but was diluted three-fold by addition of indigestible cellulose (P 7%, C 7%), a compensatory increase in consumption was critical to maintaining PCNA levels. Our measurements also showed that the nuclear DNA content of the mature and differentiated epithelial cells was several-fold higher than the levels in the undifferentiated stem cells of the regenerative nests. These results, combined with the low number of mitotic figures found in the regenerative nests of the caeca and the marked variation in PCNA levels among groups, suggest that some type of DNA endoreduplication process may be taking place. Our data also indicate that the DNA synthetic activity in the midgut is related to feeding in locusts. The possible dietary and nutritional regulatory mechanisms and the significance of the differences found are discussed.
Collapse
Affiliation(s)
- E Zudaire
- Department of Histology and Pathology, Schools of Medicine and Sciences, University of Navarra, E-31080 Pamplona, Spain.
| | | | | | | |
Collapse
|
7
|
Kosugi S, Ohashi Y. E2F sites that can interact with E2F proteins cloned from rice are required for meristematic tissue-specific expression of rice and tobacco proliferating cell nuclear antigen promoters. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2002; 29:45-59. [PMID: 12060226 DOI: 10.1046/j.1365-313x.2002.01196.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Plants have recently been found to have E2F-like and Rb-like proteins, regulators responsible for the G1(G0)-S phase transition of the cell cycle in animals. Here we show that E2F is involved in transcription of plant genes for proliferating cell nuclear antigen (PCNA), which is required for DNA replication. Potential E2F binding sites found in the rice PCNA promoters mediated transcriptional activation in actively dividing cells and tissues of tobacco, but not transcriptional repression in terminally differentiated tissues, as also observed for the PCF binding sites previously found in the rice promoter. Similar results were obtained from analyses for a PCNA promoter isolated from tobacco, which contained two E2F-like sites, each with a different degree of contribution to the promoter activation. These E2F-like sites except for a rice site were indeed bound specifically by recombinant proteins of rice E2F, OsE2F1 and OsE2F2, and complexes of OsE2F1 with Arabidopsis DP proteins. Furthermore, OsE2F1 had the ability to transactivate an E2F-reporter gene containing the tobacco E2F site on co-expression with an Arabidopsis DP, and the transactivation was greatly enhanced by tagging a canonical nuclear localization signal to OsE2F1, suggesting a nuclear import-mediated regulation of the OsE2F1 function. In addition, we found that a large number of replication- and mismatch repair-associated genes in Arabidopsis contain E2F binding sequences conserved in their predicted promoter regions.
Collapse
MESH Headings
- Amino Acid Sequence
- Arabidopsis/genetics
- Base Sequence
- Binding Sites/genetics
- Cell Cycle Proteins/genetics
- Cell Differentiation/genetics
- Cells, Cultured
- Cloning, Molecular
- DNA, Plant/chemistry
- DNA, Plant/genetics
- DNA, Plant/metabolism
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- E2F Transcription Factors
- Gene Expression Regulation, Developmental
- Gene Expression Regulation, Plant
- Meristem/genetics
- Molecular Sequence Data
- Oryza/genetics
- Plant Proteins/genetics
- Plants, Genetically Modified
- Proliferating Cell Nuclear Antigen/genetics
- Promoter Regions, Genetic/genetics
- Protein Binding
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Signal Transduction/genetics
- Nicotiana/genetics
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transcriptional Activation/genetics
Collapse
Affiliation(s)
- Shunichi Kosugi
- Molecular Genetics Department, National Institute of Agrobiological Sciences, Core Research of Science and Technology (CREST), Japan Science and Technology Corporation, Tsukuba, Ibaraki 305-8602, Japan
| | | |
Collapse
|
8
|
Peele C, Jordan CV, Muangsan N, Turnage M, Egelkrout E, Eagle P, Hanley-Bowdoin L, Robertson D. Silencing of a meristematic gene using geminivirus-derived vectors. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2001; 27:357-66. [PMID: 11532181 DOI: 10.1046/j.1365-313x.2001.01080.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Geminiviruses are DNA viruses that replicate and transcribe their genes in plant nuclei. They are ideal vectors for understanding plant gene function because of their ability to cause systemic silencing in new growth and ease of inoculation. We previously demonstrated DNA episome-mediated gene silencing from a bipartite geminivirus in Nicotiana benthamiana. Using an improved vector, we now show that extensive silencing of endogenous genes can be obtained using less than 100 bp of homologous sequence. Concomitant symptom development varied depending upon the target gene and insert size, with larger inserts producing milder symptoms. In situ hybridization of silenced tissue in attenuated infections demonstrated that silencing occurs in cells that lack detectable levels of viral DNA. A mutation confining the virus to vascular tissue produced extensive silencing in mesophyll tissue, further demonstrating that endogenous gene silencing can be separated from viral infection. We also show that two essential genes encoding a subunit of magnesium chelatase and proliferating cell nuclear antigen (PCNA) can be silenced simultaneously from different components of the same viral vector. Immunolocalization of silenced tissue showed that the PCNA protein was down-regulated throughout meristematic tissues. Our results demonstrate that geminivirus-derived vectors can be used to study genes involved in meristem function in intact plants.
Collapse
Affiliation(s)
- C Peele
- Department of Botany, North Carolina State University, Raleigh, NC 27695, USA
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Tzang BS, Chen TY, Hsu TC, Liu YC, Tsay GJ. Presentation of autoantibody to proliferating cell nuclear antigen in patients with chronic hepatitis B and C virus infection. Ann Rheum Dis 1999; 58:630-4. [PMID: 10491362 PMCID: PMC1752782 DOI: 10.1136/ard.58.10.630] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
OBJECTIVES To study the association of antibodies to proliferating cell nuclear antigen (PCNA) in patients with chronic hepatitis B (HBV) and C (HCV) virus infection. METHODS Sera from 243 patients with chronic HBV infection; 379 patients with chronic HCV infection; 80 patients with systemic lupus erythematosus (SLE); 28 patients with rheumatoid arthritis; 15 patients with Sjogren's syndrome; eight with polymyositis; eight with primary biliary cirrhosis; and 33 healthy control subjects were tested for the presentation of anti-PCNA antibodies by enzyme linked immunosorbent assay (ELISA) and immunoblotting using recombinant PCNA as antigen. The distribution of immunoglobulin isotypes of anti-PCNA antibody was measured by ELISA assay. RESULTS By ELISA, anti-PCNA antibodies were detected in 30 (12.3%) patients with chronic HBV infection, 71 (18.7%) patients with chronic HCV infection, and five (6.3%) patients with SLE. The inhibition of binding with these sera by purified PCNA was shown to exceed 71%. By immunoblotting, the frequency of anti-PCNA in patients with chronic HBV and HCV infection was 17 of 243 (7%) and 41 of 379 (11%), respectively. Absorption studies on indirect immunofluorescence showed the typical nuclear speckled staining pattern by anti-PCNA sera was abolished by preincubation of sera with PCNA. Anti-PCNA antibody was not detected in sera from patients with autoimmune diseases except SLE. Anti-PCNA antibodies in patients with chronic HBV and HCV infection were predominantly IgG. CONCLUSION These data suggest that anti-PCNA antibody are also present in patients with chronic HBV and HCV infection. Anti-PCNA antibody may not be specific for SLE.
Collapse
Affiliation(s)
- B S Tzang
- Department of Life Science, National Tsing-Hua University, Hsin-Chu, Taiwan
| | | | | | | | | |
Collapse
|
10
|
Takahashi T, Takasaki Y, Takeuchi K, Yamanaka K, Oshimi K, Hashimoto H. Detection of proliferating cell nuclear antigen (PCNA) in peripheral blood mononuclear cells and sera of patients with malignant lymphoma. Leuk Lymphoma 1997; 28:113-25. [PMID: 9498710 DOI: 10.3109/10428199709058337] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Proliferating cell nuclear antigen (PCNA) was detected in the peripheral blood mononuclear cells (PBMC) of patients with malignant lymphoma (ML). Twenty-one of 27 patients with ML had PCNA expressing PBMC (5.25+/-4.75% cells), which tended to increase in the advanced clinical stage of ML. PCNA in PBMC extracts was detected in 11 of 16 patients (54.5+/-41.9 ng/ml). The percentage of PCNA-positive cells correlated significantly with the concentration of PCNA in PBMC extracts (P < 0.005). Serum PCNA was detected in 6 of 16 patients (160.1+/-141.1 ng/ml), but did not correlate with the number of PCNA-positive cells. In some cases, the concentration of serum PCNA increased after chemotherapy while the percent PCNA-positive cells decreased. Our finding indicate that detection of PCNA in PBMC appears to help monitoring the extent of disease in ML and the serum PCNA level may be used in therapeutic studies of lymphoma patients.
Collapse
Affiliation(s)
- T Takahashi
- Department of Medicine, Juntendo University, School of Medicine, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
11
|
Ball KL, Lane DP. Human and plant proliferating-cell nuclear antigen have a highly conserved binding site for the p53-inducible gene product p21WAF1. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 237:854-61. [PMID: 8647134 DOI: 10.1111/j.1432-1033.1996.0854p.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The mechanism(s) whereby higher plants respond to environmental agents that damage their DNA, which leads to the arrest of cell division, is poorly understood. In mammalian cells, the tumour-suppressor protein p53 plays a central role in a DNA-damage-induced cell-cycle-checkpoint pathway by induction of transcription of a set of gene products that have a direct role in a DNA-damage-induced cell-cycle growth arrest. One such protein, p21WAF1, has been shown to be essential for radiation-induced growth arrest. There appear to be at least two cellular targets of p21WAF1 during checkpoint control, the G1-cyclin-dependent kinases (CDK) and proliferating-cell nuclear antigen (PCNA). The aim of the research reported here was to determine whether the interactions between the human growth inhibitor p21WAF1 and PCNA from plants and humans are conserved. If so, this would suggest that modulation of PCNA activity may play an important role in plant responses to DNA damage and would imply that functional homologue(s) of p21WAF1 exist in plants. We show that the p21WAF1-interaction domain of PCNA is conserved between humans and plants. A peptide that contains the site of human p21WAF1 that binds human PCNA has been used to precipitate PCNA from crude pea (Pisum savitum) extracts. We used the p21WAF1 peptide as an affinity matrix and showed that pea PCNA bound in a specific high-affinity manner. This finding was used to develop a purification protocol that allowed PCNA from plant tissue to be purified to homogeneity. Pure pea PCNA forms a stable complex with full-length human p21WAF1 and the specific amino acids of p21WAF1 required for the interaction have been identified. The critical residues were identical to those required for binding to human PCNA, which indicates that the interaction of human p21WAF1 with PCNA is highly conserved at each amino acid position between pea and human.
Collapse
Affiliation(s)
- K L Ball
- Department of Biochemistry, University of Dundee, UK
| | | |
Collapse
|
12
|
Ortego LS, Hawkins WE, Walker WW, Krol RM, Benson WH. Detection of proliferating cell nuclear antigen in tissues of three small fish species. Biotech Histochem 1994; 69:317-23. [PMID: 7703303 DOI: 10.3109/10520299409106312] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
An immunohistochemical assay for proliferating cell nuclear antigen (PCNA) identifies cells in all active phases of the cell cycle. In this study, PCNA methodology, which was developed primarily for mammalian tissues, was adapted to three small fish species, medaka (Oryzias latipes), guppy (Poecilia reticulata), and western mosquitofish (Gambusia affinis) that are used in carcinogenesis bioassays and environmental sentinel studies. Our study showed that PCNA can be identified in routinely processed, paraffin embedded specimens of these fishes. Optimum staining conditions were dependent on fixative, primary antibody, antigen retrieval processing, and protein blocking reagent. Best results were achieved using 10% neutral buffered formalin as the fixative, clone PC10 as the primary antibody, and a combination of powdered milk and bovine serum albumin as a protein block. Except for medaka specimens, antigen retrieval was not required for specimens preserved in 10% neutral buffered formalin, but was required for the other fixatives tested. In whole fish specimens, PCNA marked cells in normally proliferating tissues such as testis, ovary, primary filament epithelium of the gill, hematopoietic tissues, thymus, retina and alimentary tract. The study demonstrated the successful application of mammalian-based PCNA technology to these aquatic species. Further applications of the assay will aid in understanding the role of cell proliferation in normal, diseased, and toxicant-affected tissues of aquatic animals.
Collapse
Affiliation(s)
- L S Ortego
- Gulf Coast Research Laboratory, Ocean Springs, Mississippi 39566
| | | | | | | | | |
Collapse
|