1
|
Xiang S, Jian Q, Chen W, Xu Q, Li J, Wang C, Wang R, Zhang D, Lin J, Zheng C. Pharmacodynamic components and mechanisms of ginger (Zingiber officinale) in the prevention and treatment of colorectal cancer. JOURNAL OF ETHNOPHARMACOLOGY 2024; 324:117733. [PMID: 38218504 DOI: 10.1016/j.jep.2024.117733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/28/2023] [Accepted: 01/06/2024] [Indexed: 01/15/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ginger is a "medicine-food homology" natural herb and has a longstanding medicinal background in treating intestinal diseases. Its remarkable bioactivities, including anti-inflammatory, antioxidant, immunoregulatory, flora regulatory, intestinal protective, and anticancer properties, make it a promising natural medicine for colorectal cancer (CRC) prevention and treatment. AIM OF THE REVIEW The purpose is to review the relevant literature on ginger and pharmacodynamic components for CRC prevention and treatment, summarize the possible mechanisms of ginger from clinical studies and animal and in vitro experiments, to provide theoretical support for the use of ginger preparations in the daily prevention and clinical treatment of CRC. MATERIALS AND METHODS Literatures about ginger and CRC were searched from electronic databases, such as PubMed, Web of Science, ScienceDirect, Google Scholar and China National Knowledge Infrastructure (CNKI). RESULTS This article summarizes the molecular mechanisms of ginger and its pharmacodynamic components in the prevention and treatment of CRC, including anti-inflammatory, antioxidant, immunoregulatory, flora regulatory, intestinal protective, inhibit CRC cell proliferation, induce CRC cell cycle blockage, promote CRC cell apoptosis, suppress CRC cell invasion and migration, enhance the anticancer effect of chemotherapeutic drugs. CONCLUSIONS Ginger has potential for daily prevention and clinical treatment of CRC.
Collapse
Affiliation(s)
- Sirui Xiang
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Qin Jian
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| | - Wu Chen
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| | - Qi Xu
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Jia Li
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| | - Chuchu Wang
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Rongrong Wang
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Dingkun Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Junzhi Lin
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| | - Chuan Zheng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| |
Collapse
|
2
|
Javed D, Dixit AK. Is Trikatu; an ayurvedic formulation effective for the management of flu-like illness? A narrative review. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2021; 19:193-202. [PMID: 34081846 DOI: 10.1515/jcim-2020-0485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/04/2021] [Indexed: 12/17/2022]
Abstract
OBJECTIVES The aim of this review is to summarise and appraise the findings of various studies on Trikatu. CONTENT COVID-19 or SARS-CoV-2 disease a pandemic principally contaminating the respiratory tract and bringing about Severe Acute Respiratory Syndrome is liable for significant mortality around the world. Far-fetched, there is no exact treatment accessible till today. Consequently, it is critical to discover the alternative methodology which can decrease the weight of illness. Trikatu powder recommended by authorities for the management of mild cases of COVID-19 is a conventional ayurvedic formulation containing three spices; Zingiber officinale, Piper nigrum, and Piper longum. A comprehensive search of the articles published since inception to 01/08/2020 on Trikatu was carried out. Major electronic medical databases such as Pub Med/MEDLINE and Cochrane Database of Systematic Reviews were used for the literature search. SUMMARY A total of 21 records were identified by electronic searches between since inception to 01/08/2020 of which 13 records were included for review. The reviewed articles highlight Trikatu as a safe, anti-inflammatory, and immune-modulatory property by suppression of the production of pro-inflammatory cytokines TNF-a, IL-1b, IL-6, IL-17, alteration in levels of circulating immune complexes, anti-dyslipidaemia agent by reduced triglycerides and LDL cholesterol and increased HDL cholesterol, enhancing bio-availability of co-drug by reducing the elimination half-life (t1/2β) and zero time intercept of the elimination phase. OUTLOOK The findings of this review seem to show Trikatu as a potential anti-inflammatory, anti-dyslipidaemia, and immune-modulatory ayurvedic formulation can be used for combating flu like illnesses and also in the management of COVID-19 as an adjuvant. However, rigorous double blind randomized controlled trials with larger sample size are warranted for better validation in such clinical conditions. HIGHLIGHTS – COVID-19 has affected the lives of millions worldwide and unfortunately no precise treatment available till today.
– Trikatu an ayurvedic formulation suggested by various authorities in India.
– Trikatu found to be a potential anti-inflammatory; anti-dyslipidaemia and immune-modulatory drug can be used for combating flu like illnesses.
Collapse
Affiliation(s)
- Danish Javed
- Department of AYUSH, All India Institute of Medical Science, Bhopal, Madhya Pradesh, India
| | - Ashish Kumar Dixit
- Homoeopathy, All India Institute of Medical Science, Bhopal, Madhya Pradesh, India
| |
Collapse
|
3
|
Tu-Teng-Cao Extract Alleviates Monosodium Urate-Induced Acute Gouty Arthritis in Rats by Inhibiting Uric Acid and Inflammation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:3095624. [PMID: 32382282 PMCID: PMC7193269 DOI: 10.1155/2020/3095624] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 12/05/2019] [Accepted: 12/14/2019] [Indexed: 12/16/2022]
Abstract
Gouty arthritis is an inflammatory joint disease closely related to hyperuricemia. It is characterized by deposition of monosodium urate crystals in the joints, resulting in an intense inflammatory process and pain. Control of hyperuricemia and anti-inflammation treatments are the main therapeutic approaches. However, the commonly used drugs for inhibiting uric acid and acute gouty arthritis have obvious gastrointestinal and renal toxicity; thus, there is an urgency to develop new alternative therapeutic drugs. An extract of Tu-Teng-Cao (TTC), a compound drug used in traditional Chinese medicine, has been widely applied to the clinical treatment of arthritis. In this study, we investigated the therapeutic effects of TTC on gouty arthritis. In this study, an animal model of acute gouty arthritis with hyperuricemia was established using potassium oxonate and monosodium urate crystals. After treatment with TTC, the results showed obvious therapeutic effects on the rat model of acute gouty arthritis. The treatment significantly attenuated the degree of ankle swelling, inflammation, and dysfunction index, and the levels of proinflammatory cytokines. In addition, TTC has significant antihyperuricemia activity in rats with hyperuricemia induced by potassium oxonate. Histological evaluation showed that TTC relieved pathological damage in rats with acute gouty arthritis induced by monosodium urate crystals. All the groups treated with TTC showed improvement in cartilage degeneration, cell degeneration, synovial hyperplasia, and inflammatory cell invasion in the ankle joint of rats. TTC significantly alleviated swelling, inflammation, and bleeding of the renal corpuscle and convoluted tubules of rats. The results of this study suggest that TTC is capable of treating gouty arthritis and decreasing ankle injury through the control of uric acid and inflammation.
Collapse
|
4
|
Li S, Li L, Yan H, Jiang X, Hu W, Han N, Wang D. Anti‑gouty arthritis and anti‑hyperuricemia properties of celery seed extracts in rodent models. Mol Med Rep 2019; 20:4623-4633. [PMID: 31702020 PMCID: PMC6797962 DOI: 10.3892/mmr.2019.10708] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 07/31/2019] [Indexed: 12/23/2022] Open
Abstract
Gout is a type of serious arthritis that is caused by hyperuricemia. Celery is an umbelliferous plant that was shown to exhibit anti‑inflammatory activity in rodent. The present study aimed to investigate the effects and potential preliminary mechanisms of celery seed aqueous extract (CSAE) and celery seed oil extract (CSOL) for gout treatment. The components of CSAE and CSOL were systematically analyzed. In mice with hyperuricemia induced by potassium oxonate and yeast extract, CSAE and CSOL treatment reduced the serum levels of uric acid and xanthine oxidase. In addition, CSAE and CSOL reduced the levels of reactive oxygen species and increased the serum levels of superoxide dismutase and glutathione peroxidase in mouse serum. In rats with acute gouty arthritis induced by intra‑articular injection of monosodium urate crystals, CSAE and CSOL treatment alleviated the swelling of the ankle joints and reduced inflammatory cell infiltration around the ankle joints. In addition, CSAE and CSOL reduced the levels of interleukin (IL)‑1β and tumor necrosis factor α and increased the levels of IL‑10. The results of the present study suggested that celery seed extracts may have anti‑gout properties, partially through anti‑inflammatory and antioxidative effects.
Collapse
Affiliation(s)
- Shaopeng Li
- School of Life Sciences, Jilin University, Changchun, Jilin 130012, P.R. China
| | - Lanzhou Li
- School of Life Sciences, Jilin University, Changchun, Jilin 130012, P.R. China
| | - Han Yan
- School of Life Sciences, Jilin University, Changchun, Jilin 130012, P.R. China
| | - Xue Jiang
- School of Life Sciences, Jilin University, Changchun, Jilin 130012, P.R. China
| | - Weiwei Hu
- School of Life Sciences, Jilin University, Changchun, Jilin 130012, P.R. China
| | - Ning Han
- Department of Ophthalmology, The Second Hospital of Jilin University, Jilin University, Changchun, Jilin 130041, P.R. China
| | - Di Wang
- School of Life Sciences, Jilin University, Changchun, Jilin 130012, P.R. China
| |
Collapse
|
5
|
Chen CC, Chang C, Hsu YH, Peng YJ, Lee HS, Huang GS. fMRI indicates cortical activation through TRPV1 modulation during acute gouty attacks. Sci Rep 2019; 9:12348. [PMID: 31451732 PMCID: PMC6710282 DOI: 10.1038/s41598-019-48656-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 08/07/2019] [Indexed: 11/09/2022] Open
Abstract
Gout is one of the most painful disease conditions. The central mechanism of pain processing in this condition remains elusive. Cerebral blood volume (CBV) responses are faithful correlates of brain activity changes; the application of CBV-weighted functional magnetic resonance imaging (fMRI) may shed light on the issue of interest. Transient receptor potential vanilloid 1 (TRPV1) is a critical ion channel expressed both peripherally in nociceptors and centrally in the brain. Whether TRPV1 plays a critical role in gout pain was also explored. Results showed that, in rats with gouty arthritis, noxious stimulation induced CBV increases in the primary somatosensory cortex and thalamus. These increases were correlated with up-regulated TRPV1 protein expression and pain behavior. Selective blockage of central TRPV1 channel activity by intrathecal administration of AMG9810 reversed the induced pain, and abolished the induced CBV increase in thalamocortical regions. The findings support that TRPV1 activation in the central pain pathway is crucial to the augmentation of pain in gouty conditions. This new information supports the development of TRPV1-based drugs for treating gout pain, while fMRI can be useful for repeated evaluation of brain activity changes induced by gout.
Collapse
Affiliation(s)
- Chiao-Chi Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chen Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| | - Yi-Hua Hsu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yi-Jen Peng
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Herng-Sheng Lee
- Department of Pathology and Laboratory Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Guo-Shu Huang
- Department of Radiology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan. .,Department of Medical Research, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
6
|
Li Y, Xie J, Li Y, Yang Y, Yang L. Literature data based systems pharmacology uncovers the essence of "body fire" in traditional Chinese medicine: A case by Huang-Lian-Jie-Du-Tang. JOURNAL OF ETHNOPHARMACOLOGY 2019; 237:266-285. [PMID: 30922854 DOI: 10.1016/j.jep.2019.03.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 02/27/2019] [Accepted: 03/13/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGY RELEVANCE Like other concepts in traditional Chinese medical theory, "body fire", a concept that has already been well-known and widely used in describing the symptoms and the treatment of corresponding diseases, is, however, still under suspicions in the western medicine due to its vague essence and symptoms. Presently, Huang-Lian-Jie-Du-Tang (HLJDT), a typical popular TCM formula in cleansing the "body fire", is studied as a probe by a systems pharmacology method we produced, with purpose to explore the mechanisms of the potion, as well as to interpret the essence of "body fire" disease. METHODS The systematic process includes a pharmacokinetics prescreening, pharmacodynamics targets and pathways identification, and candidate-target-pathway network construction. RESULTS Through this method, 145 chemicals and 91 proteins are identified as active ingredients and "body fire"-related targets. And we find that the mechanism of HLJDT prescription for cleansing "body fire" lies in three, i.e., anti-OS/NS, anti-inflammation and anti-infection function modules, which are mainly executed through four, i.e., PI3K-AKT, MAPK, VEGF as well as Calcium signaling pathways. CONCLUSIONS Accordingly, the essence of "body fire" is a gradual process which is an integration of OS/NS, inflammation and infection. This work, we hope, may not only offer a systemic methodology for exploring and elucidating TCM concepts from a multi-scale perspective, but also provide an efficient way for herbal drug discovery.
Collapse
Affiliation(s)
- Yan Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), Faculty of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology, Dalian, Liaoning, 116024, PR China.
| | - Jing Xie
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), Faculty of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology, Dalian, Liaoning, 116024, PR China.
| | - Yaying Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), Faculty of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology, Dalian, Liaoning, 116024, PR China.
| | - Yinfeng Yang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), Faculty of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology, Dalian, Liaoning, 116024, PR China
| | - Ling Yang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
7
|
Changes of Treg/Th17 Ratio in Spleen of Acute Gouty Arthritis Rat Induced by MSU Crystals. Inflammation 2018; 41:1955-1964. [DOI: 10.1007/s10753-018-0839-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
8
|
Dinesh P, Rasool M. Berberine, an isoquinoline alkaloid suppresses TXNIP mediated NLRP3 inflammasome activation in MSU crystal stimulated RAW 264.7 macrophages through the upregulation of Nrf2 transcription factor and alleviates MSU crystal induced inflammation in rats. Int Immunopharmacol 2017; 44:26-37. [PMID: 28068647 DOI: 10.1016/j.intimp.2016.12.031] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 12/11/2016] [Accepted: 12/26/2016] [Indexed: 12/18/2022]
Abstract
The current study was designed to investigate the therapeutic potential of berberine on monosodium urate (MSU) crystal stimulated RAW 264.7 macrophages and in MSU crystal induced rats. Our results indicate that berberine (25, 50 and 75μM) suppressed the levels of pro-inflammatory cytokines (interleukin-1beta (IL-1β) and tumor necrosis factor alpha (TNFα)) and intracellular reactive oxygen species in MSU crystal stimulated RAW 264.7 macrophages. The mRNA expression levels of IL-1β, caspase 1, nucleotide-binding oligomerization domain-like receptor pyrin domain containing 3 (NLRP3), thioredoxin interacting protein (TXNIP) and kelch-like ECH-associated protein 1 (Keap1) were found downregulated with the upregulation of nuclear factor erythroid-2-related factor 2 (Nrf2) transcription factor and its associated anti-oxidant enzymes: Heme oxygenase I (HO-1), superoxide dismutase (SOD1), glutathione peroxidase (GPx), NADPH quinone oxidoreductase-1 (NQO1) and catalase (CAT) in MSU crystal stimulated RAW 264.7 macrophages upon berberine treatment. Subsequently, western blot analysis revealed that berberine decreased the protein expression of IL-1β and caspase 1 and increased Nrf2 expression in RAW 264.7 macrophages. Immunofluorescence analysis also explored increased expression of Nrf2 in MSU crystal stimulated RAW 264.7 macrophages by berberine treatment. In addition, the paw edema, pain score, pro-inflammatory cytokines (IL-1β and TNFα) and articular elastase activity were found significantly reduced in berberine (50mg/kgb·wt) administered MSU crystal-induced rats. Conclusively, our current findings suggest that berberine may represent as a potential candidate for the treatment of gouty arthritis by suppressing inflammatory mediators and activating Nrf2 anti-oxidant pathway.
Collapse
Affiliation(s)
- Palani Dinesh
- Immunopathology Lab, School of Bio Sciences and Technology, VIT University, Vellore 632 014, Tamil Nadu, India
| | - MahaboobKhan Rasool
- Immunopathology Lab, School of Bio Sciences and Technology, VIT University, Vellore 632 014, Tamil Nadu, India.
| |
Collapse
|
9
|
Doss HM, Ganesan R, Rasool M. Trikatu, an herbal compound ameliorates rheumatoid arthritis by the suppression of inflammatory immune responses in rats with adjuvant-induced arthritis and on cultured fibroblast like synoviocytes via the inhibition of the NFκB signaling pathway. Chem Biol Interact 2016; 258:175-86. [DOI: 10.1016/j.cbi.2016.09.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 07/24/2016] [Accepted: 09/05/2016] [Indexed: 12/20/2022]
|
10
|
Han J, Xie Y, Sui F, Liu C, Du X, Liu C, Feng X, Jiang D. Zisheng Shenqi decoction ameliorates monosodium urate crystal-induced gouty arthritis in rats through anti-inflammatory and anti-oxidative effects. Mol Med Rep 2016; 14:2589-97. [PMID: 27432278 PMCID: PMC4991735 DOI: 10.3892/mmr.2016.5526] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 06/27/2016] [Indexed: 12/11/2022] Open
Abstract
Based on traditional Chinese medicinal theories on gouty arthritis, Zisheng Shenqi decoction (ZSD), a novel Chinese medicinal formula, was developed due to its multiple functions, including reinforcing renal function, promoting blood circulation and relieving pain. In the present study, the effect of ZSD on monosodium urate (MSU) crystal-induced gouty arthritis in rats was investigated and the underlying mechanisms were examined. The data from these investigations showed that the injection of MSU crystals into the ankle joint cavity caused significant elevations in ankle swelling and inflammatory cell infiltration into the synovium, whereas these abnormal changes were markedly suppressed by oral administration of ZSD (40 mg/kg) for 7 days. Mechanically, ZSD treatment prevented MSU crystal-induced inflammatory responses, as evidenced by downregulation in the expression levels of NACHT domain, leucine-rich repeat and pyrin domain containing protein (NALP) 1 and NALP6 inflammasomes, decreased serum levels of tumor necrosis factor-α and interleukin-1β, and inhibited activation of nuclear factor-κB. In addition, ZSD administration markedly enhanced the anti-oxidant status in MSU crystal-induced rats by the increase in the activities of superoxide dismutase and glutathione peroxidase, and the levels of reduced glutathione. These results indicated that ZSD effectively prevented MSU crystal-induced gouty arthritis via modulating multiple anti-oxidative and anti-inflammatory pathways, suggesting a promising herbal formula for the prevention and treatment of gouty arthritis.
Collapse
Affiliation(s)
- Jieru Han
- Department of Seasonal Febrile Diseases, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| | - Ying Xie
- Department of Synopsis of The Golden Chamber, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| | - Fangyu Sui
- Department of Chinese Materia Medica, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| | - Chunhong Liu
- Department of Seasonal Febrile Diseases, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| | - Xiaowei Du
- Department of Pharmacognosy, School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| | - Chenggang Liu
- Department of Febrile Diseases, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| | - Xiaoling Feng
- Department of Gynaecology, The First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| | - Deyou Jiang
- Department of Synopsis of The Golden Chamber, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150040, P.R. China
| |
Collapse
|
11
|
Dhanasekar C, Rasool M. Morin, a dietary bioflavonol suppresses monosodium urate crystal-induced inflammation in an animal model of acute gouty arthritis with reference to NLRP3 inflammasome, hypo-xanthine phospho-ribosyl transferase, and inflammatory mediators. Eur J Pharmacol 2016; 786:116-127. [PMID: 27268719 DOI: 10.1016/j.ejphar.2016.06.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 06/01/2016] [Accepted: 06/02/2016] [Indexed: 12/29/2022]
Abstract
The anti-inflammatory effect of morin, a dietary bioflavanol was explored on monosodium urate (MSU) crystal-induced inflammation in rats, an experimental model for acute gouty arthritis. Morin treatment (30mg/kg b.wt) significantly attenuated the ankle swelling and the levels of lipid peroxidation, nitric oxide, serum pro-inflammatory cytokines (tumor necrosis factor (TNF) -α, interleukin (IL)-1β, and IL-6), monocyte chemoattractant protein (MCP)-1, vascular endothelial growth factor (VEGF), prostaglandin E2 (PGE2), and articular elastase along with an increased anti-oxidant status (catalase (CAT) and superoxide dismutase (SOD)) in the joint homogenate of MSU crystal-induced rats. Histological assessment revealed that morin limited the diffusion of joint space, synovial hyperplasia, and inflammatory cell infiltrations. The mRNA expression of NLRP3 (nucleotide oligomerization domain (NOD)-like receptor family, pyrin domain containing 3) inflammasome, caspase-1, pro-inflammatory cytokines, MCP-1, inflammatory enzymes (inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2)), and nuclear factor-kappa B (NF-κB) p65 was found downregulated and HPRT (hypo-xanthine phospho-ribosyl transferase) mRNA expression was upregulated in morin treated MSU crystal-induced rats. In addition, morin treatment reduced the protein expression of NF-κB p65, p-NF-κB p65, iNOS, COX-2, and TNF-α. The results clearly demonstrated that morin exert a potent anti-inflammatory effect on MSU crystal-induced inflammation in rats.
Collapse
Affiliation(s)
- Chitra Dhanasekar
- Immunopathology Lab, School of Biosciences and Technology, VIT University, Vellore 632014, Tamil Nadu, India
| | - Mahaboobkhan Rasool
- Immunopathology Lab, School of Biosciences and Technology, VIT University, Vellore 632014, Tamil Nadu, India.
| |
Collapse
|
12
|
Morin, a Bioflavonoid Suppresses Monosodium Urate Crystal-Induced Inflammatory Immune Response in RAW 264.7 Macrophages through the Inhibition of Inflammatory Mediators, Intracellular ROS Levels and NF-κB Activation. PLoS One 2015; 10:e0145093. [PMID: 26709520 PMCID: PMC4692533 DOI: 10.1371/journal.pone.0145093] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 11/28/2015] [Indexed: 12/16/2022] Open
Abstract
Our previous studies had reported that morin, a bioflavanoid exhibited potent anti-inflammatory effect against adjuvant-induced arthritic rats. In this current study, we investigated the anti-inflammatory mechanism of morin against monosodium urate crystal (MSU)-induced inflammation in RAW 264.7 macrophage cells, an in vitro model for acute gouty arthritis. For comparison purpose, colchicine was used as a reference drug. We have observed that morin (100–300 μM) treatment significantly suppressed the levels of inflammatory cytokines (TNF-α, IL-1β, IL-6, MCP-1 and VEGF), inflammatory mediators (NO and PEG2), and lysosomal enzymes (acid phosphatase, β-galactosidase, N-acetyl glucosamindase and cathepsin D) in MSU-crystals stimulated macrophage cells. The mRNA expression of pro-inflammatory cytokines (TNF-α, IL-1β, IL-6, and MCP-1), inflammatory enzymes (iNOS and COX-2), and NF-κBp65 was found downregulated in MSU crystal stimulated macrophage cells by morin treatment, however, the mRNA expression of hypoxanthine phospho ribosyl transferse (HPRT) was found to be increased. The flow cytometry analysis revealed that morin treatment decreased intracellular reactive oxygen species levels in MSU crystal stimulated macrophage cells. The western blot analysis clearly showed that morin mainly exerts its anti-inflammatory effects by inhibiting the MSU crystal-induced COX-2 and TNF-α protein expression through the inactivation of NF-κB signaling pathway in RAW 264.7 macrophage cells similar to that of BAY 11–7082 (IκB kinase inhibitor). Our results collectively suggest that morin can be a potential therapeutic agent for inflammatory disorders like acute gouty arthritis.
Collapse
|