1
|
Chen Q, Jiang C, Li H. Indole-3-Carbinol Promotes Apoptosis and Inhibits the Metastasis of Esophageal Squamous Cell Carcinoma by Downregulating the Wnt/β-Catenin Signaling Pathway. Nutr Cancer 2024; 76:543-551. [PMID: 38588526 DOI: 10.1080/01635581.2024.2337159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 03/23/2024] [Accepted: 03/25/2024] [Indexed: 04/10/2024]
Abstract
The incidence and mortality rates of esophageal squamous cell carcinoma (ESCC) have been significantly increasing in China. Indole-3-carbinol (I3C), a naturally occurring component in cruciferous vegetables, is an effective cancer therapy. Yet, its effect and action mechanism in ESCC are still not fully understood. This study explored the role of I3C in ESCC in vitro and in vivo by focusing on the Wnt/β-catenin signaling pathway. MTT and flow cytometry were used to assess cell viability and apoptosis in EC18 and TE1 cells, while wound healing and transwell assays were used to investigate cell migration and invasion in vitro. Expression of β-catenin, c-myc, and cyclin D1 was determined by Western blot; LiCl (an agonist of the canonical Wnt signaling that inhibits GSK3β activity) was used to assess the role of I3C on the Wnt/β-catenin signaling pathway. For in vivo experiments, nude BALB/c mice bearing EC18 xenografts were treated with I3C and/or LiCl. I3C promoted ESCC apoptosis and inhibited cell migration and invasion by downregulating β-catenin, c-myc, and cyclin D1 in vitro and decreased the tumor growth in vivo; this process was reversed by LiCl treatment. In summary, I3C inhibits ESCC malignant behavior by suppressing the Wnt/β-catenin signaling pathway, thus deeming it a promising drug for ESCC treatment.
Collapse
Affiliation(s)
- Qiao Chen
- Department of Nutrition, Third Medical Center of PLA General Hospital, Beijing, China
| | - Congbo Jiang
- Beiqing Road Outpatient Department, Jingbei Medical District of PLA General Hospital, Beijing, China
| | - Hui Li
- Department of Nutrition, Third Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
2
|
Catalanotto M, Vaz JM, Abshire C, Youngblood R, Chu M, Levine H, Jolly MK, Dragoi AM. Dual role of CASP8AP2/FLASH in regulating epithelial-to-mesenchymal transition plasticity (EMP). Transl Oncol 2024; 39:101837. [PMID: 37984255 PMCID: PMC10689956 DOI: 10.1016/j.tranon.2023.101837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/17/2023] [Accepted: 11/14/2023] [Indexed: 11/22/2023] Open
Abstract
BACKGROUND Epithelial-to-mesenchymal transition (EMT) is a developmental program that consists of the loss of epithelial features concomitant with the acquisition of mesenchymal features. Activation of EMT in cancer facilitates the acquisition of aggressive traits and cancer invasion. EMT plasticity (EMP), the dynamic transition between multiple hybrid states in which cancer cells display both epithelial and mesenchymal markers, confers survival advantages for cancer cells in constantly changing environments during metastasis. METHODS RNAseq analysis was performed to assess genome-wide transcriptional changes in cancer cells depleted for histone regulators FLASH, NPAT, and SLBP. Quantitative PCR and Western blot were used for the detection of mRNA and protein levels. Computational analysis was performed on distinct sets of genes to determine the epithelial and mesenchymal score in cancer cells and to correlate FLASH expression with EMT markers in the CCLE collection. RESULTS We demonstrate that loss of FLASH in cancer cells gives rise to a hybrid E/M phenotype with high epithelial scores even in the presence of TGFβ, as determined by computational methods using expression of predetermined sets of epithelial and mesenchymal genes. Multiple genes involved in cell-cell junction formation are similarly specifically upregulated in FLASH-depleted cells, suggesting that FLASH acts as a repressor of the epithelial phenotype. Further, FLASH expression in cancer lines is inversely correlated with the epithelial score. Nonetheless, subsets of mesenchymal markers were distinctly up-regulated in FLASH, NPAT, or SLBP-depleted cells. CONCLUSIONS The ZEB1low/SNAILhigh/E-cadherinhigh phenotype described in FLASH-depleted cancer cells is driving a hybrid E/M phenotype in which epithelial and mesenchymal markers coexist.
Collapse
Affiliation(s)
| | - Joel Markus Vaz
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | | | - Reneau Youngblood
- Department of Molecular and Cellular Physiology, LSUHSC, Shreveport, LA, USA
| | - Min Chu
- Feist-Weiller Cancer Center, INLET Core, LSUHSC, Shreveport, LA, USA
| | - Herbert Levine
- Center for Theoretical Biological Physics, Northeastern University, Boston, MA, USA; Department of Physics, Northeastern University, Boston, MA, USA; Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Mohit Kumar Jolly
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India
| | - Ana-Maria Dragoi
- Department of Molecular and Cellular Physiology, LSUHSC, Shreveport, LA, USA; Feist-Weiller Cancer Center, INLET Core, LSUHSC, Shreveport, LA, USA.
| |
Collapse
|
3
|
Kim MK, Lee JU, Lee SJ, Chang HS, Park JS, Park CS. The Role of Erythrocyte Membrane Protein Band 4.1-like 3 in Idiopathic Pulmonary Fibrosis. Int J Mol Sci 2023; 24:10182. [PMID: 37373330 DOI: 10.3390/ijms241210182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Novel genetic and epigenetic factors involved in the development and prognosis of idiopathic pulmonary fibrosis (IPF) have been identified. We previously observed that erythrocyte membrane protein band 4.1-like 3 (EPB41L3) increased in the lung fibroblasts of IPF patients. Thus, we investigated the role of EPB41L3 in IPF by comparing the EPB41L3 mRNA and protein expression of lung fibroblast between patients with IPF and controls. We also investigated the regulation of epithelial-mesenchymal transition (EMT) in an epithelial cell line (A549) and fibroblast-to-myofibroblast transition (FMT) in a fibroblast cell line (MRC5) by overexpressing and silencing EPB41L3. EPB41L3 mRNA and protein levels, as measured using RT-PCR, real-time PCR, and Western blot, were significantly higher in fibroblasts derived from 14 IPF patients than in those from 10 controls. The mRNA and protein expression of EPB41L3 was upregulated during transforming growth factor-β-induced EMT and FMT. Overexpression of EPB41L3 in A549 cells using lenti-EPB41L3 transfection suppressed the mRNA and protein expression of N-cadherin and COL1A1. Treatment with EPB41L3 siRNA upregulated the mRNA and protein expression of N-cadherin. Overexpression of EPB41L3 in MRC5 cells using lenti-EPB41L3 transfection suppressed the mRNA and protein expression of fibronectin and α-SMA. Finally, treatment with EPB41L3 siRNA upregulated the mRNA and protein expression of FN1, COL1A1, and VIM. In conclusion, these data strongly support an inhibitory effect of EPB41L3 on the process of fibrosis and suggest the therapeutic potential of EPB41L3 as an anti-fibrotic mediator.
Collapse
Affiliation(s)
- Min Kyung Kim
- Department of Interdisciplinary, Program in Biomedical Science Major, Graduate School, Soonchunhyang University, Asan 31538, Republic of Korea
| | - Jong-Uk Lee
- Department of Interdisciplinary, Program in Biomedical Science Major, Graduate School, Soonchunhyang University, Asan 31538, Republic of Korea
| | - Sun Ju Lee
- Department of Interdisciplinary, Program in Biomedical Science Major, Graduate School, Soonchunhyang University, Asan 31538, Republic of Korea
| | - Hun Soo Chang
- Department of Microbiology and BK21 Four Project, College of Medicine, Soonchunhyang University, Cheonan 31538, Republic of Korea
| | - Jong-Sook Park
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon 14584, Republic of Korea
| | - Choon-Sik Park
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon 14584, Republic of Korea
| |
Collapse
|
4
|
Lang J, Guo Z, Xing S, Sun J, Qiu B, Shu Y, Wang Z, Liu G. Inhibitory role of puerarin on the A549 lung cancer cell line. Transl Cancer Res 2022; 11:4117-4125. [PMID: 36523310 PMCID: PMC9745364 DOI: 10.21037/tcr-22-2246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/21/2022] [Indexed: 09/26/2023]
Abstract
BACKGROUND Although more and more drugs had been proved to be effective in controlling tumor cells, lung cancer was still the leading cause of cancer-related deaths all over the world. This study aimed to investigate the effect and mechanism of puerarin on the invasion and metastasis of A549 lung cancer cell line. METHODS A medium containing puerarin was prepared according to the gradient concentration, and 10, 20, and 40 µmol/L were selected as the experimental group (low, medium, and high concentration groups, respectively) according to the cytotoxicity experiment. Meanwhile, 0 µmol/L was used as the control group. RESULTS Following administration, metastasis-related indexes were detected by the cell scratch test, cell migration test, gene difference detection, and western blotting. 24 hours after administration, the cell scratch and Transwell showed that the migration ability of A549 cells decreased with the increasing puerarin concentration. The polymerase chain reaction (PCR) and western blotting results demonstrated that the expression of the cell invasion and metastasis-related factor, matrix metallopeptidase 9 (MMP9), was negatively correlated with drug concentration. Further investigation demonstrated that the phosphorylation of extracellular signal-regulated kinase (ERK) was also inhibited. CONCLUSIONS Puerarin can inhibit the expression of invasion and metastasis-related factors by inhibiting the phosphorylation of ERK.
Collapse
Affiliation(s)
- Jie Lang
- Department of Thoracic Surgery, Tangshan People’s Hospital, Tangshan, China
| | - Zhizhen Guo
- Department of Nephrology, Kailuan General Hospital, Tangshan, China
| | - Shushan Xing
- Department of Oncology, Tangshan Central Hospital, Tangshan, China
| | - Jian Sun
- Department of Thoracic Surgery, Tangshan People’s Hospital, Tangshan, China
| | - Bin Qiu
- Department of Thoracic Surgery, Tangshan People’s Hospital, Tangshan, China
| | - Yu Shu
- Department of Thoracic Surgery, Tangshan People’s Hospital, Tangshan, China
| | - Zhiqiang Wang
- Department of Thoracic Surgery, Tangshan People’s Hospital, Tangshan, China
| | - Guixiang Liu
- Department of Thoracic Surgery, Tangshan People’s Hospital, Tangshan, China
| |
Collapse
|
5
|
Manjunath M, Nirgude S, Mhatre A, Vemuri SG, Nataraj M, Thumsi J, Choudhary B. Transcriptomic profiling of Indian breast cancer patients revealed subtype-specific mRNA and lncRNA signatures. Front Genet 2022; 13:932060. [PMID: 36386805 PMCID: PMC9641000 DOI: 10.3389/fgene.2022.932060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/27/2022] [Indexed: 11/30/2022] Open
Abstract
Breast cancer (BC) is one of the leading causes of cancer-associated death in women. Despite the progress in therapeutic regimen, resistance and recurrence of breast cancer have affected the overall survival of patients. The present signatures, such as PAM50 and Oncotype DX, do not segregate the Indian breast samples based on molecular subtypes. This study aims at finding signatures of long noncoding RNA (lncRNA) and mRNA in Indian breast cancer patients using RNA-seq. We have analyzed the survival based on the menopausal and hormone status of 380 Indian breast cancer patients, and of these, we have sequenced and analyzed matched tumor–normal transcriptome of 17 (pre- and postmenopausal) Indian breast cancer patients representing six different subtypes, namely, four patients in triple-positive, three patients in estrogen receptor–positive (ER+ve), three patients in estrogen and progesterone receptors–positive (ER+ve, PR+ve), two patients in human epidermal growth factor receptor (Her2+ve), three patients in triple-negative, and one patient in ER+ve and Her2+ve subtypes. We have identified a 25 mRNA–27 lncRNA gene set, which segregated the subtypes in our data. A pathway analysis of the differentially expressed genes revealed downregulated ECM interaction and upregulated immune regulation, cell cycle, DNA damage response and repair, and telomere elongation in premenopausal women. Postmenopausal women showed downregulated metabolism, innate immune system, upregulated translation, sumoylation, and AKT2 activation. A Kaplan–Meier survival analysis revealed that menopausal status, grade of the tumor, and hormonal status displayed statistically significant effects (p < 0.05) on the risk of mortality due to breast cancer. Her2+ve patients showed low overall survival. One of the unique lncRNA-mRNA pairs specific to the EP-subtype, SNHG12 and EPB41, showed interaction, which correlates with their expression level; SNHG12 is downregulated and EPB41 is upregulated in EP samples.
Collapse
Affiliation(s)
- Meghana Manjunath
- Institute of Bioinformatics and Applied Biotechnology, Bengaluru, India
- Manipal Academy of Higher Education, Manipal, India
| | - Snehal Nirgude
- Institute of Bioinformatics and Applied Biotechnology, Bengaluru, India
- Division of Human Genetics,Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Anisha Mhatre
- Institute of Bioinformatics and Applied Biotechnology, Bengaluru, India
| | - Sai G. Vemuri
- Institute of Bioinformatics and Applied Biotechnology, Bengaluru, India
| | | | | | - Bibha Choudhary
- Institute of Bioinformatics and Applied Biotechnology, Bengaluru, India
- *Correspondence: Bibha Choudhary,
| |
Collapse
|
6
|
HDAC10 Inhibits Cervical Cancer Progression through Downregulating the HDAC10-microRNA-223-EPB41L3 Axis. JOURNAL OF ONCOLOGY 2022; 2022:8092751. [PMID: 35075362 PMCID: PMC8783137 DOI: 10.1155/2022/8092751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/26/2021] [Accepted: 12/04/2021] [Indexed: 11/25/2022]
Abstract
Background Although the tumorigenesis of cervical cancer (CC) has been widely investigated and recognized, the study of the systematic impact of histone deacetylase 10 (HDAC10), microRNA, and downstream molecular mechanisms in CC is still limited. Herein, cervical cancer, precancer lesions, and normal cervical tissues were collected to test the expression level of HDAC10, miR-223, and EPB41L3. The mechanism of HDAC10, miR-223, and EPB41L3 was interpreted in cervical cancer cells after HDAC10, miR-223, or EPB41L3 expression was altered. Results HDAC10 was poorly expressed in cervical cancer and precancer lesions, while miR-223 was highly expressed in cervical cancer. HDAC10 bound to miR-223, and miR-223 targeted EPB41L3. HDAC10 depressed the invasion property and tumorigenesis of cervical cancer via downregulating miR-223 and subsequently targeting EPB41L3. Conclusion The study clarifies that HDAC10 inhibits cervical cancer by downregulating miR-223 and subsequently targeting EPB41L3 expression, which might provide a new insight for management upon cervical cancer and precancer lesions.
Collapse
|
7
|
Chen S, Shen Z, Gao L, Yu S, Zhang P, Han Z, Kang M. TPM3 mediates epithelial-mesenchymal transition in esophageal cancer via MMP2/MMP9. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1338. [PMID: 34532475 PMCID: PMC8422148 DOI: 10.21037/atm-21-4043] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/20/2021] [Indexed: 11/29/2022]
Abstract
Background Esophageal cancer (EC) is a malignant tumor with high mortality. Correlations have been found between the expression level of tropomyosin 3 (TPM3) and the depth of tumor invasion, lymph node metastasis, and the 5-year survival rate. However, the specific mechanisms underlying EC remain unclear. Methods Stably transfected TPM3-overexpresing and TPM3-knockdown esophageal squamous cell carcinoma (ESCC) cell lines (ECa109 and EC9706) were constructed, and the association between TPM3 and the proliferation, invasion, and migration of ESCC was investigated using molecular biology methods. The associations between TPM3 and matrix metalloproteinase (MMP)2/9 or epithelial-mesenchymal transition (EMT)-related proteins were verified, and the potential tumor-promoting mechanism was explored by Gelatin Zymography Experiment. Results TPM3 was found to promote the proliferation, migration, and metastatic potential of ESCC in vivo and in vitro, and stimulate the expression of MMP2/9 and certain EMT markers other than E-cadherin. The replenishment of MMP2/9 restored the malignant behavior of ESCC caused by TPM3. A gelatinase assay showed that the expression of TPM3 was related to the activity of MMP9. Conclusions TPM3 promoted proliferation, migration, and metastatic potential in EC cells. Additionally, TPM3 promoted the EMT process. This function may be achieved via the regulation the expression of MMP2/9.
Collapse
Affiliation(s)
- Sui Chen
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Zhimin Shen
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Lei Gao
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Shaobin Yu
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Peipei Zhang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Ziyang Han
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Mingqiang Kang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China.,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Cardio-Thoracic Surgery, Fujian Medical University, Fuzhou, China
| |
Collapse
|
8
|
Obesity Potentiates Esophageal Squamous Cell Carcinoma Growth and Invasion by AMPK-YAP Pathway. J Immunol Res 2020; 2020:6765474. [PMID: 33381605 PMCID: PMC7748896 DOI: 10.1155/2020/6765474] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 10/01/2020] [Accepted: 11/30/2020] [Indexed: 01/05/2023] Open
Abstract
Obesity could increase the risk of esophageal squamous cell carcinoma (ESCC) and affect its growth and progression, but the mechanical links are unclear. The objective of the study was to explore the impact of obesity on ESCC growth and progression utilizing in vivo trials and cell experiments in vitro. Diet-induced obese and lean nude mice were inoculated with TE-1 cells, then studied for 4 weeks. Serum glucose, insulin, leptin, and visfatin levels were assayed. Sera of nude mice were obtained and then utilized to culture TE-1. MTT, migration and invasion assays, RT-PCR, and Western blotting were used to analyze endocrine effect of obesity on cell proliferation, migration, invasion, and related genes expression of TE-1. Obese nude mice bore larger tumor xenografts than lean animals, and were hyperglycemic and hyperinsulinemic with an elevated level of leptin and visfatin in sera, and also were accompanied by a fatty liver. As for the subcutaneous tumor xenograft model, tumors were more aggressive in obese nude mice than lean animals. Tumor weight correlated positively with mouse body weight, liver weight of mice, serum glucose, HOMA-IR, leptin, and visfatin. Obesity prompted significant TE-1 cell proliferation, migration, and invasion by endocrine mechanisms and impacted target genes. The expression of AMPK and p-AMPK protein decreased significantly (P < 0.05); MMP9, total YAP, p-YAP, and nonphosphorylated YAP protein increased significantly (P < 0.05) in the cells cultured with conditioned media and xenograft tumor from the obese group; the mRNA expression of AMPK decreased significantly (P < 0.05); YAP and MMP9 mRNA expression increased significantly (P < 0.05) in the cells exposed to conditioned media from the obese group. In conclusion, the altered adipokine milieu and metabolites in the context of obesity may promote ESCC growth in vivo; affect proliferation, migration, and invasion of ESCC cells in vitro; and regulate MMP9 and AMPK-YAP signaling pathway through complex effects including the endocrine effect.
Collapse
|
9
|
Khongsti S, Shunyu BN, Ghosh S. Promoter-associated DNA methylation & expression profiling of genes ( FLT 3, EPB41L3 & SFN) in patients with oral squamous cell carcinoma in the Khasi & Jaintia population of Meghalaya, India. Indian J Med Res 2020; 150:584-591. [PMID: 32048621 PMCID: PMC7038811 DOI: 10.4103/ijmr.ijmr_620_18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background & objectives: Oral squamous cell carcinoma is one of the most lethal forms of cancer, and its aetiology has been attributed to both genetic and epigenetic factors working in liaison to contribute to the disease. Epigenetic changes especially DNA methylation is involved in the activation or repression of gene functions. The aim of this study was to investigate the DNA methylation pattern and expression profiling of the promoter regions of FMS-related tyrosine kinase 3 (FLT3), erythrocyte membrane protein band 4.1-like 3 (EPB41L3) and stratifin (SFN) genes in oral cancer within the Khasi and Jaintia tribal population of Meghalaya in North East India. Methods: Quantitative methylation analyses of the selected genes were carried out by MassARRAY platform System, and the relative expression profiling was carried out by real-time polymerase chain reaction. Results: Quantitative methylation results indicated that the level of methylation was significantly higher (hypermethylated) for FLT3 and EPB41L3 and significantly lower (hypomethylated) for SFN in tumour tissues as compared to the adjacent paired normal tissue. Expression profiling was in concurrence with the methylation data whereby hypermethylated genes showed low mRNA level and vice versa for the hypomethylated gene. Interpretation & conclusions: The findings show that hyper- and hypomethylation of the selected genes play a potential role in oral carcinogenesis in the selected Khasi and Jaintia tribal population of Meghalaya. The methylation status of these genes has not been reported in oral cancer, so these genes may serve as promising biomarkers for oral cancer diagnosis as well as in disease monitoring.
Collapse
Affiliation(s)
- Shngainlang Khongsti
- Department of Zoology, North Eastern Hill University, Shillong, Meghalaya, India
| | - Brian Neizekhotuo Shunyu
- Department of Otorhinolaryngology, North East Indira Gandhi Regional Institute for Health & Medical Sciences, Shillong, Meghalaya, India
| | - Srimoyee Ghosh
- Department of Zoology, North Eastern Hill University, Shillong, Meghalaya, India
| |
Collapse
|
10
|
Zhao Q, Li Y, Li Y, Ji X, Li H, Wu D, Wei W, Xinchun W. Silencing EPB41 Gene Expression Leads to Cell Cycle Arrest, Migration Inhibition, and Upregulation of Cell Surface Antigen in DC2.4 Cells. Med Sci Monit 2020; 26:e920594. [PMID: 32157074 PMCID: PMC7085237 DOI: 10.12659/msm.920594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Protein 4.1R (EPB41) is the main cytoskeleton component of the erythrocyte membrane and may be involved in cell migration and adhesion. Previous research discovered overexpression of 4.1R in the thymus of patients with myasthenia gravis (MG). The protein 4.1R on dendritic cells may play a pivotal role in MG pathogenesis. This research investigated the effects of small interfering RNA 4.1R-siRNA on cell migration, cell cycle, and surface antigen expression of DC2.4 mouse dendritic cells, thus providing a new direction for the study of MG pathogenesis. MATERIAL AND METHODS Three 4.1R-specific siRNAs were designed, and the expression of 4.1R was detected by real-time PCR at the mRNA level and Western blot analysis at the protein level to select out the most efficient siRNAs. Changes in cell morphology were observed and cell migration ability was analyzed by Transwell assay. Cell cycle and surface antigen were both analyzed by flow cytometry. RESULTS The cell bodies of DC2.4 diminished, the synapses were increased, and protuberance became more obvious after being transfected with 4.1R-siRNA. After knockdown of 4.1R, cell migration ability decreased and the proportion of cells in S phase significantly increased (both P<0.05). The expression levels of MHCII, CD80, and CD86 were all increased in DC2.4 cells (all <0.05). CONCLUSIONS Silencing the expression of 4.1R in dendritic cells resulted in inhibition of migration ability, cell cycle arrest, and increase in surface antigens, which suggest that 4.1R participates in MG autoimmunity.
Collapse
Affiliation(s)
- Qing Zhao
- Department of Rheumatism, Huaihe Hosptial of Henan University, Kaifeng, Henan, China (mainland)
| | - Yongqiang Li
- Biochemisty and Molecular Teaching and Research Office, School of Basic Medical Science, Henan University, Kaifeng, Henan, China (mainland)
| | - Yanhong Li
- Department of General Medicine, The First Affiliated Hospital of Henan University, Kaifeng, Henan, China (mainland)
| | - Xinying Ji
- Department of Medical Microbiology, School of Basic Medical Science, Henan University, Kaifeng, Henan, China (mainland)
| | - Huimin Li
- Human Anatomy Teaching and Research Room, School of Basic Medical Science, Henan University, Kaifeng, Henan, China (mainland)
| | - Dongdong Wu
- Department of Physiology, School of Basic Medical Science, Henan University, Kaifeng, Henan, China (mainland)
| | - Wenqiang Wei
- Department of Medical Microbiology, School of Basic Medical Science, Henan University, Kaifeng, Henan, China (mainland)
| | - Wang Xinchun
- Molecular Biology Laboratory, The First Affiliated Hospital of Henan University, Kaifeng, Henan, China (mainland)
| |
Collapse
|
11
|
Yuan X, Piao L, Wang L, Han X, Zhuang M, Liu Z. Pivotal roles of protein 4.1B/DAL‑1, a FERM‑domain containing protein, in tumor progression (Review). Int J Oncol 2019; 55:979-987. [PMID: 31545421 DOI: 10.3892/ijo.2019.4877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 09/04/2019] [Indexed: 11/06/2022] Open
Abstract
Protein 4.1B/DAL‑1, encoded by erythrocyte membrane protein band 4.1‑like 3 (EPB41L3), belongs to the protein 4.1 superfamily, a group of proteins that share a conserved four.one‑ezrin‑radixin‑moesin (FERM) domain. Protein 4.1B/DAL‑1 serves a crucial role in cytoskeletal organization and a number of processes through multiple interactions with membrane proteins via its FERM, spectrin‑actin‑binding and C‑terminal domains. A number of studies have indicated that a loss of EPB41L3 expression is commonly observed in lung cancer, breast cancer, esophageal squamous cell carcinoma and meningiomas. DNA methylation and a loss of heterozygosity have been reported to contribute to the downregulation of EPB41L3. To date, the biological functions of protein 4.1B/DAL‑1 in carcinogenesis remain unknown. The present review summarizes the current understanding of the role of protein 4.1B/DAL‑1 in cancer and highlights its potential as a cancer diagnostic and prognostic biomarker in cancer therapeutics.
Collapse
Affiliation(s)
- Xiaofeng Yuan
- Department of Orthopaedics, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213000, P.R. China
| | - Lianhua Piao
- Institute of Bioinformatics and Medical Engineering, Jiangsu University of Technology, Changzhou, Jiangsu 213001, P.R. China
| | - Luhui Wang
- Department of Orthopaedics, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213000, P.R. China
| | - Xu Han
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213000, P.R. China
| | - Ming Zhuang
- Department of Orthopaedics, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213000, P.R. China
| | - Zhiwei Liu
- Department of Orthopaedics, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213000, P.R. China
| |
Collapse
|
12
|
Decreased expression levels of DAL-1 and TOB1 are associated with clinicopathological features and poor prognosis in gastric cancer. Pathol Res Pract 2019; 215:152403. [PMID: 30962003 DOI: 10.1016/j.prp.2019.03.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 03/19/2019] [Accepted: 03/31/2019] [Indexed: 12/18/2022]
Abstract
PURPOSE We previously demonstrated that the functional inactivation of DAL-1 and TOB1 promotes an aggressive phenotype in gastric cancer cells, but the links between both genes and the survival of patients with gastric cancer are unknown. Here, we investigated the correlations of the expression levels of DAL-1 and TOB1 with the progression of gastric cancer. METHODS A total of 270 patients who underwent resectable gastrectomy were included. The expression of DAL-1 and TOB1 was detected by immunohistochemistry. RESULTS Low expression of DAL-1 in cancer tissue was significantly associated with tumor site (p < 0.05), histological grade (p < 0.01), depth of invasion (p < 0.05), lymph node metastasis status (p < 0.05), Lauren classification (p < 0.001), and clinical stage (p < 0.01). A lower level of TOB1 was observed in gastric cancer patients with diffuse type disease compared to patients with either intestinal or mixed type disease (p < 0.001). Additionally, Spearman's correlation analysis revealed that decreased expression of DAL-1 was positively correlated with low TOB1 expression (r=0.304, p < 0.001). The survival analysis showed that low levels of DAL-1 and TOB1 were significantly associated with poor survival of gastric cancer patients (p <0.001 and p < 0.05, respectively). CONCLUSION The downregulation of DAL-1 and TOB1 expression is associated with shorter survival of gastric cancer patients. Hence, DAL-1 and TOB1 may be considered potential novel markers for predicting the outcomes of patients with gastric cancer.
Collapse
|
13
|
Zeng R, Liu Y, Jiang ZJ, Huang JP, Wang Y, Li XF, Xiong WB, Wu XC, Zhang JR, Wang QE, Zheng YF. EPB41L3 is a potential tumor suppressor gene and prognostic indicator in esophageal squamous cell carcinoma. Int J Oncol 2018; 52:1443-1454. [PMID: 29568917 PMCID: PMC5873871 DOI: 10.3892/ijo.2018.4316] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 02/15/2018] [Indexed: 02/06/2023] Open
Abstract
Although there have been reports about the role of erythrocyte membrane protein band 4.1 like 3 (EPB41L3) in several types of cancer, primarily in non-small-cell lung carcinoma, the molecular function and modulatory mechanisms of EPB41L3 remain unclear. In specific, the functional and clinical significance of EPB41L3 in esophageal squamous cell carcinoma (ESCC) has not been explored to date. In the present study, reduced EPB41L3 expression was demonstrated in ESCC cell lines and tissues, which was due to its high methylation rate. Ectopic expression of EPB41L3 in ESCC cells inhibited cell proliferation in vivo and in vitro. In addition, EPB41L3 overexpression induced apoptosis and G2/M cell cycle arrest by activating Caspase-3/8/9 and Cyclin-dependent kinase 1/Cyclin B1 signaling, respectively. Notably, patients with higher EPB41L3 expression had markedly higher overall survival rates compared with patients with lower EPB41L3 expression. In summary, the present results suggest that EPB41L3 may be a tumor suppressor gene in ESCC development, representing a potential therapeutic target and a prognostic indicator for ESCC.
Collapse
Affiliation(s)
- Rong Zeng
- Oncology Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Yi Liu
- Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Zhao-Jing Jiang
- Oncology Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Jun-Peng Huang
- Department of Medical Oncology, Fujian Provincial Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Yu Wang
- Department of Pathology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Xu-Feng Li
- Oncology Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Wei-Bin Xiong
- Oncology Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Xiao-Cong Wu
- Oncology Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Ji-Ren Zhang
- Oncology Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Qi-En Wang
- Department of Radiology, Division of Radiobiology, Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Yan-Fang Zheng
- Oncology Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| |
Collapse
|
14
|
Whole genome DNA methylation profiling of oral cancer in ethnic population of Meghalaya, North East India reveals novel genes. Genomics 2017; 110:112-123. [PMID: 28890207 DOI: 10.1016/j.ygeno.2017.09.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 09/04/2017] [Accepted: 09/05/2017] [Indexed: 12/22/2022]
Abstract
Oral Squamous Cell Carcinoma (OSCC) is a serious and one of the most common and highly aggressive malignancies. Epigenetic factors such as DNA methylation have been known to be implicated in a number of cancer etiologies. The main objective of this study was to investigate physiognomies of Promoter DNA methylation patterns associated with oral cancer epigenome with special reference to the ethnic population of Meghalaya, North East India. The present study identifies 27,205 CpG sites and 3811 regions that are differentially methylated in oral cancer when compared to matched normal. 45 genes were found to be differentially methylated within the promoter region, of which 38 were hypermethylated and 7 hypomethylated. 14 of the hypermethylated genes were found to be similar to that of the TCGA-HNSCC study some of which are TSGs and few novel genes which may serve as candidate methylation biomarkers for OSCC in this poorly characterized ethnic group.
Collapse
|
15
|
Dai F, Mei L, Meng S, Ma Z, Guo W, Zhou J, Zhang J. The global expression profiling in esophageal squamous cell carcinoma. Genomics 2017; 109:241-250. [PMID: 28442363 DOI: 10.1016/j.ygeno.2017.04.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 03/30/2017] [Accepted: 04/21/2017] [Indexed: 02/07/2023]
|
16
|
Zhu L, Yang N, Chen J, Zeng T, Yan S, Liu Y, Yu G, Chen Q, Du G, Pan W, Li X, Zhou H, Huang A, Tang H. LINC00052 upregulates EPB41L3 to inhibit migration and invasion of hepatocellular carcinoma by binding miR-452-5p. Oncotarget 2017; 8:63724-63737. [PMID: 28969024 PMCID: PMC5609956 DOI: 10.18632/oncotarget.18892] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 06/05/2017] [Indexed: 02/07/2023] Open
Abstract
Numerous studies have demonstrated that a class of long noncoding RNAs (lncRNAs) are dysregulated in hepatocellular carcinoma (HCC) and they are closely related with tumorigenesis. Our previous studies indicated that LINC00052 was a downregulated lncRNA in HCC and acted as a tumor suppressor gene. Using transcription microarray analysis, we found that knockdown of LINC00052 resulted in EPB41L3 downregulation. However, the function of EPB41L3 and the mechanism of LINC00052 downregulating EPB41L3 in HCC remain unclear. In this study, we found that overexpression of LINC00052 could upregulate the EPB41L3 expression and it might serve as a tumor suppressor gene in HCC. Database analysis showed that miR-452-5P could target LINC00052. The binding regions between LINC00052 and miR-452-5P were confirmed by luciferase assays. Moreover, LINC00052 inhibited cell malignant behavior by increasing miR-452-5P expression, suggesting that LINC00052 was negatively regulated by miR-452-5P. In addition, overexpression of miR-452-5P resulted in a decrease of EPB41L3 expression, suggesting that EPB41L3 was as a target of miR-452-5P. In conclusion, these results demonstrated that a novel pathway was mediated by LINC00052 in HCC.
Collapse
Affiliation(s)
- Liying Zhu
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.,Department of Medical Laboratory, Guizhou Medical University, Guiyang, China
| | - Nenghong Yang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Juan Chen
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Tao Zeng
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Shaoying Yan
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yuyang Liu
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Gangfeng Yu
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Qiuxu Chen
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Guiqin Du
- Department of Medical Laboratory, Guizhou Medical University, Guiyang, China
| | - Wei Pan
- Department of Medical Laboratory, Guizhou Medical University, Guiyang, China
| | - Xing Li
- Department of Medical Laboratory, Guizhou Medical University, Guiyang, China
| | - Huihao Zhou
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Ailong Huang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, China
| | - Hua Tang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
17
|
Huang J, Wu G, Zeng R, Wang J, Cai R, Ho JCM, Zhang J, Zheng Y. Chromium contributes to human bronchial epithelial cell carcinogenesis by activating Gli2 and inhibiting autophagy. Toxicol Res (Camb) 2017; 6:324-332. [PMID: 30090501 DOI: 10.1039/c6tx00372a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 02/15/2017] [Indexed: 01/07/2023] Open
Abstract
Occupational and environmental inhalation exposure to hexavalent chromium [Cr(vi)] compounds has been confirmed to cause respiratory system injury and cancer. The molecular mechanisms of chromium carcinogenesis still require further study. We established Cr(vi)-transformed cells (BEAS-2B-Cr) after chronic exposure of immortalized normal human bronchial epithelial BEAS-2B cells to low doses of Cr(vi), which obtained the ability of anchorage-independent growth. BEAS-2B-Cr cells not only exhibited stronger proliferation, migration, invasion and tumorigenesis capabilities but also acquired an altered and distinct Gli2 gene expression pattern compared with untreated parental BEAS-2B cells (P-NC) and the control BEAS-2B cells (NC). Interestingly, we found that activation of Gli2 by Cr(vi) treatment prevented the induction of autophagy. Using a gene silencing approach, we showed that Gli2 plays an important role in the malignant properties of BEAS-2B-Cr cells. Downregulation of Gli2 induced autophagy and inhibited cell proliferation and colony forming abilities, which are both upregulated in BEAS-2B-Cr cells compared to NC cells. In addition, inhibition of autophagy by 3-methyladenine (3-MA) partially suppressed the cytotoxicity induced by GANT61-induced inhibition of Gli2. These results demonstrate that hexavalent chromium Cr(vi) activates Gli2 to promote the proliferation of BEAS-2B-Cr cells by inhibition of autophagy, which contributes to human bronchial epithelial cell carcinogenesis. Gli2 may not only play an important role in lung cancer pathogenesis, but also be a promising early indicator in monitoring exposure to chromium.
Collapse
Affiliation(s)
- Junpeng Huang
- Oncology Center , Zhujiang Hospital of Southern Medical University , Guangzhou , Guangdong 510282 , China .
| | - Gang Wu
- Oncology Center , Zhujiang Hospital of Southern Medical University , Guangzhou , Guangdong 510282 , China .
| | - Rong Zeng
- Oncology Center , Zhujiang Hospital of Southern Medical University , Guangzhou , Guangdong 510282 , China .
| | - Jinting Wang
- Oncology Center , Zhujiang Hospital of Southern Medical University , Guangzhou , Guangdong 510282 , China .
| | - Rui Cai
- Oncology Center , Zhujiang Hospital of Southern Medical University , Guangzhou , Guangdong 510282 , China .
| | - James Chung-Man Ho
- Division of Respiratory Medicine , Department of Medicine , The University of Hong Kong , Queen Mary Hospital , Hong Kong , SAR
| | - Jiren Zhang
- Oncology Center , Zhujiang Hospital of Southern Medical University , Guangzhou , Guangdong 510282 , China . .,Guangdong Institute of Tumor Target Intervention and Prevention , Qingyuan , 511500 , China
| | - Yanfang Zheng
- Oncology Center , Zhujiang Hospital of Southern Medical University , Guangzhou , Guangdong 510282 , China .
| |
Collapse
|