1
|
Huang J, Wang X, Zeng Y, Xu H, Zhang S, Ding Z, Guo R. Identification of key mitochondria-related genes and their potential crosstalk role with immune pattern in Idiopathic pulmonary fibrosis. Gene 2024; 930:148840. [PMID: 39147114 DOI: 10.1016/j.gene.2024.148840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/29/2024] [Accepted: 08/09/2024] [Indexed: 08/17/2024]
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) stands out as a life-threatening and one of the most severe interstitial lung diseases. The pathogenesis of IPF is not fully understood, while recent studies have highlighted the association of mitochondrial dysfunction with IPF. This study is dedicated to pinpointing crucial genes related to mitochondria that potentially impact the advancement of IPF, thereby offering new perspectives on the pathogenesis of this condition. METHODS The Gene Expression Omnibus (GEO) database was utilized to download three datasets (GSE32537, GSE92592, and GSE150910), following which a comprehensive analysis was conducted to identify differentially expressed mitochondria-related genes (DEMTRGs) in the IPF lung tissues. Subsequently, GO and KEGG enrichment analysis of the DEMTRGs was performed. Next, external datasets and in vivo experiments were performed to validate their expression. Additionally, a Logistic regression model based on key DEMTRGs was constructed, and the model's ability to distinguish between IPF and controls was evaluated using the area under the receiver operating characteristic (ROC) curve (AUC). Finally, gene set enrichment analysis (GSEA) and CIBERSORT algorithm were conducted. RESULTS We identified five key DEMTRGs (ALDH18A1, ALDH1B1, MCCC1, ACAT1, and PDHA1), ALDH18A1 and ALDH1B1 exhibited upregulated expression levels, whereas MCCC1, ACAT1, and PDHA1 showed downregulation in the lung tissue of individuals with IPF. The expression levels of these key DEMTRGs were validated by an independent external dataset (GSE53845) and the bleomycin-induced pulmonary fibrosis mice. In addition, the ROCs indicated that the diagnostic model constructed based on key DEMTRGs could effectively distinguish between IPF and controls (AUC>0.8). GSEA analysis and immune-related analysis shed light on the potential mechanisms through which these key DEMTRGs influence IPF. CONCLUSION Our research has pinpointed key genes associated with mitochondria that may ultimately contribute to the progression of IPF by exerting regulatory effects on mitochondrial function, thereby influencing multiple cellular processes.
Collapse
Affiliation(s)
- Jun Huang
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - Xia Wang
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - Youjie Zeng
- Department of Anesthesiology, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - Huilin Xu
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - Siyi Zhang
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - Zhigang Ding
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Ren Guo
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China.
| |
Collapse
|
2
|
Yin Y, Liu Z, Li Q, Gou M, Han Y, Xu Y. Identification and evolution of PDK-1-like involving lamprey innate immunity. Mol Immunol 2024; 172:47-55. [PMID: 38875755 DOI: 10.1016/j.molimm.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 12/02/2023] [Accepted: 06/01/2024] [Indexed: 06/16/2024]
Abstract
3-phosphoinositide-dependent protein kinase-1 (PDK-1) is a key kinase regulating the activity of the PI3K/AKT pathway and a major regulator of the AGC protein kinase family. It is essential in the physiological activities of cells, embryonic development, individual development and immune response. In this study, we have identified for the first time an analogue of PDK-1 in the most primitive vertebrate, lamprey, and named it PDK-1-like. The protein sequence similarity of lamprey PDK-1-like to human, mouse, chicken, African xenopus and zebrafish PDK-1 were 64.4 %, 64.5 %, 65.0 %, 61.3 % and 63.2 %, respectively. The phylogenetic tree showed that PDK-1-like of lamprey were located at the base of the vertebrate branch, in line with the trend of biological evolution. Meanwhile, homology analysis showed that PDK-1 proteins across species shared a conserved kinase structural domain and a Pleckstrin Homology (PH) domain. Genomic synteny analysis revealed that the large-scale duplication blocks were not found in lamprey genome and neighbor genes of lamprey PDK-1-like presented dramatic differences compared with jawed vertebrates. More importantly, qPCR analysis showed that PDK-1-like was widely expressed in lamprey. Its mRNA expression levels varied in response to different pathogenic stimuli, and its expression was generally up-regulated under Polyinosinic-Polycytidylic acid (Poly(I:C)) stimulation. Pearson's correlation analysis showed that PDK-1-like was involved in co-expressed with MyD88-independent TLR-3 pathway during the immune response of lamprey, instead of MyD88-dependent TLR-3 pathway. In summary, our composite results offer valuable clues to the origin and evolution of PDK-1, and imply that PDK-1 s are among the most ancestral immune regulators in vertebrates.
Collapse
Affiliation(s)
- Yi Yin
- College of Life Sciences, Liaoning Normal University, Dalian, China; Lamprey Research Center, Liaoning Normal University, Dalian, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Zhulin Liu
- College of Life Sciences, Liaoning Normal University, Dalian, China; Lamprey Research Center, Liaoning Normal University, Dalian, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Qingwei Li
- College of Life Sciences, Liaoning Normal University, Dalian, China; Lamprey Research Center, Liaoning Normal University, Dalian, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| | - Meng Gou
- College of Life Sciences, Liaoning Normal University, Dalian, China; Lamprey Research Center, Liaoning Normal University, Dalian, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China.
| | - Yinglun Han
- College of Life Sciences, Liaoning Normal University, Dalian, China; Lamprey Research Center, Liaoning Normal University, Dalian, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China.
| | - Yang Xu
- College of Life Sciences, Liaoning Normal University, Dalian, China; Lamprey Research Center, Liaoning Normal University, Dalian, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China.
| |
Collapse
|
3
|
Li X, He X, Lin B, Li L, Deng Q, Wang C, Zhang J, Chen Y, Zhao J, Li X, Li Y, Xi Q, Zhang R. Quercetin Limits Tumor Immune Escape through PDK1/CD47 Axis in Melanoma. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:541-563. [PMID: 38490807 DOI: 10.1142/s0192415x2450023x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
Quercetin (3,3[Formula: see text],4[Formula: see text],5,7-pentahydroxyflavone) is a bioactive plant-derived flavonoid, abundant in fruits and vegetables, that can effectively inhibit the growth of many types of tumors without toxicity. Nevertheless, the effect of quercetin on melanoma immunology has yet to be determined. This study aimed to investigate the role and mechanism of the antitumor immunity action of quercetin in melanoma through both in vivo and in vitro methods. Our research revealed that quercetin has the ability to boost antitumor immunity by modulating the tumor immune microenvironment through increasing the percentages of M1 macrophages, CD8[Formula: see text] T lymphocytes, and CD4[Formula: see text] T lymphocytes and promoting the secretion of IL-2 and IFN-[Formula: see text] from CD8[Formula: see text] T cells, consequently suppressing the growth of melanoma. Furthermore, we revealed that quercetin can inhibit cell proliferation and migration of B16 cells in a dose-dependent manner. In addition, down-regulating PDK1 can inhibit the mRNA and protein expression levels of CD47. In the rescue experiment, we overexpressed PDK1 and found that the protein and mRNA expression levels of CD47 increased correspondingly, while the addition of quercetin reversed this effect. Moreover, quercetin could stimulate the proliferation and enhance the function of CD8[Formula: see text] T cells. Therefore, our results identified a novel mechanism through which CD47 is regulated by quercetin to promote phagocytosis, and elucidated the regulation of quercetin on macrophages and CD8[Formula: see text] T cells in the tumor immune microenvironment. The use of quercetin as a therapeutic drug holds potential benefits for immunotherapy, enhancing the efficacy of existing treatments for melanoma.
Collapse
Affiliation(s)
- Xin Li
- Laboratory of Immunology and Inflammation, Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
| | - Xue He
- Laboratory of Immunology and Inflammation, Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
| | - Bing Lin
- Laboratory of Immunology and Inflammation, Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
| | - Li Li
- Laboratory of Immunology and Inflammation, Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
| | - Qifeng Deng
- Laboratory of Immunology and Inflammation, Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
| | - Chengzhi Wang
- Department of Immunology, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, School of Basic Sciences, Tianjin Medical University, Tianjin 300203, P. R. China
| | - Jing Zhang
- Laboratory of Immunology and Inflammation, Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
| | - Ying Chen
- Laboratory of Immunology and Inflammation, Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
| | - Jingyi Zhao
- Laboratory of Immunology and Inflammation, Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
| | - Xinrui Li
- Laboratory of Immunology and Inflammation, Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
| | - Yan Li
- Laboratory of Immunology and Inflammation, Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
| | - Qing Xi
- Department of Gastroenterology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510062, P. R. China
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou 510641, P. R. China
| | - Rongxin Zhang
- Laboratory of Immunology and Inflammation, Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
| |
Collapse
|
4
|
Ge J, Zhang N, Tang S, Hu F, Hou X, Sun H, Han L, Wang Q. Loss of PDK1 Induces Meiotic Defects in Oocytes From Diabetic Mice. Front Cell Dev Biol 2022; 9:793389. [PMID: 34988082 PMCID: PMC8720995 DOI: 10.3389/fcell.2021.793389] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/16/2021] [Indexed: 01/02/2023] Open
Abstract
Maternal diabetes has been shown to impair oocyte quality; however, the underlying mechanisms remain unclear. Here, using a streptozotocin (STZ)-induced diabetic mouse model, we first detected and reduced expression of pyruvate dehydrogenase kinase 1 (PDK1) in diabetic oocytes, accompanying with the lowered phosphorylation of serine residue 232 on α subunit of the pyruvate dehydrogenase (PDH) complex (Ser232-PDHE1α). Importantly, forced expression of PDK1 not only elevated the phosphorylation level of Ser232-PDHE1α, but also partly prevented the spindle disorganization and chromosome misalignment in oocytes from diabetic mice, with no beneficial effects on metabolic dysfunction. Moreover, a phospho-mimetic S232D-PDHE1α mutant is also capable of ameliorating the maternal diabetes-associated meiotic defects. In sum, our data indicate that PDK1-controlled Ser232-PDHE1α phosphorylation pathway mediates the effects of diabetic environment on oocyte competence.
Collapse
Affiliation(s)
- Juan Ge
- State Key Laboratory of Reproductive Medicine, Suzhou Municipal Hospital, Nanjing Medical University, Nanjing, China
| | - Na Zhang
- State Key Laboratory of Reproductive Medicine, Suzhou Municipal Hospital, Nanjing Medical University, Nanjing, China
| | - Shoubin Tang
- State Key Laboratory of Reproductive Medicine, Suzhou Municipal Hospital, Nanjing Medical University, Nanjing, China
| | - Feifei Hu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaojing Hou
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child HealthCare Hospital, Nanjing, China
| | - Hongzheng Sun
- State Key Laboratory of Reproductive Medicine, Suzhou Municipal Hospital, Nanjing Medical University, Nanjing, China
| | - Longsen Han
- State Key Laboratory of Reproductive Medicine, Suzhou Municipal Hospital, Nanjing Medical University, Nanjing, China
| | - Qiang Wang
- State Key Laboratory of Reproductive Medicine, Suzhou Municipal Hospital, Nanjing Medical University, Nanjing, China.,Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
5
|
Tinker RJ, Burghel GJ, Garg S, Steggall M, Cuvertino S, Banka S. Haploinsufficiency of ATP6V0C possibly underlies 16p13.3 deletions that cause microcephaly, seizures, and neurodevelopmental disorder. Am J Med Genet A 2020; 185:196-202. [PMID: 33090716 DOI: 10.1002/ajmg.a.61905] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/15/2020] [Accepted: 09/19/2020] [Indexed: 12/11/2022]
Abstract
We recently contributed to the description of eight individuals with a novel condition caused by 16p13.3 microdeletions encompassing TBC1D24, ATP6V0C, and PDPK1 and resulting in epilepsy, microcephaly and neurodevelopmental problems. The phenotypic spectrum, the minimum overlapping region and the underlying disease mechanism for this disorder remain to be clarified. Here we report a 3.5-year-old male, with microcephaly, autism spectrum disorder and a de novo 16p13.3 microdeletion. We performed detailed in silico analysis to show that the minimum overlapping region for the condition is ~80Kb encompassing five protein coding genes. Analysis of loss of function constraint metrics, transcript-aware evaluation of the population variants, GeVIR scores, analysis of reported pathogenic point variants, detailed review of the known functions of gene products and their animal models showed that the haploinsufficiency of ATP6V0C likely underlies the phenotype of this condition. Protein-protein interaction network, gene phenology and analysis of topologically associating domain showed that it was unlikely that the disorder has an epistatic or regulatory basis. 16p13.3 deletions encompassing ATP6V0C cause a neurodevelopmental disorder. Our results broaden the phenotypic spectrum of this disorder and clarify the likely underlying disease mechanism for the condition.
Collapse
Affiliation(s)
- Rory J Tinker
- Manchester Centre for Genomic Medicine, St. Mary's Hospital, Manchester University Foundation NHS Trust, Manchester, UK
| | - George J Burghel
- Manchester Centre for Genomic Medicine, St. Mary's Hospital, Manchester University Foundation NHS Trust, Manchester, UK
| | - Shruti Garg
- Division of Neuroscience & Experimental Psychology, School of Biological Sciences, University of Manchester, Manchester, UK
- Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, Greater Manchester Mental Health NHS Trust, Manchester, UK
- Department of Child and Adolescent Psychiatry, Royal Manchester Children's Hospital, Manchester, UK
| | - Maggie Steggall
- Department of Paediatric Medicine, Royal Manchester Children's Hospital, Manchester, UK
| | - Sara Cuvertino
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine, and Health, The University of Manchester, Manchester, UK
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine, and Health, The University of Manchester, Manchester, UK
| | - Siddharth Banka
- Manchester Centre for Genomic Medicine, St. Mary's Hospital, Manchester University Foundation NHS Trust, Manchester, UK
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine, and Health, The University of Manchester, Manchester, UK
| |
Collapse
|
6
|
Chen GM, Zheng AJ, Cai J, Han P, Ji HB, Wang LL. microRNA-145-3p inhibits non-small cell lung cancer cell migration and invasion by targeting PDK1 via the mTOR signaling pathway. J Cell Biochem 2017; 119:885-895. [PMID: 28661070 DOI: 10.1002/jcb.26252] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 06/28/2017] [Indexed: 12/12/2022]
Abstract
The mammalian target of rapamycin (mTOR) pathway is dysregulated in more than 50% of all human malignancies and is a major target in cancer treatment. In this study, we explored the underlying mechanism involving microRNA-145-3p (miR-145-3p) in the development and progression of non-small cell lung cancer (NSCLC) by targeting PDK1 via the mTOR signaling pathway. NSCLC tissues and adjacent normal tissues were obtained from 83 NSCLC patients. miR-145-3p, PDK1, and mTOR levels were determined by quantitative real-time polymerase chain reaction (qRT-PCR) and immunohistochemistry. Human NSCLC cell lines A549 and H1299 were transfected with miR-145-3p and siPDK1 to confirm the effect of miR-145-3p and PDK1 on NSCLC cells in vitro. Cell growth was evaluated by a CCK8 assay. Cell motility and chemotaxis analysis were determined by the scratch test and chemotaxis assay, respectively. The protein levels of PDK1 and mTOR were measured using the western blotting. Results showed lower level of miR-145-3p and higher levels of PDK1 and mTOR in NSCLC tissues compared to the adjacent normal tissues. In vitro results showed that cell growth, cell motility, and chemotaxis were all inhibited in cells transfected with miR-145-3p and those transfected with siPDK. Additionally, dual luciferase reporter gene assay helped confirmed that PDK1 is a target of miR-145. Finally, levels of PDK1, mTOR, and phosphorylated-mTOR were lower in cells transfected with miR-145-3p as well as those with siPDK1. These findings indicate that miR-145-3p may inhibit cell growth, motility, and chemotaxis in NSCLC by targeting PDK1 through suppressing the mTOR pathway.
Collapse
Affiliation(s)
- Gui-Min Chen
- Department of Oncology, Linyi Cancer Hospital, Linyi, P. R. China
| | - A-Juan Zheng
- Department of Imaging, Linyi People's Hospital, Linyi, P. R. China
| | - Jing Cai
- Department of Neurosurgery, Linyi People's Hospital, Linyi, P. R. China
| | - Ping Han
- Department of Respiratory Medicine, Linyi People's Hospital, Linyi, P. R. China
| | - Hong-Bo Ji
- Department of Medical Oncology in Section One, Inner Mongolia Chifeng Hospital, Chifeng, P. R. China
| | - Le-Le Wang
- Department of Medical Oncology in Section One, Inner Mongolia Chifeng Hospital, Chifeng, P. R. China
| |
Collapse
|
7
|
Bonavia A, Miller L, Kellum JA, Singbartl K. Hemoadsorption corrects hyperresistinemia and restores anti-bacterial neutrophil function. Intensive Care Med Exp 2017; 5:36. [PMID: 28779451 PMCID: PMC5544662 DOI: 10.1186/s40635-017-0150-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 07/24/2017] [Indexed: 12/16/2022] Open
Abstract
Background Mounting evidence suggests that sepsis-induced morbidity and mortality are due to both immune activation and immunosuppression. Resistin is an inflammatory cytokine and uremic toxin. Septic hyperresistinemia (plasma resistin >20 ng/ml) has been associated with greater disease severity and worse outcomes, and it is further exacerbated by concomitant acute kidney injury (AKI). Septic hyperresistinemia disturbs actin polymerization in neutrophils leading to impaired neutrophil migration, a crucial first-line mechanism in host defense to bacterial infection. Our experimental objective was to study the effects of hyperresistinemia on other F-actin-dependent neutrophil defense mechanisms, in particular intracellular bacterial clearance and generation of reactive oxygen species (ROS). We also sought to examine the effects of hemoadsorption on hyperresistinemia and neutrophil dysfunction. Methods Thirteen patients with septic shock and six control patients were analyzed for serum resistin levels and their effects on neutrophil migration. In vitro, following incubation with resistin-spiked serum samples, Pseudomonasaeruginosa clearance and ROS generation in neutrophils were measured. Phosphorylation of 3-phosphoinositide-dependent protein kinase-1 (PDPK1) was assessed using flow cytometry. In vitro hemoadsorption with both Amberchrome™ columns (AC) and CytoSorb® cartridges (CC) were used to test correction of hyperresistinemia. We further tested AC for their effect on cell migration and ROS generation and CC for their effect on bacterial clearance. Results Patients with septic shock had higher serum resistin levels than control ICU patients and showed a strong, negative correlation between hyperresistinemia and neutrophil transwell migration (ρ= − 0.915, p < 0.001). In vitro, neutrophils exposed to hyperresistinemia exhibited twofold lower intracellular bacterial clearance rates compared to controls. Resistin impaired intracellular signaling and ROS production in a dose-dependent manner. Hemoadsorption with AC reduced serum concentrations of resistin and restored neutrophil migration and generation of ROS to normal levels. Hemoadsorption with CC also corrected hyperresistinemia and reconstituted normal intracellular bacterial clearance. Conclusions Septic hyperresistinemia strongly correlates with inhibition of neutrophil migration in vitro. Hyperresistinemia itself reversibly impairs neutrophil intracellular bacterial clearance and ROS generation. Hemoadsorption therapy with a clinically approved device corrects hyperresistinemia and neutrophil dysfunction. It may therefore provide a therapeutic option to improve neutrophil function during septic hyperresistinemia and ultimately alleviate immunosuppression in this disease state.
Collapse
Affiliation(s)
- Anthony Bonavia
- Department of Anesthesiology and Perioperative Medicine, Penn State Health, Hershey, PA, USA
| | - Lauren Miller
- Department of Anesthesiology and Perioperative Medicine, Penn State Health, Hershey, PA, USA
| | - John A Kellum
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,Center for Critical Care Nephrology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kai Singbartl
- Department of Anesthesiology and Perioperative Medicine, Penn State Health, Hershey, PA, USA. .,Center for Critical Care Nephrology, University of Pittsburgh, Pittsburgh, PA, USA. .,Department of Critical Care Medicine, Mayo Clinic, 5777 East Mayo Boulevard, Phoenix, AZ, 85054, USA.
| |
Collapse
|