1
|
He L, Feng X, Hu C, Liu S, Sheng H, Cai B, Ma Y. HOXA9 gene inhibits proliferation and differentiation and promotes apoptosis of bovine preadipocytes. BMC Genomics 2024; 25:358. [PMID: 38605318 PMCID: PMC11007997 DOI: 10.1186/s12864-024-10231-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 03/15/2024] [Indexed: 04/13/2024] Open
Abstract
BACKGROUND Hox gene family is an important transcription factor that regulates cell process, and plays a role in the process of adipocytes differentiation and fat deposition. Previous transcriptome sequencing studies have indicated that the Homeobox A9 gene (HOXA9) is a candidate gene for regulating the process of bovine lipid metabolism, but the function and specific mechanism of action remain unclear. Therefore, this study aims to explore the role of HOXA9 in the proliferation, differentiation and apoptosis of bovine preadipocytes through gain-of-function and lose-of-function. RESULT It found HOXA9 highly expressed in bovine adipose tissue, and its expression level changed significantly during adipocytes differentiation process. It gave a hint that HOXA9 may be involved in the process of bovine lipid metabolism. The results of HOXA9 gain-of-function experiments indicated that HOXA9 appeared to act as a negative regulator not only in the differentiation but also in the proliferation of bovine preadipocytes, which is mainly reflected that overexpression of HOXA9 down-regulate the mRNA and protein expression level of PPARγ, CEBPα and FABP4 (P < 0.05). The mRNA expression level of CDK1, CDK2, PCNA, CCNA2, CCNB1, CCND1 and CCNE2, as well as the protein expression of CDK2 also significantly decreased. The decrease of lipid droplets content was the main characteristic of the phenotype (P < 0.01), which further supported the evidence that HOXA9 was a negative regulator of preadipocytes differentiation. The decrease of cell proliferation rate and EdU positive rate, as well as the limitation of transition of preadipocytes from G0/G1 phase to S phase also provided evidence for the inhibition of proliferation. Apart from this above, we noted an interesting phenomenon that overexpression of HOXA9 showed in a significant upregulation of both mRNA and protein level of apoptosis markers, accompanied by a significant increase in cell apoptosis rate. These data led us not to refute the fact that HOXA9 played an active regulatory role in apoptosis. HOXA9 loss-of-function experiments, however, yielded the opposite results. Considering that HOXA9 acts as a transcription factor, we predicted its target genes. Dual luciferase reporter assay system indicated that overexpression of HOXA9 inhibits activity of PCNA promoter. CONCLUSION Taken together, we demonstrated for the first time that HOXA9 played a role as a negative regulatory factor in the differentiation and proliferation of preadipocytes, but played a positive regulatory role in apoptosis, and it may play a regulatory role by targeting PCNA. This study provides basic data for further exploring the regulatory network of intramuscular fat deposition in bovine.
Collapse
Affiliation(s)
- Lixia He
- College of Animal Science and Technology, Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, Ningxia University, 750021, Yinchuan, China
| | - Xue Feng
- College of Animal Science and Technology, Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, Ningxia University, 750021, Yinchuan, China
| | - Chunli Hu
- College of Animal Science and Technology, Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, Ningxia University, 750021, Yinchuan, China
| | - Shuang Liu
- College of Animal Science and Technology, Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, Ningxia University, 750021, Yinchuan, China
| | - Hui Sheng
- College of Animal Science and Technology, Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, Ningxia University, 750021, Yinchuan, China
| | - Bei Cai
- College of Animal Science and Technology, Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, Ningxia University, 750021, Yinchuan, China
| | - Yun Ma
- College of Animal Science and Technology, Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, Ningxia University, 750021, Yinchuan, China.
| |
Collapse
|
2
|
Fan H, Wang F, Zeng A, Murison A, Tomczak K, Hao D, Jelloul FZ, Wang B, Barrodia P, Liang S, Chen K, Wang L, Zhao Z, Rai K, Jain AK, Dick J, Daver N, Futreal A, Abbas HA. Single-cell chromatin accessibility profiling of acute myeloid leukemia reveals heterogeneous lineage composition upon therapy-resistance. Commun Biol 2023; 6:765. [PMID: 37479893 PMCID: PMC10362028 DOI: 10.1038/s42003-023-05120-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 07/07/2023] [Indexed: 07/23/2023] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous disease characterized by high rate of therapy resistance. Since the cell of origin can impact response to therapy, it is crucial to understand the lineage composition of AML cells at time of therapy resistance. Here we leverage single-cell chromatin accessibility profiling of 22 AML bone marrow aspirates from eight patients at time of therapy resistance and following subsequent therapy to characterize their lineage landscape. Our findings reveal a complex lineage architecture of therapy-resistant AML cells that are primed for stem and progenitor lineages and spanning quiescent, activated and late stem cell/progenitor states. Remarkably, therapy-resistant AML cells are also composed of cells primed for differentiated myeloid, erythroid and even lymphoid lineages. The heterogeneous lineage composition persists following subsequent therapy, with early progenitor-driven features marking unfavorable prognosis in The Cancer Genome Atlas AML cohort. Pseudotime analysis further confirms the vast degree of heterogeneity driven by the dynamic changes in chromatin accessibility. Our findings suggest that therapy-resistant AML cells are characterized not only by stem and progenitor states, but also by a continuum of differentiated cellular lineages. The heterogeneity in lineages likely contributes to their therapy resistance by harboring different degrees of lineage-specific susceptibilities to therapy.
Collapse
Affiliation(s)
- Huihui Fan
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Feng Wang
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Andy Zeng
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, M5S 1A8, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Alex Murison
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, M5S 1A8, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Katarzyna Tomczak
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dapeng Hao
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Fatima Zahra Jelloul
- Department of Hematopathology, University of Texas M D Anderson Cancer Center, Houston, TX, USA
| | - Bofei Wang
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Praveen Barrodia
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shaoheng Liang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Ken Chen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Linghua Wang
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Kunal Rai
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Abhinav K Jain
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - John Dick
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, M5S 1A8, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Naval Daver
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Andy Futreal
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hussein A Abbas
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
3
|
Cai H, Ke ZB, Dong RN, Chen H, Lin F, Zheng WC, Chen SH, Zhu JM, Chen SM, Zheng QS, Wei Y, Xue XY, Xu N. The prognostic value of homeobox A9 (HOXA9) methylation in solid tumors: a systematic review and meta-analysis. Transl Cancer Res 2022; 10:4347-4354. [PMID: 35116293 PMCID: PMC8797409 DOI: 10.21037/tcr-21-765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 08/20/2021] [Indexed: 01/24/2023]
Abstract
Background The prognosis of homeobox A9 (HOXA9) methylation have been assessed in a variety of cancers; nevertheless, the results remain undetermined due to discrete outcome and the limitations of small sample size. Therefore, we conducted a meta-analysis to explore the effect of HOXA9 methylation on the prognostic outcomes of patients with solid tumors. Methods Qualified studies were verified by searching PubMed, Excerpta Medica Database and Web of Science until September, 2020. Clinicopathological factors and hazard ratio (HR) of 95% confidence interval (95% CI) were selected. Subgroup analysis including carcinoma category, analysis method and sample size were adopted. Results In the meta-analysis 1,031 patients with solid carcinoma from 7 eligible investigations were involved. Among human cancer we discovered that the high HOXA9 methylation level was negative correlative with overall survival (OS) (HR =2.36; 95% CI: 1.70–3.26). In the subgroup analysis, we found HOXA9 methylation over-expression had statistical significance with poorer OS in lung cancer patients (HR =3.08, 95% CI: 1.70–5.55, P=0.002) and non-lung cancer (HR =2.10, 95% CI: 1.42–3.10, P=0.0002). Similar result was found in sample size. Greater than or equal to 100 (HR =2.31, 95% CI: 1.54–3.45, P<0.0001) and less than 100 (HR =2.45, 95% CI: 1.42–4.23, P=0.001). Discussion HOXA9 methylation has a significantly estimable biomarker of predicting poor prognosis and a potential target for therapy in solid malignant carcinoma from our meta-analysis.
Collapse
Affiliation(s)
- Hai Cai
- Department of Urology, Urology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Zhi-Bin Ke
- Department of Urology, Urology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Ru-Nan Dong
- Department of Urology, Urology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Hang Chen
- Department of Urology, Urology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Fei Lin
- Department of Urology, Urology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Wen-Cai Zheng
- Department of Urology, Urology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Shao-Hao Chen
- Department of Urology, Urology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Jun-Ming Zhu
- Department of Urology, Urology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Shao-Ming Chen
- Department of Nuclear Medicine, First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Qing-Shui Zheng
- Department of Urology, Urology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Yong Wei
- Department of Urology, Urology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Xue-Yi Xue
- Department of Urology, Urology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Ning Xu
- Department of Urology, Urology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Precision Medicine for Cancer, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| |
Collapse
|
4
|
Brotto DB, Siena ÁDD, de Barros II, Carvalho SDCES, Muys BR, Goedert L, Cardoso C, Plaça JR, Ramão A, Squire JA, Araujo LF, Silva WAD. Contributions of HOX genes to cancer hallmarks: Enrichment pathway analysis and review. Tumour Biol 2020; 42:1010428320918050. [PMID: 32456563 DOI: 10.1177/1010428320918050] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Homeobox genes function as master regulatory transcription factors during development, and their expression is often altered in cancer. The HOX gene family was initially studied intensively to understand how the expression of each gene was involved in forming axial patterns and shaping the body plan during embryogenesis. More recent investigations have discovered that HOX genes can also play an important role in cancer. The literature has shown that the expression of HOX genes may be increased or decreased in different tumors and that these alterations may differ depending on the specific HOX gene involved and the type of cancer being investigated. New studies are also emerging, showing the critical role of some members of the HOX gene family in tumor progression and variation in clinical response. However, there has been limited systematic evaluation of the various contributions of each member of the HOX gene family in the pathways that drive the common phenotypic changes (or "hallmarks") and that underlie the transformation of normal cells to cancer cells. In this review, we investigate the context of the engagement of HOX gene targets and their downstream pathways in the acquisition of competence of tumor cells to undergo malignant transformation and tumor progression. We also summarize published findings on the involvement of HOX genes in carcinogenesis and use bioinformatics methods to examine how their downstream targets and pathways are involved in each hallmark of the cancer phenotype.
Collapse
Affiliation(s)
- Danielle Barbosa Brotto
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,National Institute of Science and Technology in Stem Cell and Cell Therapy (INCT/CNPq) and Center for Cell-Based Therapy, CEPID/FAPESP, Ribeirão Preto, Brazil
| | - Ádamo Davi Diógenes Siena
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,National Institute of Science and Technology in Stem Cell and Cell Therapy (INCT/CNPq) and Center for Cell-Based Therapy, CEPID/FAPESP, Ribeirão Preto, Brazil
| | - Isabela Ichihara de Barros
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,National Institute of Science and Technology in Stem Cell and Cell Therapy (INCT/CNPq) and Center for Cell-Based Therapy, CEPID/FAPESP, Ribeirão Preto, Brazil
| | - Simone da Costa E Silva Carvalho
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,National Institute of Science and Technology in Stem Cell and Cell Therapy (INCT/CNPq) and Center for Cell-Based Therapy, CEPID/FAPESP, Ribeirão Preto, Brazil
| | - Bruna Rodrigues Muys
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,National Institute of Science and Technology in Stem Cell and Cell Therapy (INCT/CNPq) and Center for Cell-Based Therapy, CEPID/FAPESP, Ribeirão Preto, Brazil
| | - Lucas Goedert
- National Institute of Science and Technology in Stem Cell and Cell Therapy (INCT/CNPq) and Center for Cell-Based Therapy, CEPID/FAPESP, Ribeirão Preto, Brazil.,Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Cibele Cardoso
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,National Institute of Science and Technology in Stem Cell and Cell Therapy (INCT/CNPq) and Center for Cell-Based Therapy, CEPID/FAPESP, Ribeirão Preto, Brazil
| | - Jessica Rodrigues Plaça
- National Institute of Science and Technology in Stem Cell and Cell Therapy (INCT/CNPq) and Center for Cell-Based Therapy, CEPID/FAPESP, Ribeirão Preto, Brazil
| | - Anelisa Ramão
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,National Institute of Science and Technology in Stem Cell and Cell Therapy (INCT/CNPq) and Center for Cell-Based Therapy, CEPID/FAPESP, Ribeirão Preto, Brazil
| | - Jeremy Andrew Squire
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada
| | - Luiza Ferreira Araujo
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,National Institute of Science and Technology in Stem Cell and Cell Therapy (INCT/CNPq) and Center for Cell-Based Therapy, CEPID/FAPESP, Ribeirão Preto, Brazil
| | - Wilson Araújo da Silva
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,National Institute of Science and Technology in Stem Cell and Cell Therapy (INCT/CNPq) and Center for Cell-Based Therapy, CEPID/FAPESP, Ribeirão Preto, Brazil.,Center for Integrative System Biology (CISBi), NAP/USP, University of São Paulo, Ribeirão Preto, Brazil.,Center for Medical Genomics, Clinics Hospital, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
5
|
Abstract
Retinoic acid (RA), the biologically active metabolite of vitamin A, regulates a vast spectrum of biological processes, such as cell differentiation, proliferation, apoptosis, and morphogenesis. microRNAs (miRNAs) play a crucial role in regulating gene expression by binding to messenger RNA (mRNA) which leads to mRNA degradation and/or translational repression. Like RA, miRNAs regulate multiple biological processes, including proliferation, differentiation, apoptosis, neurogenesis, tumorigenesis, and immunity. In fact, RA regulates the expression of many miRNAs to exert its biological functions. miRNA and RA regulatory networks have been studied in recent years. In this manuscript, we summarize literature that highlights the impact of miRNAs in RA-regulated molecular networks included in the PubMed.
Collapse
Affiliation(s)
- Lijun Wang
- Department of Pathology and Laboratory Medicine, University of California Davis Health, Sacramento, CA, United States
| | - Atharva Piyush Rohatgi
- Department of Pathology and Laboratory Medicine, University of California Davis Health, Sacramento, CA, United States
| | - Yu-Jui Yvonne Wan
- Department of Pathology and Laboratory Medicine, University of California Davis Health, Sacramento, CA, United States.
| |
Collapse
|
6
|
Gholikhani-Darbroud R. MicroRNA and retinoic acid. Clin Chim Acta 2019; 502:15-24. [PMID: 31812758 DOI: 10.1016/j.cca.2019.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND OBJECTIVE Retinoic acid is a metabolite of vitamin A that is necessary to maintain health in human and most of the other vertebrates. MicroRNAs (miR or miRNAs) are small, non-coding RNA particles that diminish mRNA translation of various genes and so can regulate critical cell processes including cell death, proliferation, development, etc. The aim of this review is to study interrelations between retinoic acid with miRNAs. METHODS We reviewed and summarized all published articles in PubMed, Europe PMC, and Embase databases with any relationship between retinoic acid and miRNAs from Jun 2003 to Dec 2018 that includes 126 articles. RESULTS Results showed direct and indirect relationships between retinoic acid and miRNAs in various levels including effects of retinoic acid on expression of various miRNAs and miRNA-biogenesis enzymes, and effect of miRNAs on metabolism of retinoic acid. DISCUTION AND CONCLUSION This review indicates that retinoic acid has inter-correlations with various miRNA members and their metabolism in health and disease may require implications of the other.
Collapse
Affiliation(s)
- Reza Gholikhani-Darbroud
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia 5714783734, Iran.
| |
Collapse
|
7
|
Sajjadi M, Karimi E, Oskoueian E, Iranshahi M, Neamati A. Galbanic acid: Induced antiproliferation in estrogen receptor‐negative breast cancer cells and enhanced cellular redox state in the human dermal fibroblasts. J Biochem Mol Toxicol 2019; 33:e22402. [DOI: 10.1002/jbt.22402] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/16/2019] [Accepted: 09/18/2019] [Indexed: 12/29/2022]
Affiliation(s)
- Maryam Sajjadi
- Department of Biology, Mashhad BranchIslamic Azad UniversityMashhad Iran
| | - Ehsan Karimi
- Department of Biology, Mashhad BranchIslamic Azad UniversityMashhad Iran
| | - Ehsan Oskoueian
- Mashhad Branch, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural ResearchEducation, and Extension Organization (AREEO)Mashhad Iran
| | - Mehrdad Iranshahi
- Biotechnology Research Center and School of PharmacyMashhad University of Medical SciencesMashhad Iran
| | - Ali Neamati
- Department of Biology, Mashhad BranchIslamic Azad UniversityMashhad Iran
| |
Collapse
|
8
|
Lambert M, Alioui M, Jambon S, Depauw S, Van Seuningen I, David-Cordonnier MH. Direct and Indirect Targeting of HOXA9 Transcription Factor in Acute Myeloid Leukemia. Cancers (Basel) 2019; 11:cancers11060837. [PMID: 31213012 PMCID: PMC6627208 DOI: 10.3390/cancers11060837] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/10/2019] [Accepted: 06/13/2019] [Indexed: 01/14/2023] Open
Abstract
HOXA9 (Homeobox A9) is a homeotic transcription factor known for more than two decades to be associated with leukemia. The expression of HOXA9 homeoprotein is associated with anterior-posterior patterning during embryonic development, and its expression is then abolished in most adult cells, with the exception of hematopoietic progenitor cells. The oncogenic function of HOXA9 was first assessed in human acute myeloid leukemia (AML), particularly in the mixed-phenotype associated lineage leukemia (MPAL) subtype. HOXA9 expression in AML is associated with aggressiveness and a poor prognosis. Since then, HOXA9 has been involved in other hematopoietic malignancies and an increasing number of solid tumors. Despite this, HOXA9 was for a long time not targeted to treat cancer, mainly since, as a transcription factor, it belongs to a class of protein long considered to be an "undruggable" target; however, things have now evolved. The aim of the present review is to focus on the different aspects of HOXA9 targeting that could be achieved through multiple ways: (1) indirectly, through the inhibition of its expression, a strategy acting principally at the epigenetic level; or (2) directly, through the inhibition of its transcription factor function by acting at either the protein/protein interaction or the protein/DNA interaction interfaces.
Collapse
Affiliation(s)
- Mélanie Lambert
- Univ. Lille, Inserm, CHU Lille, UMR-S1172 - JPArc - Centre de Recherche Jean-Pierre Aubert Neurosciences and Cancer, F-59000 Lille, France.
- Institut pour la Recherche sur le Cancer de Lille, F-59045 Lille, France.
| | - Meryem Alioui
- Univ. Lille, Inserm, CHU Lille, UMR-S1172 - JPArc - Centre de Recherche Jean-Pierre Aubert Neurosciences and Cancer, F-59000 Lille, France.
- Institut pour la Recherche sur le Cancer de Lille, F-59045 Lille, France.
| | - Samy Jambon
- Univ. Lille, Inserm, CHU Lille, UMR-S1172 - JPArc - Centre de Recherche Jean-Pierre Aubert Neurosciences and Cancer, F-59000 Lille, France.
- Institut pour la Recherche sur le Cancer de Lille, F-59045 Lille, France.
| | - Sabine Depauw
- Univ. Lille, Inserm, CHU Lille, UMR-S1172 - JPArc - Centre de Recherche Jean-Pierre Aubert Neurosciences and Cancer, F-59000 Lille, France.
- Institut pour la Recherche sur le Cancer de Lille, F-59045 Lille, France.
| | - Isabelle Van Seuningen
- Univ. Lille, Inserm, CHU Lille, UMR-S1172 - JPArc - Centre de Recherche Jean-Pierre Aubert Neurosciences and Cancer, F-59000 Lille, France.
| | - Marie-Hélène David-Cordonnier
- Univ. Lille, Inserm, CHU Lille, UMR-S1172 - JPArc - Centre de Recherche Jean-Pierre Aubert Neurosciences and Cancer, F-59000 Lille, France.
- Institut pour la Recherche sur le Cancer de Lille, F-59045 Lille, France.
| |
Collapse
|
9
|
Depauw S, Lambert M, Jambon S, Paul A, Peixoto P, Nhili R, Morongiu L, Figeac M, Dassi C, Paul-Constant C, Billoré B, Kumar A, Farahat AA, Ismail MA, Mineva E, Sweat DP, Stephens CE, Boykin DW, Wilson WD, David-Cordonnier MH. Heterocyclic Diamidine DNA Ligands as HOXA9 Transcription Factor Inhibitors: Design, Molecular Evaluation, and Cellular Consequences in a HOXA9-Dependant Leukemia Cell Model. J Med Chem 2019; 62:1306-1329. [PMID: 30645099 PMCID: PMC6561105 DOI: 10.1021/acs.jmedchem.8b01448] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Most transcription factors were for a long time considered as undruggable targets because of the absence of binding pockets for direct targeting. HOXA9, implicated in acute myeloid leukemia, is one of them. To date, only indirect targeting of HOXA9 expression or multitarget HOX/PBX protein/protein interaction inhibitors has been developed. As an attractive alternative by inhibiting the DNA binding, we selected a series of heterocyclic diamidines as efficient competitors for the HOXA9/DNA interaction through binding as minor groove DNA ligands on the HOXA9 cognate sequence. Selected DB818 and DB1055 compounds altered HOXA9-mediated transcription in luciferase assays, cell survival, and cell cycle, but increased cell death and granulocyte/monocyte differentiation, two main HOXA9 functions also highlighted using transcriptomic analysis of DB818-treated murine Hoxa9-transformed hematopoietic cells. Altogether, these data demonstrate for the first time the propensity of sequence-selective DNA ligands to inhibit HOXA9/DNA binding both in vitro and in a murine Hoxa9-dependent leukemic cell model.
Collapse
Affiliation(s)
- Sabine Depauw
- UMR-S1172-JPARC (Jean-Pierre Aubert Research Center), INSERM, University of Lille, Centre Hospitalier Universitaire de Lille, Institut pour la recherché sur le Cancer de Lille (IRCL), F-59045 Lille, France
| | - Mélanie Lambert
- UMR-S1172-JPARC (Jean-Pierre Aubert Research Center), INSERM, University of Lille, Centre Hospitalier Universitaire de Lille, Institut pour la recherché sur le Cancer de Lille (IRCL), F-59045 Lille, France
| | - Samy Jambon
- UMR-S1172-JPARC (Jean-Pierre Aubert Research Center), INSERM, University of Lille, Centre Hospitalier Universitaire de Lille, Institut pour la recherché sur le Cancer de Lille (IRCL), F-59045 Lille, France
| | - Ananya Paul
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, United States
| | - Paul Peixoto
- UMR-S1172-JPARC (Jean-Pierre Aubert Research Center), INSERM, University of Lille, Centre Hospitalier Universitaire de Lille, Institut pour la recherché sur le Cancer de Lille (IRCL), F-59045 Lille, France
| | - Raja Nhili
- UMR-S1172-JPARC (Jean-Pierre Aubert Research Center), INSERM, University of Lille, Centre Hospitalier Universitaire de Lille, Institut pour la recherché sur le Cancer de Lille (IRCL), F-59045 Lille, France
| | - Laura Morongiu
- UMR-S1172-JPARC (Jean-Pierre Aubert Research Center), INSERM, University of Lille, Centre Hospitalier Universitaire de Lille, Institut pour la recherché sur le Cancer de Lille (IRCL), F-59045 Lille, France
| | - Martin Figeac
- Functional and Structural Genomic Platform, Lille University, F-59000 Lille, France
| | - Christelle Dassi
- UMR-S1172-JPARC (Jean-Pierre Aubert Research Center), INSERM, University of Lille, Centre Hospitalier Universitaire de Lille, Institut pour la recherché sur le Cancer de Lille (IRCL), F-59045 Lille, France
| | - Charles Paul-Constant
- UMR-S1172-JPARC (Jean-Pierre Aubert Research Center), INSERM, University of Lille, Centre Hospitalier Universitaire de Lille, Institut pour la recherché sur le Cancer de Lille (IRCL), F-59045 Lille, France
| | - Benjamin Billoré
- UMR-S1172-JPARC (Jean-Pierre Aubert Research Center), INSERM, University of Lille, Centre Hospitalier Universitaire de Lille, Institut pour la recherché sur le Cancer de Lille (IRCL), F-59045 Lille, France
| | - Arvind Kumar
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, United States
| | - Abdelbasset A. Farahat
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, United States
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Mohamed A. Ismail
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, United States
- Department of Chemistry, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Ekaterina Mineva
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, United States
| | - Daniel P. Sweat
- Department of Chemistry and Physics, Augusta University, Augusta, GA 30904, United States
| | - Chad E. Stephens
- Department of Chemistry and Physics, Augusta University, Augusta, GA 30904, United States
| | - David W. Boykin
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, United States
| | - W. David Wilson
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, United States
| | - Marie-Hélène David-Cordonnier
- UMR-S1172-JPARC (Jean-Pierre Aubert Research Center), INSERM, University of Lille, Centre Hospitalier Universitaire de Lille, Institut pour la recherché sur le Cancer de Lille (IRCL), F-59045 Lille, France
| |
Collapse
|
10
|
Gan BL, He RQ, Zhang Y, Wei DM, Hu XH, Chen G. Downregulation of HOXA3 in lung adenocarcinoma and its relevant molecular mechanism analysed by RT-qPCR, TCGA and in silico analysis. Int J Oncol 2018; 53:1557-1579. [PMID: 30066858 PMCID: PMC6086630 DOI: 10.3892/ijo.2018.4508] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 07/02/2018] [Indexed: 12/11/2022] Open
Abstract
Recent studies have indicated that homeobox A3 (HOXA3) functions as a carcinogen in colon cancer and the methylation level of HOXA3 is significantly increased in lung adenocarcinoma (LUAD) tissues. However, at least to the best of our knowledge, few studies to date have been performed on HOXA3 in non-small cell lung cancer (NSCLC). Therefore, further studies on HOXA3 expression in NSCLC and the potential regulatory mechanisms are urgently required. In this study, HOXA3 expression in 55 tissues of cases of NSCLC and corresponding non-lung cancer tissues was detected by reverse transcription-quantitative PCR (RT-qPCR). In addition, the clinical significance of HOXA3 expression in NSCLC was evaluated using the Cancer Genome Atlas (TCGA) database. Bioinformatics analysis was then performed to elucidate the potential molecular mechanisms of action of HOXA3. Furthermore, the potential target microRNAs (miRNAs or miRs) of HOXA3 were predicted using miRWalk2.0. Based on Gene Expression Omnibus (GEO) and TGCA databases, standardized mean difference (SMD) and sROC methods were used for meta-analyses of the expression of potential target miRNAs of HOXA3 in NSCLC to evaluate their association with HOXA3. The results revealed that the HOXA3 expression levels in NSCLC, LUAD and lung squamous cell carcinoma (LUSC) were 0.1130±0.1398, 0.1295±0.16890 and 0.0906±0.0846, respectively. These values were all decreased compared with the normal tissues (0.1877±0.1975, 0.2337±0.2405 and 0.1249±0.0873, respectively, P<0.05). The TCGA database also revealed the low expression trend of HOXA3. The downregulation of HOXA3 may play an important role in the progression and the poor prognosis of LUAD. The TCGA database also suggested that HOXA3 in LUAD and LUSC tissues exhibited certain mutational levels. In addition, the methylation levels in the NSCLC, LUAD and LUSC tissues significantly increased [NSCLC: fold change (FC), 1.3226; P<0.001; LUAD: FC, 1.2712; P<0.001; and LUSC: FC, 1.3786; P<0.001]. According to the analyses using the Kyoto Encyclopedia of Genes and Genomes (KEGG), we found that the co-expression HOXA3 genes were mainly associated with the focal adhesion signalling pathway and the ECM-receptor interaction signalling pathway. Furthermore, the predicted miRNA, miR-372-3p, exhibited a high expression in both the NSCLC and LUAD tissues (P<0.05). On the whole, the findings of this study indicate that low HOXA3 expression may play a certain role in LUAD; however, its association with LUSC still requires further investigation. HOXA3 function may be achieved through different pathways or target miRNAs. However, the specific underlying mechanisms need to be confirmed through various functional studies.
Collapse
Affiliation(s)
- Bin-Liang Gan
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Rong-Quan He
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Yu Zhang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Dan-Ming Wei
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Xiao-Hua Hu
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| |
Collapse
|