1
|
Zhang H, Jin C, Hua J, Chen Z, Gao W, Xu W, Zhou L, Shan L. Roles of Microenvironment on Mesenchymal Stem Cells Therapy for Osteoarthritis. J Inflamm Res 2024; 17:7069-7079. [PMID: 39377043 PMCID: PMC11457791 DOI: 10.2147/jir.s475617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/21/2024] [Indexed: 10/09/2024] Open
Abstract
Osteoarthritis (OA) induced microenvironmental alterations are a common and unavoidable phenomenon that greatly exacerbate the pathologic process of OA. Imbalances in the synthesis and degradation of cartilage extracellular matrix (ECM) have been reported to be associated with an adverse microenvironment. Stem cell therapy is a promising treatment for OA, and mesenchymal stem cells (MSCs) are the main cell sources for this therapy. With multispectral differentiation and immunomodulation, MSCs can effectively regulate the microenvironment of articular cartilage, ameliorate inflammation, promote regeneration of damaged cartilage, and ultimately alleviate OA symptoms. However, the efficacy of MSCs in the treatment of OA is greatly influenced by articular cavity microenvironments. This article reviews the five microenvironments of OA articular cavity, including inflammatory microenvironment, senescence microenvironment, hypoxic microenvironment, high glucose microenvironment and high lipid environment, focus on the positive and negative effects of OA microenvironments on the fate of MSCs. In this regard, we emphasize the mechanisms of the current use of MSCs in OA treatment, as well as its limitations and challenges.
Collapse
Affiliation(s)
- Haiyan Zhang
- The Second Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Chaoying Jin
- School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People’s Republic of China
| | - Jiaqing Hua
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Zuxiang Chen
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Wenxin Gao
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Wenting Xu
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Li Zhou
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Letian Shan
- The Second Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
2
|
Tang C, Chen G, Wu F, Cao Y, Yang F, You T, Liu C, Li M, Hu S, Ren L, Lu Q, Deng W, Xu Y, Wang G, Jo H, Zhang Y, Wu Y, Zabel BA, Zhu L. Endothelial CCRL2 induced by disturbed flow promotes atherosclerosis via chemerin-dependent β2 integrin activation in monocytes. Cardiovasc Res 2023; 119:1811-1824. [PMID: 37279540 PMCID: PMC10405567 DOI: 10.1093/cvr/cvad085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/01/2023] [Indexed: 06/08/2023] Open
Abstract
AIMS Chemoattractants and their cognate receptors are essential for leucocyte recruitment during atherogenesis, and atherosclerotic plaques preferentially occur at predilection sites of the arterial wall with disturbed flow (d-flow). In profiling the endothelial expression of atypical chemoattractant receptors (ACKRs), we found that Ackr5 (CCRL2) was up-regulated in an endothelial subpopulation by atherosclerotic stimulation. We therefore investigated the role of CCRL2 and its ligand chemerin in atherosclerosis and the underlying mechanism. METHODS AND RESULTS By analysing scRNA-seq data of the left carotid artery under d-flow and scRNA-seq datasets GSE131776 of ApoE-/- mice from the Gene Expression Omnibus database, we found that CCRL2 was up-regulated in one subpopulation of endothelial cells in response to d-flow stimulation and atherosclerosis. Using CCRL2-/-ApoE-/- mice, we showed that CCRL2 deficiency protected against plaque formation primarily in the d-flow areas of the aortic arch in ApoE-/- mice fed high-fat diet. Disturbed flow induced the expression of vascular endothelial CCRL2, recruiting chemerin, which caused leucocyte adhesion to the endothelium. Surprisingly, instead of binding to monocytic CMKLR1, chemerin was found to activate β2 integrin, enhancing ERK1/2 phosphorylation and monocyte adhesion. Moreover, chemerin was found to have protein disulfide isomerase-like enzymatic activity, which was responsible for the interaction of chemerin with β2 integrin, as identified by a Di-E-GSSG assay and a proximity ligation assay. For clinical relevance, relatively high serum levels of chemerin were found in patients with acute atherothrombotic stroke compared to healthy individuals. CONCLUSIONS Our findings indicate that d-flow-induced CCRL2 promotes atherosclerotic plaque formation via a novel CCRL2-chemerin-β2 integrin axis, providing potential targets for the prevention or therapeutic intervention of atherosclerosis.
Collapse
Affiliation(s)
- Chaojun Tang
- Cyrus Tang Medical Institute, Soochow University, Rm 509, Bldg 703, 199 Ren’ai Road, Suzhou 215123, China
- Collaborative Innovation Center of Hematology of Jiangsu Province, Soochow University, Rm 509, Bldg 703, 199 Ren’ai Road, Suzhou 215123, China
- Suzhou Key Laboratory of Thrombosis and Vascular Biology, Soochow University, Rm 509, Bldg 703, 199 Ren’ai Road, Suzhou 215123, China
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, China
- JinFeng Laboratory, Chongqing, China
| | - Guona Chen
- Cyrus Tang Medical Institute, Soochow University, Rm 509, Bldg 703, 199 Ren’ai Road, Suzhou 215123, China
| | - Fan Wu
- Cyrus Tang Medical Institute, Soochow University, Rm 509, Bldg 703, 199 Ren’ai Road, Suzhou 215123, China
- Cambridge-Suda Genomic Resource Center, Soochow University, Rm 509, Bldg 703, 199 Ren’ai Road, Suzhou 215123, China
| | - Yiren Cao
- Cyrus Tang Medical Institute, Soochow University, Rm 509, Bldg 703, 199 Ren’ai Road, Suzhou 215123, China
| | - Fei Yang
- Cyrus Tang Medical Institute, Soochow University, Rm 509, Bldg 703, 199 Ren’ai Road, Suzhou 215123, China
| | - Tao You
- Cyrus Tang Medical Institute, Soochow University, Rm 509, Bldg 703, 199 Ren’ai Road, Suzhou 215123, China
- Department of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Chu Liu
- Cyrus Tang Medical Institute, Soochow University, Rm 509, Bldg 703, 199 Ren’ai Road, Suzhou 215123, China
| | - Menglu Li
- Cyrus Tang Medical Institute, Soochow University, Rm 509, Bldg 703, 199 Ren’ai Road, Suzhou 215123, China
| | - Shuhong Hu
- Cyrus Tang Medical Institute, Soochow University, Rm 509, Bldg 703, 199 Ren’ai Road, Suzhou 215123, China
| | - Lijie Ren
- Cyrus Tang Medical Institute, Soochow University, Rm 509, Bldg 703, 199 Ren’ai Road, Suzhou 215123, China
- Suzhou Key Laboratory of Thrombosis and Vascular Biology, Soochow University, Rm 509, Bldg 703, 199 Ren’ai Road, Suzhou 215123, China
| | - Qiongyu Lu
- Cyrus Tang Medical Institute, Soochow University, Rm 509, Bldg 703, 199 Ren’ai Road, Suzhou 215123, China
- Suzhou Key Laboratory of Thrombosis and Vascular Biology, Soochow University, Rm 509, Bldg 703, 199 Ren’ai Road, Suzhou 215123, China
| | - Wei Deng
- Cyrus Tang Medical Institute, Soochow University, Rm 509, Bldg 703, 199 Ren’ai Road, Suzhou 215123, China
| | - Ying Xu
- Suzhou Key Laboratory of Thrombosis and Vascular Biology, Soochow University, Rm 509, Bldg 703, 199 Ren’ai Road, Suzhou 215123, China
- Cambridge-Suda Genomic Resource Center, Soochow University, Rm 509, Bldg 703, 199 Ren’ai Road, Suzhou 215123, China
| | - Guixue Wang
- JinFeng Laboratory, Chongqing, China
- Key Laboratory of Biorheological and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| | - Hanjoong Jo
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Yonghong Zhang
- Department of Epidemiology School of Public Health, Soochow University, Rm 509, Bldg 703, 199 Ren’ai Road, Suzhou 215123, China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Rm 509, Bldg 703, 199 Ren’ai Road, Suzhou 215123, China
| | - Yi Wu
- Cyrus Tang Medical Institute, Soochow University, Rm 509, Bldg 703, 199 Ren’ai Road, Suzhou 215123, China
- Collaborative Innovation Center of Hematology of Jiangsu Province, Soochow University, Rm 509, Bldg 703, 199 Ren’ai Road, Suzhou 215123, China
- Suzhou Key Laboratory of Thrombosis and Vascular Biology, Soochow University, Rm 509, Bldg 703, 199 Ren’ai Road, Suzhou 215123, China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Rm 509, Bldg 703, 199 Ren’ai Road, Suzhou 215123, China
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Brian A Zabel
- Palo Alto Veterans Institute for Research (PAVIR), Veterans Affairs Palo Alto Health Care System (VAPAHCS), Palo Alto, CA, USA
| | - Li Zhu
- Cyrus Tang Medical Institute, Soochow University, Rm 509, Bldg 703, 199 Ren’ai Road, Suzhou 215123, China
- Collaborative Innovation Center of Hematology of Jiangsu Province, Soochow University, Rm 509, Bldg 703, 199 Ren’ai Road, Suzhou 215123, China
- Suzhou Key Laboratory of Thrombosis and Vascular Biology, Soochow University, Rm 509, Bldg 703, 199 Ren’ai Road, Suzhou 215123, China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Rm 509, Bldg 703, 199 Ren’ai Road, Suzhou 215123, China
- The Ninth Affiliated Hospital, Soochow University, Rm 509, Bldg 703, 199 Ren’ai Road, Suzhou 215123, China
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, China
- JinFeng Laboratory, Chongqing, China
| |
Collapse
|
3
|
Sha Y, Hong H, Cai W, Sun T. Single-Cell Transcriptomics of Endothelial Cells in Upper and Lower Human Esophageal Squamous Cell Carcinoma. Curr Oncol 2022; 29:7680-7694. [PMID: 36290884 PMCID: PMC9600084 DOI: 10.3390/curroncol29100607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/22/2022] [Accepted: 10/07/2022] [Indexed: 11/26/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is a type of progressive and distant metastatic tumor. Targeting anti-angiogenic genes could effectively hinder ESCC development and metastasis, whereas ESCC locating on the upper or the lower esophagus showed different response to the same clinical treatment, suggesting ESCC location should be taken into account when exploring new therapeutic targets. In the current study, to find novel anti-angiogenic therapeutic targets, we identified endothelial cell subsets in upper and lower human ESCC using single-cell RNA sequencing (scRNA-seq), screened differentially expressed genes (DEGs), and performed gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. The results showed that common DEGs shared in the upper and the lower endothelial cells mainly are involved in vessel development, angiogenesis, and cell motility of endothelial cells by regulating PI3K-AKT, Rap1, Ras, TGF-beta, and Apelin signaling pathways. The critical regulatory genes were identified as ITGB1, Col4A1, Col4A2, ITGA6, LAMA4, LAMB1, LAMC1, VWF, ITGA5, THBS1, PDGFB, PGF, RHOC, and CTNNB1. Cell metabolism-relevant genes, e.g., MGST3, PNP, UPP1, and HYAL2 might be the prospective therapeutic targets. Furthermore, we found that DEGs only in the upper endothelial cells, such as MAPK3, STAT3, RHOA, MAPK11, HIF1A, FGFR1, GNG5, GNB1, and ARHGEF12, mainly regulated cell adhesion, structure morphogenesis, and motility through Phospholipase D, Apelin, and VEGF signaling pathways. Moreover, DEGs only in the lower endothelial cells, for instance PLCG2, EFNA1, CALM1, and RALA, mainly regulated cell apoptosis and survival by targeting calcium ion transport through Rap1, Ras, cAMP, Phospholipase D, and Phosphatidylinositol signaling pathways. In addition, the upper endothelial cells showed significant functional diversity such as cytokine-responsive, migratory, and proliferative capacity, presenting a better angiogenic capacity and making it more sensitive to anti-angiogenic therapy compared with the lower endothelial cells. Our study has identified the potential targeted genes for anti-angiogenic therapy for both upper and lower ESCC, and further indicated that anti-angiogenic therapy might be more effective for upper ESCC, which still need to be further examined in the future.
Collapse
Affiliation(s)
- Yongqiang Sha
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen 361021, China
| | - Huhai Hong
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen 361021, China
| | - Wenjie Cai
- Departments of Radiation Oncology, First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou 362000, China
- Correspondence: (W.C.); (T.S.)
| | - Tao Sun
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen 361021, China
- Correspondence: (W.C.); (T.S.)
| |
Collapse
|
4
|
Sha Y, Cai W, Mohanad Khalid A, Chi Q, Wang J, Sun T, Wang C. Pretreatment with mechano growth factor E peptide attenuates osteoarthritis through improving cell proliferation and extracellular matrix synthesis in chondrocytes under severe hypoxia. Int Immunopharmacol 2021; 97:107628. [PMID: 34015701 DOI: 10.1016/j.intimp.2021.107628] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 03/28/2021] [Accepted: 03/29/2021] [Indexed: 10/21/2022]
Abstract
Osteoarthritis (OA) is characterized by pain and declining gait function associated with degeneration of cartilage. A severe hypoxic environment occurs due to tissue injury in the joint cavity and may aggravate the development of OA. In this study, the effects of severe hypoxia and treatment with mechano growth factor (MGF) E peptide on metabolism of the extracellular matrix (ECM) during the progression of OA were determined. The results showed that cell viability, cell proliferation, and type II collagen expression in chondrocytes were significantly inhibited by cobalt chloride (CoCl2)-simulated severe hypoxia, whereas cell apoptosis and expression levels of hypoxia inducible factor 1 alpha, type I collagen, and matrix metalloproteinases 1/13 were clearly induced. Pretreatment with MGF E peptide reduced the abovementioned adverse effects induced by CoCl2-simulated severe hypoxia in chondrocytes. Pretreatment also upregulated the proliferation of chondrocytes under severe hypoxia through the PI3K-Akt and MEK-ERK1/2 signaling pathways. In a rat model of monosodium iodoacetate (MIA)-induced OA. MIA treatment induced tissue necrosis and cartilage degeneration, and histological score was significantly decreased. The levels of type II collagen and aggrecan were reduced after MIA treatment for 4 or 6 weeks, and abnormal distribution of ECM occurred in the inner epicondyle after 6 weeks. MGF E peptide also reduced the progression of MIA-induced OA by retarding cartilage degeneration, upregulating type II collagen synthesis, and improving ECM distribution after 4 or 6 weeks. Our findings suggest that MGF attenuates the progression of OA, and thus may be applied for the treatment of OA in the clinic.
Collapse
Affiliation(s)
- Yongqiang Sha
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, Fujian 361021, PR China.
| | - Wenjie Cai
- Departments of Radiation Oncology, First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, Fujian 362000, PR China
| | - Alani Mohanad Khalid
- Department of Microbiology, College of Medicine, Tikrit University, Tikrīt, Sallahaldin 009642, Iraq
| | - Qingjia Chi
- Department of Mechanics and Engineering Structure, Hubei Key Laboratory of Theory and Application of Advanced Materials Mechanics, Wuhan University of Technology, Wuhan, Hubei 430070, PR China
| | - Jing Wang
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, Fujian 361021, PR China
| | - Tao Sun
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, Fujian 361021, PR China
| | - Chunli Wang
- National Innovation and Attracting Talents "111" base, Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, PR China.
| |
Collapse
|
5
|
Zheng W, Gu X, Sun X, Wu Q, Dan H. FAK mediates BMP9-induced osteogenic differentiation via Wnt and MAPK signaling pathway in synovial mesenchymal stem cells. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:2641-2649. [PMID: 31240956 DOI: 10.1080/21691401.2019.1631838] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Objective: Focal adhesion kinase (FAK) has critical functions in proliferation and differentiation of many cell types, however, the role of FAK on BMP9-induced osteogenic differentiation in SMSCs has not been characted. The purpose of current study is to explore the mechanism of FAK on the BMP9-induced osteogenesis of SMSCs in vitro and in vivo. Methods: The optimal dose of BMP9 was determined by incubation in different BMP9 concentrations, then cells were transfected with siRNA-induced FAK knockdown in BMP9-induced osteogenesis. Cell proliferation, migration, the osteogenic capacity, and the underlying mechanism were further detected in vitro. Imaging and pathological examination were conducted to observe the bone formation in vivo. Results: Our findings suggested that BMP9 could obviously promote FAK phosphorylation in osteogenic conditions. In contrast, FAK knockdown significantly decreased the cell proliferation, migration, the osteogenic capacity of SMSCs. To be specific, FAK knockdown could markedly inhibit the Wnt and MAPK signal pathway of SMSCs induced by BMP9. Besides, FAK knockdown could also effectively inhibit BMP-9-induced bone formation in vivo. Conclusion: FAK plays a pivotal role in promoting BMP9-induced osteogenesis of SMSCs, which is probably via activating Wnt and MAPK pathway.
Collapse
Affiliation(s)
- Weiwei Zheng
- a Department of Orthopaedics, Affiliated Suzhou Hospital of Nanjing Medical University , Suzhou , PR China
| | - Xueping Gu
- a Department of Orthopaedics, Affiliated Suzhou Hospital of Nanjing Medical University , Suzhou , PR China
| | - Xingwei Sun
- b Department of Intervention, The Second Affiliated Hospital of Soochow University , Suzhou , PR China
| | - Qin Wu
- c Department of Ultrasonography, Suzhou Science and Technology Town Hospital, Suzhou Hospital Affiliated to Nanjing Medical University , Suzhou , PR China.,d Department of Ultrasound, Suzhou Hospital Affiliated to Nanjing Medical University , Suzhou , China
| | - Hu Dan
- a Department of Orthopaedics, Affiliated Suzhou Hospital of Nanjing Medical University , Suzhou , PR China
| |
Collapse
|