1
|
Ahmed SA, Alahmadi YM, Abdou YA. The Impact of Serum Levels of Reactive Oxygen and Nitrogen Species on the Disease Severity of COVID-19. Int J Mol Sci 2023; 24:ijms24108973. [PMID: 37240319 DOI: 10.3390/ijms24108973] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/14/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Elucidation of the redox pathways in severe coronavirus disease 2019 (COVID-19) might aid in the treatment and management of the disease. However, the roles of individual reactive oxygen species (ROS) and individual reactive nitrogen species (RNS) in COVID-19 severity have not been studied to date. The main objective of this research was to assess the levels of individual ROS and RNS in the sera of COVID-19 patients. The roles of individual ROS and RNS in COVID-19 severity and their usefulness as potential disease severity biomarkers were also clarified for the first time. The current case-control study enrolled 110 COVID-19-positive patients and 50 healthy controls of both genders. The serum levels of three individual RNS (nitric oxide (NO•), nitrogen dioxide (ONO-), and peroxynitrite (ONOO-)) and four ROS (superoxide anion (O2•-), hydroxyl radical (•OH), singlet oxygen (1O2), and hydrogen peroxide (H2O2)) were measured. All subjects underwent thorough clinical and routine laboratory evaluations. The main biochemical markers for disease severity were measured and correlated with the ROS and RNS levels, and they included tumor necrosis factor-alpha (TNF-alpha), interleukin-6 (IL-6), the neutrophil-to-lymphocyte ratio (NLR), and angiotensin-converting enzyme 2 (ACE2). The results indicated that the serum levels of individual ROS and RNS were significantly higher in COVID-19 patients than in healthy subjects. The correlations between the serum levels of ROS and RNS and the biochemical markers ranged from moderate to very strongly positive. Moreover, significantly elevated serum levels of ROS and RNS were observed in intensive care unit (ICU) patients compared with non-ICU patients. Thus, ROS and RNS concentrations in serum can be used as biomarkers to track the prognosis of COVID-19. This investigation demonstrated that oxidative and nitrative stress play a role in the etiology of COVID-19 and contribute to disease severity; thus, ROS and RNS are probable innovative targets in COVID-19 therapeutics.
Collapse
Affiliation(s)
- Sameh A Ahmed
- Department of Pharmacognosy and Pharmaceutical Chemistry, College of Pharmacy, Taibah University, Al Madinah Al Munawarah 30001, Saudi Arabia
| | - Yaser M Alahmadi
- Department of Clinical and Hospital Pharmacy, College of Pharmacy, Taibah University, Al Madinah Al Munawarah 30001, Saudi Arabia
| | - Yasser A Abdou
- Ohud Hospital, Al Madinah Al Munawarah 42354, Saudi Arabia
| |
Collapse
|
2
|
Das B. An implementation of a hybrid method based on machine learning to identify biomarkers in the Covid-19 diagnosis using DNA sequences. CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS : AN INTERNATIONAL JOURNAL SPONSORED BY THE CHEMOMETRICS SOCIETY 2022; 230:104680. [PMID: 36213553 PMCID: PMC9528020 DOI: 10.1016/j.chemolab.2022.104680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/20/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Although some people do not have any chronic disease or are not in the risky age group for Covid-19, they are more vulnerable to the coronavirus. As the reason for this situation, some experts focus on the immune system of the person, while others think that the genetic history of patients may play a role. It is critical to detect corona from DNA signals as early as possible to determine the relationship between Covid-19 and genes. Thus, the effect on the severe course of the disease of variations in the genes associated with the corona disease will be revealed. In this study, a novel intelligent computer approach is proposed to identify coronavirus from nucleotide signals for the first time. The proposed method presents a multilayered feature extraction structure to extract the most effective features using an Entropy-based mapping technique, Discrete Wavelet Transform (DWT), statistical feature extractor, and Singular Value Decomposition (SVD), together. Then 94 distinctive features are selected by the ReliefF technique. Support vector machine (SVM) and k nearest neighborhood (k-NN) are chosen as classifiers. The method achieved the highest classification accuracy rate of 98.84% with an SVM classifier to detect Covid-19 from DNA signals. The proposed method is ready to be tested with a different database in the diagnosis of Covid-19 using RNA or other signals.
Collapse
Affiliation(s)
- Bihter Das
- Department of Software Engineering, Technology Faculty, Firat University, 23119, Elazig, Turkey
| |
Collapse
|
3
|
Zhou W, Chen Z, Fang Z, Xu D. Network analysis for elucidating the mechanisms of Shenfu injection in preventing and treating COVID-19 combined with heart failure. Comput Biol Med 2022; 148:105845. [PMID: 35849948 PMCID: PMC9279168 DOI: 10.1016/j.compbiomed.2022.105845] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 05/08/2022] [Accepted: 05/09/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND The emergence of the novel coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to millions of infections and is exerting an unprecedented impact on society and economies worldwide. The evidence showed that heart failure (HF) is a clinical syndrome that could be encountered at different stages during the progression of COVID-19. Shenfu injection (SFI), a traditional Chinese medicine (TCM) formula has been widely used for heart failure therapy in China and was suggested to treat critical COVID-19 cases based on the guideline for diagnosis and treatment of COVID-19 (the 7th version) issued by National Health Commission of the People's Republic of China. However, the active components, potential targets, related pathways, and underlying pharmacology mechanism of SFI against COVID-19 combined with HF remain vague. OBJECTIVE To investigate the effectiveness and possible pharmacological mechanism of SFI for the prevention and treatment of COVID-19 combined with HF. METHODS In the current study, a network analysis approach integrating active compound screening (drug-likeness, lipophilicity, and aqueous solubility models), target fishing (Traditional Chinese Medicine Systems Pharmacology, fingerprint-based Similarity Ensemble Approach, and PharmMapper databases), compound-target-disease network construction (Cytoscape software), protein-protein interaction network construction (STRING and Cytoscape software), biological process analysis (STRING and Cytoscape plug-in Clue GO) and pathway analysis (Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis) was developed to decipher the active ingredients, potential targets, relevant pathways, and the therapeutic mechanisms of SFI for preventing and treating COVID-19 combined with HF. RESULTS Finally, 20 active compounds (DL ≥ 0.18, 1≤Alog P ≤ 5, and -5≤LogS ≤ -1) and 164 relevant targets of SFI were identified related to the development of COVID-19 combined with HF, which were mainly involved in three biological processes including metabolic, hemostasis, and cytokine signaling in immune system. The C-T-D network and reactome pathway analysis indicated that SFI probably regulated the pathological processes of heart failure, respiratory failure, lung injury, and inflammatory response in patients with COVID-19 combined with HF through acting on several targets and pathways. Moreover, the venn diagram was used to identify 54 overlapped targets of SFI, COVID-19, and HF. KEGG pathway enrichment analysis showed that 54 overlapped targets were highly enriched to several COVID-19 and HF related pathways, such as IL-17 signaling pathway, Th17 cell differentiation, and NF-kappa B signaling pathway. CONCLUSIONS A comprehensive network analysis approach framework was developed to systematically elucidate the potential pharmacological mechanism of SFI for the prevention and treatment of SFI against COVID-19 combined with HF. The current study may not only provide in-depth understanding of the pharmacological mechanisms of SFI, but also a scientific basis for the application of SFI against COVID-19 combined with HF.
Collapse
Affiliation(s)
- Wei Zhou
- State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen Key Laboratory of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen University, Shenzhen, 518020, China; Department of Respirology & Allergy. Third Affiliated Hospital of Shenzhen University. Shenzhen University, Shenzhen, 518020, China.
| | - Ziyi Chen
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, 999077, Hong Kong, China
| | - Zhangfu Fang
- Department of Respirology & Allergy. Third Affiliated Hospital of Shenzhen University. Shenzhen University, Shenzhen, 518020, China
| | - Damo Xu
- State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen Key Laboratory of Allergy & Immunology, Shenzhen University School of Medicine, Shenzhen University, Shenzhen, 518020, China; Department of Respirology & Allergy. Third Affiliated Hospital of Shenzhen University. Shenzhen University, Shenzhen, 518020, China
| |
Collapse
|
4
|
Lymperaki E, Kazeli K, Tsamesidis I, Nikza P, Poimenidou I, Vagdatli E. A Preliminary Study about the Role of Reactive Oxygen Species and Inflammatory Process after COVID-19 Vaccination and COVID-19 Disease. Clin Pract 2022; 12:599-608. [PMID: 36005066 PMCID: PMC9406688 DOI: 10.3390/clinpract12040063] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/14/2022] [Accepted: 07/22/2022] [Indexed: 11/19/2022] Open
Abstract
During the last couple of critical years, worldwide, there have been more than 550 million confirmed cases of COVID-19, including more than 6 million deaths (reported by the WHO); with respect to these cases, several vaccines, mainly mRNA vaccines, seem to prevent and protect from SARS-CoV-2 infection. We hypothesize that oxidative stress is one of the key factors playing an important role in both the generation and development of various kinds of disease, as well as antibody generation, as many biological paths can generate reactive oxygen species (ROS), and cellular activities can be modulated when ROS/antioxidant balance is interrupted. A pilot study was conducted in two stages during the COVID-19 pandemic in 2021 involving 222 participants between the ages of 26 and 66 years. ROS levels were measured before an after vaccination in the blood samples of 20 individuals who were vaccinated with two doses of mRNA vaccine, and an increase in ROS levels was observed after the first dose, with no modifications observed until the day before the second vaccination dose. A statistically significant difference (p < 0.001) was observed between time points 3 and 4 (before and after second dose), when participants were vaccinated for the second time, and ROS levels decreased from 21,758 to 17,580 a.u. In the second stage, blood was collected from 28 participants 45 days after COVID-19 infection (Group A), from 131 participants 45 days after receiving two doses of mRNA vaccine against COVID-19 (Group B), and from 13 healthy individuals as a control group (Group C). Additionally, antibodies levels were measured in all groups to investigate a possible correlation with ROS levels. A strong negative correlation was found between free radicals and disease antibodies in Group A (r = −0.45, p = 0.001), especially in the male subgroup (r = −0.88, p = 0.001), as well as in the female subgroup (r = −0.24, p < 0.001). Furthermore, no significant correlation (only a negative trend) was found with antibodies derived from vaccination in Group B (r = −0.01), and a negative trend was observed in the female subgroup, whereas a positive trend was observed in the male subgroup.
Collapse
Affiliation(s)
- Evgenia Lymperaki
- Department of Biomedical Sciences, International Hellenic University, 57400 Thessaloniki, Greece
- Correspondence: ; Tel.: +30-2310013882
| | - Konstantina Kazeli
- Department of Biomedical Sciences, International Hellenic University, 57400 Thessaloniki, Greece
- School of Physics, Faculty of Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Ioannis Tsamesidis
- Department of Biomedical Sciences, International Hellenic University, 57400 Thessaloniki, Greece
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Polykseni Nikza
- Nea Michaniona Health Care Centre, 57004 Nea Michaniona, Greece
| | - Irini Poimenidou
- Department of Biomedical Sciences, International Hellenic University, 57400 Thessaloniki, Greece
| | - Eleni Vagdatli
- Department of Biomedical Sciences, International Hellenic University, 57400 Thessaloniki, Greece
| |
Collapse
|
5
|
Duran E, Taşkın A, Pehlivan B, Çelik H, Pehlivan VF, Taşkın S. Dynamic Thiol Disulphide Homeostasis in the Follow-Up of the Prognosis of Patients Treated for COVID-19 in the Intensive Care Unit. Cureus 2022; 14:e27542. [PMID: 36060378 PMCID: PMC9428424 DOI: 10.7759/cureus.27542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2022] [Indexed: 11/05/2022] Open
|
6
|
Potential Role of Certain Biomarkers Such as Vitamin B12, ROS, Albumin, as Early Predictors for Prognosis of COVID-19 Outcomes. MEDICINES (BASEL, SWITZERLAND) 2022; 9:medicines9060036. [PMID: 35736249 PMCID: PMC9229029 DOI: 10.3390/medicines9060036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 01/10/2023]
Abstract
COVID-19 disease is still a major global concern because of its morbidity and its mortality in severe disease. Certain biomarkers including Reactive Oxygen Species (ROS), vitamins, and trace elements are known to play a crucial role in the pathophysiology of the disease. The aim of our study was to evaluate how certain biomarkers, such as ROS, biochemical indicators, trace elements in serum blood of 139 COVID-19 hospitalized patients, and 60 non-COVID cases according to age and sex variations, can serve as the predictors for prognosis of COVID-19 outcome. An attempt of correlating these biomarkers with the severity of the disease as well as with each other is represented. All subjects were hospitalized from April 2021 until June 2021. A statistically significant increase of B12 levels (p = 0.0029) and ROS levels (p < 0.0001) as well as a decrease in albumin and Total Protein (T.P.) levels (p < 0.001) was observed especially in the early stage of the disease before CRP and ferritin elevation. Additionally, a statistically significant increase in ferritin (p = 0.007), B12 (p = 0.035, sALT p = 0.069, Glucose p = 0.012 and urea p = 0.096 and a decrease in Ca p = 0.005, T.P p = 0.052 albumin p = 0.046 between stage B (CRP values 6−30 mg/L) and C (CRP values 30−100 mg/L) was evident. Thus, this study concludes that clinicians could successfully employ biomarkers such as vitamin B12, ROS and albumin as possible prognosis tools for an early diagnosis. In addition, the total biochemical profile can assist in the understanding of the severity of COVID-19 disease, and could potentially lead to a better diet or early pharmaceutical treatment to prevent some of the more acute symptoms.
Collapse
|
7
|
Ebrahimi M, Norouzi P, Aazami H, Moosavi-Movahedi AA. Review on oxidative stress relation on COVID-19: Biomolecular and bioanalytical approach. Int J Biol Macromol 2021; 189:802-818. [PMID: 34418419 PMCID: PMC8372478 DOI: 10.1016/j.ijbiomac.2021.08.095] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 08/08/2021] [Accepted: 08/12/2021] [Indexed: 02/07/2023]
Abstract
COVID-19 disease has put life of people in stress worldwide from many aspects. Since the virus has mutated in absolutely short period of time the challenge to find a suitable vaccine has become harder. Infection to COVID-19, especially at severe life threatening states is highly dependent on the strength of the host immune system. This system is partially dependent on the balance between oxidative stress and antioxidant. Besides, this virus still has unknown mechanism of action companied by a probable commune period. From another hand, some reactive oxygen species (ROS) levels can be helpful on the state determination of the disease. Thus it could be possible to use modern bioanalytical techniques for their detection and determination, which could indicate the disease state at the golden time window since they have the potential to show whether specific DNA, RNA, enzymes and proteins are affected. This also could be used as a preclude study or a reliable pathway to define the best optimized time of cure beside effective medical actions. Herein, some ROS and their relation with SARS-CoV-2 virus have been considered. In addition, modern bioelectroanalytical techniques on this approach from quantitative and qualitative points of view have been reviewed.
Collapse
Affiliation(s)
- Mehrnaz Ebrahimi
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Parviz Norouzi
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran.
| | - Hossein Aazami
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
8
|
Sarhan AR, Hussein TA, Flaih MH, Hussein KR. A Biochemical Analysis of Patients with COVID-19 Infection. Biochem Res Int 2021; 2021:1383830. [PMID: 34703628 PMCID: PMC8542065 DOI: 10.1155/2021/1383830] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/21/2021] [Accepted: 10/05/2021] [Indexed: 02/07/2023] Open
Abstract
Several studies have demonstrated that age, comorbidities, and abnormalities in different clinical biomarkers can be important to understand disease severity. Although clinical features of COVID-19 have been widely described, the assessment of alterations of the most common biochemical markers that are reported in patients with COVID-19 still has not been well established. Here, we report clinical and blood biochemical indicators of 100 patients with COVID-19. Throat-swab upper respiratory samples were obtained from patients and real-time PCR was used to confirm SARS-CoV-2 infection. Gender, age, and clinical features such as diabetes mellitus, hypertension, and smoking habits were investigated. Biochemical parameters were categorized and analyzed according to these clinical characteristics. Triglycerides, GPT, and ALP are the biochemical markers that changed the most in the group of hypertension patients. Cholesterol and triglycerides were significantly different (P=0.01; P=0.04, respectively) between diabetic and nondiabetic patients with COVID-19. Potassium levels were significantly different (P=0.03) when comparing smokers with nonsmoker patients. Our results suggest several potential biochemical indexes that changed in patients with COVID-19 and whether certain comorbidity and clinical characteristics influence these markers.
Collapse
Affiliation(s)
- Adil R. Sarhan
- Department of Medical Laboratory Techniques, Nasiriyah Technical Institute, Southern Technical University, Nasiriyah 64001, Iraq
| | - Thaer A. Hussein
- Department of Medical Laboratory Techniques, Nasiriyah Technical Institute, Southern Technical University, Nasiriyah 64001, Iraq
| | - Mohammed H. Flaih
- Department of Medical Laboratory Techniques, Nasiriyah Technical Institute, Southern Technical University, Nasiriyah 64001, Iraq
| | - Khwam R. Hussein
- Department of Medical Laboratory Techniques, Nasiriyah Technical Institute, Southern Technical University, Nasiriyah 64001, Iraq
| |
Collapse
|
9
|
Mete AÖ, Koçak K, Saracaloglu A, Demiryürek S, Altınbaş Ö, Demiryürek AT. Effects of antiviral drug therapy on dynamic thiol/disulphide homeostasis and nitric oxide levels in COVID-19 patients. Eur J Pharmacol 2021; 907:174306. [PMID: 34245744 PMCID: PMC8262407 DOI: 10.1016/j.ejphar.2021.174306] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/29/2021] [Accepted: 07/05/2021] [Indexed: 01/01/2023]
Abstract
The novel coronavirus disease 2019 (COVID-19) has led to a serious global pandemic. Although an oxidative stress imbalance occurs in COVID-19 patients, the contributions of thiol/disulphide homeostasis and nitric oxide (NO) generation to the pathogenesis of COVID-19 have been poorly identified. Therefore, the aim of this study was to evaluate the effects of antiviral drug therapy on the serum dynamics of thiol/disulphide homeostasis and NO levels in COVID-19 patients. A total of 50 adult patients with COVID-19 and 43 sex-matched healthy control subjects were enrolled in this prospective study. Venous blood samples were collected immediately on admission to the hospital within 24 h after the diagnosis (pre-treatment) and at the 15th day of drug therapy (post-treatment). Serum native thiol and total thiol levels were measured, and the amounts of dynamic disulphide bonds and related ratios were calculated. The average pre-treatment total and native thiol levels were significantly lower than the post-treatment values (P < 0.001 for all). We observed no significant changes in disulphide levels or disulphide/total thiol, disulphide/native thiol, or native thiol/total thiol ratios between pre- and post-treatments. There was also a significant increase in serum NO levels in the pre-treatment values when compared to control (P < 0.001) and post-treatment measurements (P < 0.01). Our results strongly suggest that thiol/disulphide homeostasis and nitrosative stress can contribute to the pathogenesis of COVID-19. This study was the first to show that antiviral drug therapy can prevent the depletion in serum thiol levels and decrease serum NO levels in COVID-19 patients.
Collapse
Affiliation(s)
- Ayşe Özlem Mete
- Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey.
| | - Kübra Koçak
- Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Ahmet Saracaloglu
- Department of Medical Pharmacology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Seniz Demiryürek
- Department of Physiology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Özgür Altınbaş
- Department of Operating Room Services, Vocational School of Health Services, Gaziantep University, Gaziantep, Turkey
| | - Abdullah T Demiryürek
- Department of Medical Pharmacology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey; Vocational School of Health Services, Gaziantep University, Gaziantep, Turkey
| |
Collapse
|
10
|
Li T, Huang T, Guo C, Wang A, Shi X, Mo X, Lu Q, Sun J, Hui T, Tian G, Wang L, Yang J. Genomic variation, origin tracing, and vaccine development of SARS-CoV-2: A systematic review. Innovation (N Y) 2021; 2:100116. [PMID: 33997827 PMCID: PMC8110321 DOI: 10.1016/j.xinn.2021.100116] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 04/30/2021] [Indexed: 02/07/2023] Open
Abstract
COVID-19 has spread globally to over 200 countries with more than 40 million confirmed cases and one million deaths as of November 1, 2020. The SARS-CoV-2 virus, leading to COVID-19, shows extremely high rates of infectivity and replication, and can result in pneumonia, acute respiratory distress, or even mortality. SARS-CoV-2 has been found to continue to rapidly evolve, with several genomic variants emerging in different regions throughout the world. In addition, despite intensive study of the spike protein, its origin, and molecular mechanisms in mediating host invasion are still only partially resolved. Finally, the repertoire of drugs for COVID-19 treatment is still limited, with several candidates still under clinical trial and no effective therapeutic yet reported. Although vaccines based on either DNA/mRNA or protein have been deployed, their efficacy against emerging variants requires ongoing study, with multivalent vaccines supplanting the first-generation vaccines due to their low efficacy against new strains. Here, we provide a systematic review of studies on the epidemiology, immunological pathogenesis, molecular mechanisms, and structural biology, as well as approaches for drug or vaccine development for SARS-CoV-2.
Collapse
Affiliation(s)
- Tianbao Li
- Genetic Testing Center, Academician Workstation, Changsha Medical University, Changsha 410219, China
- Geneis (Beijing) Co., Ltd, Beijing 100102, China
- Qingdao Geneis Institute of Big Data Mining and Precision Medicine, Qingdao 266000, China
| | - Tao Huang
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China
| | - Cheng Guo
- Center for Infection and Immunity, School of Public Health, Columbia University, New York, NY 10032, USA
| | - Ailan Wang
- Geneis (Beijing) Co., Ltd, Beijing 100102, China
- Qingdao Geneis Institute of Big Data Mining and Precision Medicine, Qingdao 266000, China
| | - Xiaoli Shi
- Geneis (Beijing) Co., Ltd, Beijing 100102, China
- Qingdao Geneis Institute of Big Data Mining and Precision Medicine, Qingdao 266000, China
| | - Xiaofei Mo
- Geneis (Beijing) Co., Ltd, Beijing 100102, China
- Qingdao Geneis Institute of Big Data Mining and Precision Medicine, Qingdao 266000, China
| | - Qingqing Lu
- Geneis (Beijing) Co., Ltd, Beijing 100102, China
- Qingdao Geneis Institute of Big Data Mining and Precision Medicine, Qingdao 266000, China
| | - Jing Sun
- Department of Pathology, The George Washington University School of Medicine and Health Sciences, Washington, DC 20052, USA
| | - Tingting Hui
- Geneis (Beijing) Co., Ltd, Beijing 100102, China
| | - Geng Tian
- Geneis (Beijing) Co., Ltd, Beijing 100102, China
- Qingdao Geneis Institute of Big Data Mining and Precision Medicine, Qingdao 266000, China
| | - Leyi Wang
- Veterinary Diagnostic Laboratory and Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA
- Corresponding author
| | - Jialiang Yang
- Genetic Testing Center, Academician Workstation, Changsha Medical University, Changsha 410219, China
- Geneis (Beijing) Co., Ltd, Beijing 100102, China
- Qingdao Geneis Institute of Big Data Mining and Precision Medicine, Qingdao 266000, China
- Corresponding author
| |
Collapse
|
11
|
Parlakpinar H, Gunata M. SARS-COV-2 (COVID-19): Cellular and biochemical properties and pharmacological insights into new therapeutic developments. Cell Biochem Funct 2021; 39:10-28. [PMID: 32992409 PMCID: PMC7537523 DOI: 10.1002/cbf.3591] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/01/2020] [Accepted: 09/06/2020] [Indexed: 02/06/2023]
Abstract
COVID-19 caused by SARS-COV-2 first appeared in the Wuhan City of China and began to spread rapidly among people. Rapid progression of the outbreak has led to a major global public health problem of a potentially fatal disease. On January 30, 2020, WHO declared the pandemic as the sixth public health emergency of the world. Upon this, the whole country has started to take the necessary precautions. The new coronavirus uses membrane-bound angiotensin-converting enzyme 2 (ACE2) to enter into the cells, such as SARS-CoV, and mostly affects the respiratory tract. Symptoms of COVID-19 patients include fever (93%), fatigue (70%), cough (70%), anorexia (40%) and dyspnoea (34.5%). The elderly and people with underlying chronic diseases are more susceptible to infection and higher mortality. Currently, a large number of drugs and vaccines studies are ongoing. In this review, we discussed the virology, epidemiological data, the replication of the virus, and its relationship with cardiovascular diseases on COVID-19 pandemics, treatment and vaccines. Thereby, this study aims to neatly present scientific data in light of many regarding literature that can be a clue for readers who research this disease prevention and treatment. SIGNIFICANCE OF THE STUDY: This review summarized current information on COVID-19 (epidemiology, pathophysiology, clinical, laboratory, cardiovascular diseases, ACE2 and pharmacological agents) for researchers and reveals guiding data for researchers, especially in the field of cardiovascular system, pharmacology, dysregulation of cellular function in disease, molecular and cell biology and physiology in the regulation of tissue function in health and disease.
Collapse
Affiliation(s)
- Hakan Parlakpinar
- Department of Medical Pharmacology, Faculty of MedicineInonu UniversityMalatyaTurkey
| | - Mehmet Gunata
- Department of Medical Pharmacology, Faculty of MedicineInonu UniversityMalatyaTurkey
| |
Collapse
|